説明

超音波剥離検出方法

【課題】コーティング材と配管との音響インピーダンス差の大小にかかわらず、また、コーティング材の音響インピーダンスと配管の音響インピーダンスの何れが大きくても、コーティング材の剥離を確実に検出する。
【解決手段】配管11の表面に施したコーティング材12に、超音波探触子21を接触配置し、送信波を入力する。配管11で発生した散乱エコーを超音波探触子21で受信し、検出信号を受信器23に送り増幅してから、表示器24に送って、散乱エコーを示す波形を表示させる。表示された散乱エコーの振幅が、予め決めた閾値よりも小さくなった場合に、コーティング材12が剥離したと検出する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、超音波剥離検出方法に関し、コーティング材が配管から剥離したことを正確に検出することができるように、配管から発生する散乱エコーに着目して超音波検査するものである。
【背景技術】
【0002】
原子力発電プラントや火力発電プラント等の各種のプラントは、多数の配管を備えている。これらの配管(多くの場合には金属製の配管)の表面(外周面や内周面)には、各種のコーティング材が施されている。
つまり、耐摩耗性の向上や、液体(水等)のシール機能確保等のために、コーティング材が施されている。このコーティング材としては、その目的に応じて最適な材料が使用されている。例えば、金属系(例えば、ステライト(登録商標))、樹脂系(エポキシ樹脂、ビニルエステル樹脂系ガラスフレーク)、セラミック系(例えば、炭化珪素、アルミナ、ジルコニア)等のコーティング材が使用されている。
【0003】
このような、配管の表面に施したコーティング材の健全性確認には、目視検査、打音検査あるいは超音波探傷検査による検査が行われている。
【0004】
目視検査では、コーティング材の表面状態を検査員が目視で確認しているため、腐食の有無、水の浸入痕跡は検査することができる。
しかし、コーティング材が配管の表面から剥離しているか否かを検査することはできない。
【0005】
打音検査では、コーティング材を叩いたときに発生した音を検査員が耳で聞いて確認しているため、コーティング材が配管表面から剥離しているか否かを推測判定することはできる。
しかし、打音検査をするためには検査員に熟練度が要求され、検査員間の技量差から検査精度が一定しない。
そこで、正確な剥離検査が必要な場合には、最終的には切断調査を実施しなければ、コーティング材が配管の表面から剥離しているか否かが分らない。
【0006】
従来の超音波探傷検査では、コーティング材と配管(金属)との「境界面」に着目して検査をしている。
このような、コーティング材と配管(金属)との「境界面」に着目して超音波探傷検査を行う、従来の超音波検査について、図7を参照して説明する。
【0007】
図7(a),(b)の例は、金属(例えば、鋼:音響インピーダンスZbは45.4×106kg・m-2・s-1)からなる配管1の表面(外周面)に、セラミック(例えば、ジルコニアZrO2:音響インピーダンスZaは41×106kg・m-2・s-1)からなるコーティング材2を施したものである。
超音波探傷検査をするために、コーティング材2の表面に超音波探触子3を接触配置して、垂直探傷法により剥離の検査をする例である。
【0008】
図7(a)に示すように、剥離が発生していない場合には、超音波探触子3から出力された送信波の一部は、配管1とコーティング材2の境界面で反射する。境界面で反射した境界エコーは超音波探触子3で受信される。このとき、受信される境界エコーは、送信波と同相であり位相反転はしない。
つまり、境界面での反射率Rは
R=(Zb−Za)/(Zb+Za)
であるため、反射率Rは正となり、境界エコーは位相反転しないのである。
【0009】
また、図7(a)に示すように、剥離が発生していない場合には、超音波探触子3から出力された送信波は、配管1とコーティング材2との音響インピーダンス差が少ないため、そのほとんどが、配管1とコーティング材2の境界面を透過して配管1に入っていく。このため、多重反射エコー(詳細は後述)は殆ど発生しない。
