説明

超音波診断装置及びその作動方法

【課題】超音波探触子を被検体に密着させることにより作用する応力を考慮して、
ダイナミックエラストグラフィにより計測される弾性値を評価する。
【解決手段】探触子2から被検体1の生体組織の計測領域に照射されたプッシュパルスにより計測領域に生じた横波の伝播速度を計測して計測領域の弾性値を求める横波音速・ヤング率演算部13と、横波音速・ヤング率演算部13で求められた弾性値に基づいて弾性画像を生成する弾性画像生成部と、弾性画像生成部で生成された弾性画像を表示する画像表示器10とを備える超音波診断装置において、応力と変位又は弾性値の特性が既知の脂肪部にプッシュパルスを照射して求めた脂肪部の変位又は弾性値と前記特性に基づいて脂肪部に加えられた応力を求める圧迫状態評価部19を備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、超音波診断装置に係り、特に、生体組織の弾性値を求める技術に関する。
【背景技術】
【0002】
超音波診断においては、特定部位の生体組織の硬さ、軟らかさ(弾性値)に基づいて、生体組織の良悪性を診断することが行われている。生体組織の弾性値を計測する方法として、種々の方法が知られている。
【0003】
例えば、非特許文献1には、被検体の生体組織に音圧の高い集束超音波パルス(プッシュパルス)を関心領域に照射して生体組織を後方に押して変位させる技術により(ARFI:Acoustic Radiation Force Impulse)、生体組織の弾性分布を求めることが提案されている。同文献によれば、変位前の関心領域の生体組織に参照パルスを照射して位置情報を取得し、変位後の関心領域の生体組織に探索パルスを照射して位置情報を取得し、変位前後の位置情報に基づいてプッシュパルスによる生体組織の変位分布を求め、この変位分布に基づいて生体組織の弾性分布を求めることが提案されている。
【0004】
さらに、非特許文献1には、上述の方法で計測された生体組織の硬さは相対的な硬さであるから、硬さを定量評価する場合には、プッシュパルスで変位した生体組織が元に戻るときに発生するせん断弾性波(横波)の伝播速度を計測し、計測した伝播速度に基づいて生体組織の硬さを求める方法(以下、ダイナミックエラストグラフィという。)を用いることが提案されている。そして、横波の伝播速度が速い組織は硬い生体組織であり悪性の場合があるから、硬い生体組織を赤く表示して注意喚起するようにしている。
【先行技術文献】
【非特許文献】
【0005】
【非特許文献1】斎藤雅博, バーチャルパルペーション, 超音波検査技術, 日本超音波検査学会, 2008, vol.33, No.6, p659−665
【発明の概要】
【発明が解決しようとする課題】
【0006】
ところで、超音波を照射する際は、超音波探触子を被検体に押し当てることにより、超音波探触子を被検体の体表面に密着させる。そのため、超音波探触子から被検体の生体組織に応力が作用して生体組織が硬くなる。したがって、生体組織に作用している応力を考慮していない引用文献1の方法は、真の弾性値を計測することはできず、弾性値の正確な評価ができないという問題がある。
【0007】
本発明が解決しようとする課題は、超音波探触子を被検体に密着させることにより作用する応力を考慮して、ダイナミックエラストグラフィにより計測される弾性値を評価することができる超音波診断装置を実現することにある。
【課題を解決するための手段】
【0008】
上記の課題を解決するため、本発明の超音波診断装置は、被検体との間に超音波を送受信する超音波探触子と、超音波探触子から前記被検体の生体組織の計測領域に照射されたプッシュパルスにより計測領域に生じた横波の伝播速度を計測して計測領域の弾性値を求める弾性値演算部と、弾性値演算部で求められた弾性値に基づいて弾性画像を生成する弾性画像生成部と、弾性画像生成部で生成された弾性画像を表示する表示部とを備える超音波診断装置において、応力と変位又は弾性値の特性が既知の基準伝播媒質にプッシュパルスを照射して求めた基準伝播媒質の変位又は弾性値と前記特性に基づいて、基準伝播媒質に加えられた応力を求める応力演算部を備えることを特徴とする。
【0009】