【0010】
一方、図7(b)に示すように、配管1とコーティング材2の境界面に剥離が発生して空気層4が形成された場合には、超音波探触子3から出力された送信波は、コーティング材2と空気層4の境界面で反射して境界エコーとなる。この境界エコーが超音波探触子3で受信される。
このとき、空気層4の音響インピーダンスZcは4×10-4×106kg・m-2・s-1であるため、配管1とコーティング材2の境界面での反射率rは、
r=(Zc−Za)/(Zc+Za)
となり、反射率rは負になる。
したがって、境界エコーは、送信波に対して位相反転する。
【0011】
よって、境界エコーが反転したことを判定することにより、剥離が発生したと検出することができる。
【0012】
また、図7(b)に示すように、配管1とコーティング材2の境界面に剥離が発生して空気層4が形成された場合には、超音波探触子3から出力された送信波は、コーティング材2の表面(超音波探触子3が接触する側の面)とコーティング材2の底面(配管1に接する側の面)とで反射されて、コーティング材2の表面と底面との間で何度も往復する。このため、このように何度も往復する反射エコー、つまり多重反射エコーを超音波探触子3が受信する。
【0013】
図8は、剥離が発生したときの受信波を示す波形図である。
図8において、Tは送信波、B1,B2,B3,B4は多重反射エコーである。また、Wはコーティング材2の厚さに相当する時間間隔である。
【0014】
よって、多重反射エコーB1,B2,B3,B4が発生したことを判定することにより、剥離が発生したと検出することができる。
【0015】
図7及び図8に示すような、コーティング材2と配管1との「境界面」に着目して超音波探傷検査を行う方法は、コーティング材2の音響インピーダンスが配管1の音響インピーダンスより小さく、且つ、コーティング材2と配管1との音響インピーダンス差が小さい場合には、有効な探傷検査方法である。
その理由は、剥離が発生していない健全状態では、境界面からの反射エコーは少なく、また反射エコーは位相反転せず、一方、剥離により空気層4が形成された場合には、明瞭にコーティング材2内での多重反射エコーの発生、あるいは反射エコーの位相反転が認められるからである。
【先行技術文献】
【特許文献】
【0016】
【特許文献1】特許第2896385号
【発明の概要】
【発明が解決しようとする課題】
【0017】
しかし、コーティング材2と配管1との音響インピーダンス差が大きい場合、例えば、
コーティング材2が樹脂系(音響インピーダンスは、例えば2.8〜3.7×106kg・m-2・s-1)で配管1が鋼(音響インピーダンスZbは45.4×106kg・m-2・s-1)である場合は、健全状態であっても、剥離が発生した状態であっても、境界面からの反射エコー及びコーティング内の多重反射エコーがあるため、上記の手法の適用が困難である。
【0018】
さらに、コーティング材としてステライト(登録商標)を用いた場合には、その音響インピーダンスは49.8×106kg・m-2・s-1であり、内張り材としてのコーティング材料としてステンレスを用いた場合には、その音響インピーダンスは45.7×106kg・m-2・s-1であり、配管1の材料である鋼の音響インピーダンスの45.4×106kg・m-2・s-1よりも大きい。
このように、コーティング材の音響インピーダンスZaが、配管1の音響インピーダンスZbよりも大きい場合には、健全状態であっても、剥離が発生した状態であっても、反射エコーの位相が送信波の位相に対して反転するため、位相の反転を基に剥離の有無を検出する手法は採用できない。
【0019】
本発明は、上記従来技術に鑑み、コーティング材と配管との音響インピーダンス差が大きくても、また、コーティング材の音響インピーダンスが配管の音響インピーダンスよりも大きくても、コーティング材の剥離を確実に検出することができる超音波剥離検出方法を提供することを目的とする。