これによれば、基準伝播媒質にプッシュパルスを照射して、同媒質の変位又は弾性値を求めることにより、同媒質の応力と変位又は弾性値の特性に基づいて、超音波探触子によって同媒質に加えられた応力を求めることができる。そして、同媒質に加えられた応力を求めたときの超音波探触子の密着状態を維持したまま、ダイナミックエラストグラフィにより計測領域の生体組織の弾性値を求める。これにより、計測領域の生体組織について、超音波探触子によって加えられた応力を考慮して計測された弾性値を評価することができる。
【0010】
この場合において、超音波探触子によって加えられた応力の計測値には、プッシュパルスによって加えられた応力が含まれる。そのため、基準伝播媒質と計測領域の生体組織に同一音圧のプッシュパルスを照射することが好ましいが、プッシュパルスによって加えられた応力は、超音波探触子からの応力に比べて無視できるくらい小さいので、基準伝播媒質と計測領域の生体組織に異なる音圧のプッシュパルスを照射して、基準伝播媒質の変位又は弾性値と計測領域の生体組織の弾性値を計測できる。
【0011】
また、応力と変位又は弾性値の特性が既知の基準伝播媒質としては、被検体の脂肪部を用いることができる。一方、被検体の脂肪部が薄い場合、又は、計測領域の生体組織の位置が浅い場合は、基準伝播媒質として応力と変位又は弾性値の特性が既知の参照変形体を用いることができる。すなわち、参照変形体を超音波探触子の送受信面にカプラとして装着し、参照変形体を介して超音波探触子を被検体に密着させる。なお、生体組織は、応力に対する弾性値(例えば、ヤング率)の特性及び応力に対する変位の特性が非線形であるから、基準伝播媒質として参照変形体を用いる場合は、応力と変位又は弾性値の特性が非線形のものを用いることが好ましい。
【0012】
また、プッシュパルスによる変位前の基準伝播媒質の位置情報を、プッシュパルスよりも音圧の低い参照パルスで取得し、変位後の位置情報をプッシュパルスよりも音圧の低い探索パルスで取得して、基準伝播媒質の変位を求め、この変位に基づいて基準伝播媒質に作用している応力を求めることができる。これによれば、基準伝播媒質の変位と応力―変位特性に基づいて、超音波探触子を被検体に密着することにより基準伝播媒質に作用する応力を求めることができる。
【0013】
また、ダイナミックエラストグラフィにより、基準伝播媒質の弾性値を求め、この弾性値と基準伝播媒質の応力―弾性値特性に基づいて超音波探触子を被検体に密着することによって基準伝播媒質に作用する応力を求めることができる。これによれば、計測領域と基準伝播媒質の弾性値を同じ方法で求めることができる。
【0014】
この場合において、プッシュパルスと探索パルスを切り換えて照射する送信部に、計測領域と基準伝播媒質にそれぞれプッシュパルスを照射する第1のモード、計測領域と基準伝播媒質に同一時にそれぞれプッシュパルスを照射する第2のモード、計測領域と基準伝播媒質に共通のプッシュパルスを照射する第3のモードのうち少なくとも1つのモードを格納する。そして、第1のモードの場合は、計測領域と基準伝播媒質にそれぞれ探索パルスを照射し、第2又は第3のモードの場合は、計測領域と基準伝播媒質に共通の探索パルスを照射するように構成できる。特に、第2又は第3のモードのプッシュパルスの照射により、計測領域と基準伝播媒質に横波が生じるタイミングが揃うので、計測領域と基準伝播媒質の横波の伝播速度を同一の探索パルスで計測できる。これによれば、計測領域と基準伝播媒質に別々に探索パルスを照射する場合に比べて、横波の伝播速度の計測時間を短縮できる。なお、計測時間の短縮が要望される場合はプッシュパルスの照射が一度で済む第2のモードを採用し、鮮明な画像が要望される場合は計測領域と基準伝播媒質の位置関係等を考慮してプッシュパルスの照射条件を設定できる第3のモードを採用することができる。
【0015】
また、計測領域の弾性値に応じて弾性画像を色分けして表示する場合は、計測領域の生体組織に作用している超音波探触子からの応力によって計測領域の弾性値が変わるので、求めた応力に基づいて色分け基準を修正することができる。これによれば、応力を考慮して色分けした弾性画像を表示できるので、弾性画像に基づく診断精度を向上できる。
【0016】