つまり、コーティング材と配管との音響インピーダンス差の大小にかかわらず、また、コーティング材の音響インピーダンスと配管の音響インピーダンスの何れが大きくても、コーティング材の剥離を確実に検出することができる超音波剥離検出方法を提供することを目的とする。
【課題を解決するための手段】
【0020】
上記課題を解決する本発明の構成は、
配管の表面に施したコーティング材に、超音波探触子を接触配置し、この超音波探触子から前記コーティング材及び前記配管に向けて送信波を入力し、
前記送信波を入力することにより前記配管で発生した散乱エコーを、前記コーティング材を介して前記超音波探触子で受信し、
前記超音波探触子から、散乱エコーに対応する検出信号を受信器に送り、
前記受信器では、前記検出信号の大きさが、予め決めた閾値よりも小さい場合に、前記コーティング材が前記配管から剥離したとすることを特徴とする。
【0021】
また本発明の構成は、
配管の表面に施したコーティング材に、超音波探触子を接触配置し、この超音波探触子から前記コーティング材及び前記配管に向けて送信波を入力し、
前記送信波を入力することにより前記配管で発生した散乱エコー及び形状エコーを、前記コーティング材を介して前記超音波探触子で受信し、
前記超音波探触子から、散乱エコー及び形状エコーに対応する検出信号を受信器に送り、
前記受信器では、前記検出信号の大きさが、予め決めた閾値よりも小さい場合に、前記コーティング材が前記配管から剥離したとすることを特徴とする。
【発明の効果】
【0022】
本発明では、配管から発生する散乱エコーあるいは形状エコーを受信したときに、受信したエコーの振幅レベルが、予め決めた閾値よりも小さいときに、コーティング材が配管の表面から剥離したと判定する。このため、コーティング材が樹脂系コーティングあるいは音響インピーダンスの小さいセラミック系コーティングの場合であっても、コーティング材が配管から剥離したか否かの検出を正確に行うことができる。
また、コーティング材の音響インピーダンスが、配管の音響インピーダンスよりも大きい場合、例えばコーティング材としてステライトを用いた場合であっても、コーティング材の剥離の検出を正確に行うことができる。
【0023】
結局、コーティング材と配管との音響インピーダンス差の大小にかかわらず、また、コーティング材の音響インピーダンスと配管の音響インピーダンスの何れが大きくても、コーティング材の剥離を確実に検出することができる。
【0024】
更に、コーティング材と配管の境界面、即ち、表層部に超音波を絞る必要がないため、通常の超音波探触子でも検査が可能となる。そのため、超音波を絞る集束型と比較すると、細かい探傷が不要となるため、検査の高速化も可能である。
【図面の簡単な説明】
【0025】
【図1】本発明の実施例にかかる超音波剥離検出装置を示す構成図である。
【図2】本実施例の剥離検査状態を示す断面図である。
【図3】本実施例の剥離検査において、剥離が発生していない場合の表示波形を示す波形図である。
【図4】本実施例の剥離検査において、剥離が発生している場合の表示波形を示す波形図である。
【図5】本実施例の剥離検査において、剥離が発生していない場合の表示波形を示す波形図である。
【図6】本実施例の剥離検査において、剥離が発生している場合の表示波形を示す波形図である。
【図7】従来技術における剥離検査状態を示す断面図である。
【図8】従来の剥離検査において、剥離が発生している場合の表示波形を示す波形図である。
【発明を実施するための形態】
【0026】
以下、本発明の実施の形態について、実施例に基づき詳細に説明する。
【実施例】
【0027】
図1は本発明の実施例にかかる超音波剥離検出装置20を示す構成図である。この超音波剥離検出装置20は、一般的な超音波探傷装置と同構成であり、超音波探触子21と、パルス発信器22と、受信器23と、表示器24とで構成されている。
【0028】
図1の例では、配管11の表面(外周面)にコーティング材12が施されている。超音波探傷により剥離検査をするために、コーティング材12の表面に超音波探触子21を接触配置し垂直探傷法により剥離を検査する。