また、本発明の超音波診断装置の作動方法は、超音波探触子から被検体の生体組織の計測領域にプッシュパルスを照射し、計測領域に生じた横波の伝播速度を求めて計測領域の弾性値を求め、弾性値に基づいて弾性画像を生成して表示する超音波診断装置の作動方法において、プッシュパルスを応力と変位又は弾性値の特性が既知の基準伝播媒質に照射し、基準伝播媒質の変位又は弾性値求めて前記特性に基づいて、前記基準伝播媒質に加えられた応力を求め、該応力に基づいて弾性値を評価し、評価を弾性画像に表示することを特徴とする。
【発明の効果】
【0017】
本発明によれば、超音波探触子を被検体に密着させることにより作用する応力を考慮して、ダイナミックエラストグラフィにより計測される弾性値を評価できる超音波診断装置を実現できる。
【図面の簡単な説明】
【0018】
【図1】実施形態1の超音波診断装置の構成を示すブロック図である。
【図2】計測領域と脂肪部との位置関係を示す図である。
【図3】実施形態1の特徴動作のフローを示す図である。
【図4】計測領域に作用している応力に対応するカラーマップを示した図である。
【図5】計測領域の横波の伝播速度を求める概念図である。
【図6】実施形態2の超音波診断装置の構成を示すブロック図である。
【図7】計測領域とカプラの位置関係を示す図である。
【図8】実施形態3の超音波診断装置の構成を示すブロック図である。
【図9】実施形態3の特徴動作のフローを示す図である。
【図10】脂肪の応力に対するヤング率の特性を示す図である。
【図11】良性の生体組織と悪性の生体組織における応力とヤング率の関係を示した図である。
【図12】カプラの応力に対するヤング率の特性を示す図である。
【図13】実施形態3のプッシュパルスの照射のタイミングを示す図である。
【発明を実施するための形態】
【0019】
以下、本発明を実施の形態に基づいて説明する。
(実施形態1)
図1に示すように、実施形態1の超音波診断装置は、被検体1の外皮に接触させて超音波を送受信可能な探触子2が備えられている。探触子2は、被検体1との間で超音波を送信及び受信する複数の振動子が配列された超音波送受信面を有して形成されている。探触子2は、送信回路3から送信される超音波パルスにより駆動される。送信回路3は、例えば、断層像(Bモード像)を作成する際に照射される通常の超音波パルス、該超音波パルスよりも音圧の高いプッシュパルス、プッシュパルスよりも音圧の低い参照パルス又は探索パルスを切り換えて送信可能に形成されている。なお、参照パルス及び探索パルスの音圧を通常の超音波パルスの音圧と同一に設定できる。
【0020】
送信回路3には、超音波送受信制御回路4が接続されている。超音波送受信制御回路4は、探触子2から通常の超音波パルス、プッシュパルス、参照パルス、探索パルスのいずれかを照射するように送信回路3を制御するようになっている。また、探触子2の複数の振動子を駆動する超音波パルスの送信タイミングを制御して、被検体1内に設定される焦点に向けて超音波パルスを形成するようになっている。さらに、超音波送受信制御回路4は、探触子2の振動子の配列方向に電子的に超音波パルスを走査するようになっている。
【0021】
一方、探触子2は、被検体1内から発生する反射エコー信号を受信して受信回路5に出力する。受信回路5は、超音波送受信制御回路4から入力されるタイミング信号に従って、反射エコー信号を取り込んで増幅などの受信処理を行う。受信回路5により受信処理された反射エコー信号は、整相加算回路6において複数の振動子により受信された反射エコー信号の位相を合わせて加算することにより増幅される。整相加算回路6において整相加算された反射エコー信号のRF信号は、信号処理部7に入力され、ゲイン補正、ログ圧縮、検波、輪郭強調、フィルタ処理等の信号処理がなされる。なお、整相加算回路6において生成されるRF信号は、複合復調したI、Q信号であっても良い。
【0022】
信号処理部7により処理されたRF信号は白黒スキャンコンバータ8に導かれ、ここにおいてディジタル信号に変換されるとともに、超音波ビームの走査面に対応した2次元の断層像データに変換される。これらの信号処理部7と白黒スキャンコンバータ8によって断層像の画像再構成手段が構成される。白黒スキャンコンバータ8から出力される断層像データは、切替加算部9を介して画像表示器10に供給されてBモード像が表示されるようになっている。
【0023】
一方、弾性値を求めるべき計測領域(関心領域ROI)が設定されると、計測領域にプッシュパルスが照射され、計測領域に生じた横波からの反射エコー信号が整相加算回路6に入力される。その反射エコー信号のRF信号が整相加算回路6から出力される。このRF信号が、横波音速・ヤング率演算部13に入力されると、横波音速・ヤング率演算部13は、入力されたRF信号からプッシュパルスで生じた計測領域の横波形状等の状態を推定して横波の伝播速度を求め、求めた伝播速度から計測領域のヤング率を演算するようになっている。つまり、ヤング率(E)と横波の伝播速度(C)は、以下の(式1)の関係が成り立つ。
E=3ρC・・・(式1)
ここで、生体組織の密度(ρ)は、組織ごとの変化が小さいので、例えば、密度を1.0と仮定して、(式1)に基づいて横波の伝播速度(C)からヤング率(E)を演算できる。そして、横波音速・ヤング率演算部13は、走査面(断層面)に対応するRF信号群のフレームデータの計測領域とヤング率を関連付けたヤング率フレームデータを弾性データ処理部14に出力するようになっている。
【0024】
弾性データ処理部14は、ヤング率フレームデータに座標平面内におけるスムージング処理、コントラスト最適化処理、フレーム間における時間軸方向のスムージング処理などの様々な画像処理を施すようになっている。カラースキャンコンバータ15は、弾性データ処理部14から出力されるフレームデータを取り込み、設定されたヤング率のカラーマップに従って、フレームデータの画素ごとに色調コードを付与してカラー弾性画像を生成するようになっている。
【0025】
カラースキャンコンバータ15により生成されたカラー弾性画像は、切替加算部9を介して画像表示器10に表示されるようになっている。また、切替加算部9は、白黒スキャンコンバータ8から出力される白黒の断層画像と、カラースキャンコンバータ15から出力されるカラー弾性画像とを入力し、両画像を切り替えていずれか一方を表示させる機能と、両画像の一方を半透明にして加算合成して画像表示器10に重ねて表示させる機能と、両画像を並べて表示させる機能を有して形成されている。また、シネメモリ部18は、切替加算部9から出力される画像データをメモリに格納し、制御インターフェイス部17からの指令に従って、過去の画像データを呼び出して画像表示器10に表示するようになっている。さらに、選択された画像データをMOなどの記録メディアへ転送することが可能になっている。
【0026】
ここで、実施形態1の特徴部を説明する。実施形態1は、応力に対する変位が既知の基準伝播媒質、例えば、脂肪部にプッシュパルスを照射して得られた脂肪部の変位を演算する変位演算部12が備えられている。変位演算部12は、脂肪部に照射された参照パルスと探索パルスのそれぞれの反射エコー信号のRF信号に基づいて、プッシュパルスによる脂肪部の変位を計測して出力するようになっている。変位演算部12から出力された脂肪部の変位が圧迫状態評価部19に入力されるようになっている。圧迫状態評価部19は、脂肪部の応力に対する変位の特性情報を備え、この特性情報と入力された変位に基づいて、探触子2を被検体1の体表面に密着させることにより脂肪部に作用している探触子2の応力(圧迫力)を求め、求めた応力を評価して計測領域の生体組織に作用している探触子2の応力を求める。そして、横波音速・ヤング率演算部13から入力されたヤング率フレームデータと求めた応力を関連付けてカラースキャンコンバータ15に出力するようになっている。
【0027】
このように構成される実施形態1の超音波診断装置によるダイナミックエラストグラフィの動作を説明する。超音波を照射するときは、医師等の検査者により、探触子2は被検体1に押圧して被検体1の体表面に密着させられる。次に、超音波送受信制御回路4の制御信号に基づいて送信回路3から探触子2にプッシュパルスが送信され、プッシュパルスが計測領域に照射される。プッシュパルスが照射された後、探触子2からプッシュパルスよりも音圧の低い探索パルスを照射するように、超音波送受信制御回路4は、送信回路3を制御する。この際、プッシュパルスにより生じた計測領域における横波の伝播方向に沿って、探索パルスは複数回照射される。この探索パルスの反射エコー信号が受信回路5から整相加算回路6に入力され、整相加算回路6から探索パルスの反射エコー信号のRF信号が出力される。