この検査においては、超音波探触子21は、コーティング材12の表面に接触しつつ走査移動し、所定の移動距離毎に送信波を出力して検査をする。
【0029】
本実施例の超音波剥離検出装置20による剥離検査は、配管11とコーティング材12の「境界面」に着目して剥離検出をするのではなく、配管11から発生する「散乱エコー」に着目して剥離検出をするものである。
【0030】
ここで先に、「散乱エコー」について説明する。
検査対象となる物質(配管)に超音波を入力すると、超音波が結晶粒界で反射・屈折することにより散乱するエコー(散乱エコー)が発生する。
特に、結晶粒の大きい材質(例えば、オーステナイト系ステンレス鋼はフェライト系ステンレス鋼に比べて結晶粒が大きい)に、超音波を入力すると、大きな結晶粒界で超音波が反射・屈折することにより散乱して、散乱エコーが発生することが知られている。
【0031】
従来技術のように、境界エコーが反転したか否か、または、多重反射エコーが発生したか否か、を判定することにより剥離検出をする手法では、散乱エコーはノイズ成分として位置づけられるため、散乱エコーは極力小さい方がよい。
詳細は後述するが、本発明では、従来ではノイズ成分であった散乱エコーを積極的に利用して、コーティング材12の剥離を検出するものである。
【0032】
図1に戻り説明を続けると、超音波剥離検出装置20のパルス発生器22から超音波探触子21に送信波パルス(電気信号)を送ると、超音波探触子21からコーティング材12に送信波(超音波)が入力される。入力された送信波がコーティング材12と配管11の境界面あるいは配管11の内周面等に当たって反射し、この反射による反射エコー等が超音波探触子21に入力されると、反射エコー等に対応する検出信号(電気信号)が超音波探触子21から出力される。
検出信号は受信器23で受信されてから増幅され、表示器24に送られ、表示器24には反射エコー等を示す波形が表示される。
【0033】
受信器23における増幅倍率は、散乱エコーの振幅が表示器24の表示画面に大きく表れるように、大きな増幅倍率になっている。
なお、境界エコーが反転したか否か、または、多重反射エコーが発生したか否か、を判定することにより剥離検出をする従来手法を採用する場合においては、境界エコーや多重反射エコーの振幅が表示器24に表示されればよいため、本実施例の増幅倍率に比べて、その増幅倍率は小さい。
【0034】
<検査例1>
配管11が、超音波の透過性が悪い鋳造材(音響インピーダンスは45.7×106kg・m-2・s-1)であり、コーティング材12が樹脂系(音響インピーダンスは、例えば2.8〜3.7×106kg・m-2・s-1)である場合における、剥離検出手法を説明する。
【0035】
図2(a)に示すように、剥離が発生していない場合には、コーティング材12の表面に接触配置した超音波探触子21から、コーティング材12に送信波を入力すると、送信波は下地の配管(鋳造材)11に透過していく。このため、配管11の内部で散乱エコーが発生し、この散乱エコーがコーティング材12に入り超音波探触子21で受信される。
超音波探触子21で散乱エコーが受信されると、散乱エコーに対応する検出信号が受信器23に送られ大きな増幅倍率で増幅されてから、表示器24に送られ、表示器24には散乱エコーを示す波形が表示される。
【0036】
図3は、剥離が発生していない場合において、表示器24に表示された散乱エコーを示す波形図である。なお、図3においてTは送信波、Sは散乱エコーである。
図3に示すように、剥離が発生していない場合には、散乱エコーSが大きく表示される。
【0037】
図2(b)に示すように、配管11とコーティング材12の境界面に剥離が発生して空気層14が形成された場合には、超音波探触子21から出力された送信波は、空気層14で邪魔されて、下地の配管(鋳造材)11に透過しにくくなる。このため、配管11の内部での散乱エコーの発生レベルが低下する。