このRF信号は横波音速・ヤング率演算部13に入力される。横波音速・ヤング率演算部13は、例えば、受信したRF信号の受信時間に基づいて横波の形状を推定する。例えば、プッシュパルスの照射位置と横波の任意の位置の差(横波の伝播距離)を求め、その位置に横波が伝播するまでの時間を各RF信号の受信時間(各探索パルスの照射時間)に基づいて求め、これらに基づいて横波の伝播速度が算出される。そして、算出された横波の伝播速度と上述した(式1)に基づいて、計測領域におけるヤング率を算出してヤング率フレームデータを生成し、このフレームデータを弾性データ処理部14に出力する。そして、弾性データ処理部14で画像処理されたフレームデータをカラースキャンコンバータ15に設定されたヤング率のカラーマップに従って、フレームデータの画素ごとに色調コードを付与してカラー弾性画像を生成する。
【0028】
次に、実施形態1の特徴動作を、図2、3を用いて、胸部の超音波診断で計測領域(関心領域)を乳腺に設定した場合を例として説明する。図2に示すように、胸部は、探触子2に近い方から脂肪部、乳腺、大胸筋の順に位置している。図3に示すように、計測領域が設定されると、探触子2を被検体1の外表面に押し当てて圧迫し、探触子2と被検体1を密着させる。そのため、探触子2から被検体1の計測領域の生体組織に応力が作用する。この応力は、計測領域の生体組織より浅い位置の脂肪部にも作用しているので、脂肪部を基準伝播媒質として用いることができる。したがって、脂肪部の応力―変位特性を圧迫状態評価部19に予め記憶しておく。そして、計測領域にプッシュパルスを照射した探触子2の密着状態を維持したまま、脂肪部にプッシュパルスを照射する。
【0029】
脂肪部にプッシュパルスを照射する場合、脂肪部を、例えば、i個のライン31に分割する(S1)。次に、1つのライン31に参照パルスを複数回照射してプッシュパルスを照射する前のライン31の基準の位置情報を取得する。そして、参照パルスを照射したライン31に計測領域に照射したプッシュパルスと同一の音圧のプッシュパルスを照射して変位を生じさせた後、そのライン31に探索パルスを複数回照射して、変位後のライン31の位置情報を取得する。この際、計測領域にプッシュパルスを照射した際の探触子2の圧迫力を維持したまま、脂肪部に超音波を照射する。これらの位置情報が変位演算部12に入力され、変位演算部12は、変位前後の位置情報に基づいて、プッシュパルスを照射したラインにおける計測点のプッシュパルスに対する変位を計測する。この動作を脂肪部に設定した全てのライン31で行い各ライン31の計測点における変位を求める(S2)。求めた変位は圧迫状態評価部19に入力され、入力された変位と圧迫状態評価部19に記憶されている脂肪部の応力―変位特性に基づいて、各ライン31の計測点に作用している応力を求め、脂肪部における応力分布を求める(S3)。そして、求めた応力分布と計測領域のヤング率フレームデータを関連付け、計測領域に作用している応力を推定する。例えば、計測領域に照射されたプッシュパルスが通過したライン31に作用している応力を、計測領域に作用している応力として評価して推定する(S4)。この推定された応力がカラースキャンコンバータ15に入力され、この応力に基づいてカラーマップが修正される。例えば、図4に示すように、計測領域に作用している応力がσ1の場合は、応力σ1におけるカラーマップが適用され、計測領域に作用している応力がσ2の場合は、応力σ2におけるカラーマップが適用される。これにより、適正なカラーマップが選択され、カラー弾性画像を選択できる。なお、各ライン31に計測点が複数ある場合は、各計測点における変位、応力の平均値を各ライン31の変位、応力として用いることができる。また、図4に示すカラーマップは、例えば、臨床でデータを集めて予め作成することができる。
【0030】
これによれば、探触子2を被検体1に密着させることにより加えられた応力を求め、求めた応力に基づいてヤング率の評価基準であるカラーマップを修正しているから、ヤング率を適正に評価できる。すなわち、探触子2からの応力により生体組織が硬くなってヤング率が増加するが、このヤング率の増加に対応させてカラーマップを修正できるので、ヤング率に基づく良悪性の評価を正確に行うことができる。