この散乱エコーがコーティング材12に入って超音波探触子21が受信しても、その信号レベルは極めて低くなる。このため、散乱エコーに対応する検出信号が超音波探触子21から受信器23に送られ大きく増幅されてから、表示器24に送られても、表示器24には小さな振幅になっている散乱エコーを示す波形が表示されるのみである。
【0038】
図4は、剥離が発生している場合において、表示器24に表示された散乱エコーを示す波形図である。なお、図4においてTは送信波、Sは散乱エコーである。
図4に示すように、剥離が発生している場合には、散乱エコーSは振幅が小さく表示される。
【0039】
よって、表示器24に表示された散乱エコーSの振幅が、予め決めた閾値(設定振幅値)よりも小さくなったことを判定することにより、剥離が発生したと検出することができる。
【0040】
この結果、下地の配管11が、超音波の透過性が悪い鋳造材の場合において、コーティング材12が、樹脂系(音響インピーダンスは、例えば2.8〜3.7×106kg・m-2・s-1)であっても、または、セラミック系あるいは金属系であっても、コーティング材12が配管11から剥離したか否かの検出が可能となる。
【0041】
また、コーティング材12と配管11の境界面、即ち表層部に超音波を絞る必要がないため、通常の超音波探触子でも検査が可能となる。そのため、超音波を絞る集束型の超音波探触子を用いた剥離検査と比較すると、細かい探傷が不要となるため、検査の高速化も可能である。
【0042】
<検査例2>
配管11が、超音波の透過性が良い材料、例えば、炭素鋼(音響インピーダンスは45.4×106kg・m-2・s-1)やステンレス(音響インピーダンスは45.7×106kg・m-2・s-1)であり、コーティング材12が樹脂系(音響インピーダンスは、例えば2.8〜3.7×106kg・m-2・s-1)である場合における、剥離検出手法を説明する。
【0043】
図2(a)に示すように、剥離が発生していない場合には、コーティング材12の表面に接触配置した超音波探触子21から、コーティング材12に送信波を入力すると、超音波は下地の配管(炭素鋼等)11に透過していく。このため、配管11の内部で散乱エコーが発生し、この散乱エコーがコーティング材12に入り超音波探触子21で受信される。
また、配管11に入力された送信波は、配管11の内周面あるいは中空部がある場合はその部位で反射して形状エコーが発生する。この形状エコーがコーティング材12に入力されて超音波探触子21で受信される。
【0044】
超音波探触子21で散乱エコー及び形状エコーが受信されると、散乱エコー及び形状エコーに対応する検出信号が受信器23に送られ増幅されてから、表示器24に送られ、表示器24には散乱エコー及び形状エコーを示す波形が表示される。
【0045】
図5は、剥離が発生していない場合において、表示器24に表示された散乱エコー及び形状エコーを示す波形図である。なお、図5においてTは送信波、Sは散乱エコー、B1,B2は形状エコーである。
図5に示すように、剥離が発生していない場合には、散乱エコーS及び形状エコーB1,B2が大きく表示される。
【0046】
図2(b)に示すように、配管11とコーティング材12の境界面に剥離が発生して空気層14が形成された場合には、超音波探触子21から出力された送信波は、空気層14で邪魔されて、下地の配管(炭素鋼やステンレス)11に透過しにくくなる。このため、配管11の内部での散乱エコーの発生レベルが低下する。
同様に、配管11の内面あるいは中空部等形状に起因する形状エコーも空気層14の影響を受け、振幅が小さくなる。
【0047】
発生レベルの小さい散乱エコー及び振幅が小さくなった形状エコーは、超音波探触子21で受信される。このような散乱エコー及び形状エコーに対応する検出信号が超音波探触子21から受信器23に送られ大きく増幅されてから、表示器24に送られても、表示器24には小さな振幅になっている散乱エコー及び形状エコーを示す波形が表示されるのみである。
【0048】
図6は、剥離が発生している場合において、表示器24に表示された散乱エコー及び形状エコーを示す波形図である。なお、図6においてTは送信波、Sは散乱エコー、B1,B2は形状エコーである。
図6に示すように、剥離が発生している場合には、散乱エコーS及び形状エコーB1,B2は振幅が小さく表示される。
【0049】
よって、表示器24に表示された散乱エコーS及び形状エコーB1,B2の振幅が、予め決めた閾値(設定振幅値)よりも小さくなったことを判定することにより、剥離が発生したと検出することができる。
なお、表示器24に表示された散乱エコーSのみを判定要素として、表示器24に表示された散乱エコーSの振幅が、予め決めた閾値(設定振幅値)よりも小さくなったことを判定することにより、剥離が発生したと検出するようにしてもよい。
【0050】
この結果、下地の配管11が、超音波の透過性の良い材料(炭素鋼やステンレス)の場合において、コーティング材12が、樹脂系(音響インピーダンスは、例えば2.8〜3.7×106kg・m-2・s-1)であっても、または、セラミック系あるいは金属系であっても、コーティング材12が配管11から剥離したか否かの検出が可能となる。
【0051】
また、コーティング材12と配管11の境界面、即ち表層部に超音波を絞る必要がないため、通常の超音波探触子でも検査が可能となる。そのため、超音波を絞る集束型の超音波探触子を用いた剥離検査と比較すると、細かい探傷が不要となるため、検査の高速化も可能である。
【0052】
上記の実施例では、配管11の外周面にコーティング材12を施した例であるが、配管11の内周面にコーティング材12を施したものであっても、コーティング材12側即ち内周面側から検査することにより、本発明による「超音波剥離検出方法」を適用して剥離の有無の検出をすることができる。
【産業上の利用可能性】
【0053】
本発明は、原子力発電プラントや火力発電プラント等のプラントに備えた配管の表面に施したコーティング材の剥離のみならず、各種の産業分野において使用されている配管の表面(外周面または内周面)に施したコーティング材の剥離を検出することにも、適用することができる。
【符号の説明】
【0054】
1,11 配管
2,12 コーティング材
4,14 空気層
20 超音波剥離検出装置
3,21 超音波探触子
22 パルス発信器
23 受信器
24 表示器

【特許請求の範囲】
【請求項1】
配管の表面に施したコーティング材に、超音波探触子を接触配置し、この超音波探触子から前記コーティング材及び前記配管に向けて送信波を入力し、
前記送信波を入力することにより前記配管で発生した散乱エコーを、前記コーティング材を介して前記超音波探触子で受信し、
前記超音波探触子から、散乱エコーに対応する検出信号を受信器に送り、
前記受信器では、前記検出信号の大きさが、予め決めた閾値よりも小さい場合に、前記コーティング材が前記配管から剥離したとすることを特徴とする超音波剥離検出方法。
【請求項2】
配管の表面に施したコーティング材に、超音波探触子を接触配置し、この超音波探触子から前記コーティング材及び前記配管に向けて送信波を入力し、
前記送信波を入力することにより前記配管で発生した散乱エコー及び形状エコーを、前記コーティング材を介して前記超音波探触子で受信し、
前記超音波探触子から、散乱エコー及び形状エコーに対応する検出信号を受信器に送り、
前記受信器では、前記検出信号の大きさが、予め決めた閾値よりも小さい場合に、前記コーティング材が前記配管から剥離したとすることを特徴とする超音波剥離検出方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2013−108824(P2013−108824A)
【公開日】平成25年6月6日(2013.6.6)
【国際特許分類】
【出願番号】特願2011−253514(P2011−253514)
【出願日】平成23年11月21日(2011.11.21)
【出願人】(000006208)三菱重工業株式会社 (10,378)
【Fターム(参考)】