【0031】
なお、実施形態1は、脂肪部に作用している応力をそのまま計測領域の生体組織に作用している応力と評価しているが、脂肪部から計測領域までの距離による探触子2の圧迫力の減衰を考慮して、脂肪部に作用している応力を評価して、計測領域に作用している応力を求めることができる。
【0032】
また、実施形態1は、計測領域に作用している応力によりカラーマップを修正しているが、計測領域に作用している応力をカラー弾性画像に単に表示するように構成できる。この場合、探触子2から加えられた応力と生体組織の弾性値を関係付けたグラフ等を予め作成し、医師等が弾性値を補正可能にすることができる。
【0033】
また、実施形態1のように、例えば、胸を超音波診断する場合は、心臓の拍動等の外力によって計測領域が動くことがある。その場合は、図5に示すようにプッシュパルスを照射する前に、探索パルスを計測領域に複数回照射し、その反射エコー信号からプッシュパルスを照射する前の計測領域の状態を計測するように構成できる。これによれば、心臓の拍動等の外力による診断精度の低下を抑制できる。
【0034】
また、実施形態1は、計測領域の弾性値を演算した後、脂肪部の応力分布を求めているが、この手順を逆にすることができる。例えば、脂肪部の応力分布を求めた後、計測領域の弾性値を演算することができる。
【0035】
(実施形態2)
図6、7を用いて実施形態2の超音波診断装置を説明する。実施形態2が実施形態1と相違する点は、脂肪部に代えて、探触子2と被検体の間に配置する音響カプラを基準伝播媒質としている点である。その他の構成は実施形態1と同一であるので同一の符号を付して説明を省略する。
【0036】
脂肪部の厚みは、個人差、診断部位によって異なり、計測領域の上面に適当な厚みの脂肪部がない場合がある。そこで、音響カプラ33の応力―変位特性を予め求め、この特性を圧迫状態評価部19に記憶させる。そして、カプラを複数のライン35に分割し、各ライン35に作用している探触子2からの応力を求めて応力分布を作成し、計測領域に照射されたプッシュパルスが通過したライン35に対応する応力を、計測領域の生体組織に作用している応力と推定する。これによれば、被験者の個人差や診断部位のよる影響を無視でき、診断精度を向上できる。
【0037】
また、超音波の焦点を被検体1の浅い位置に設定できず、計測領域を被検体1の浅い位置に設定できない場合は、被検体1と探触子2の間に音響カプラ33を介在させ、探触子2を被検体1から遠ざけることにより被検体1の浅い位置に計測領域を設定できる。この場合、基準伝播媒質として音響カプラ33を利用することが好ましい。
【0038】
(実施形態3)
図8、9を用いて実施形態3の超音波診断装置を説明する。実施形態3が実施形態1と相違する点は、基準伝播媒質の変位に代えて、基準伝播媒質のヤング率を求め、基準伝播媒質のヤング率と応力の既知の特性に基づいて基準伝播媒質に作用している探触子2からの応力を求めている点である。その他の構成は実施形態1と同一であるので同一の符号を付して説明を省略する。
【0039】
圧迫状態評価部19には、図10に示すような、脂肪の応力に対するヤング率の特性曲線が記憶されている。そして、図9に示すように、計測領域が設定されると、脂肪部を複数のラインに分割する(S11)。次に、上述したダイナミックエラストグラフィにより、各ラインごとにプッシュパルスを照射して生じた横波の伝播速度を、探索パルスの反射エコー信号のRF信号に基づいて計測し、各ラインのヤング率が演算される(S12)。演算されたヤング率は、圧迫状態評価部19に入力され、入力されたヤング率と、圧迫状態評価部19に記憶されている脂肪部の応力―ヤング率特性に基づいて、各ラインに作用している応力が求められ、脂肪部における応力分布が求められる(S13)。例えば、脂肪部の応力―ヤング率特性が図10に示す曲線の場合、あるラインのヤング率が5.2kPaとすると、そのラインに作用している応力は0.5kPaであることが分かる。そして、求められた応力分布とヤング率フレームデータを関連付け、計測領域に作用している応力を推定する。例えば、計測領域に照射されたプッシュパルスが通過した脂肪部のラインの応力を、計測領域に作用している応力として評価して推定する(S14)。なお、図11に、脂肪等の良性の生体組織と、がん等の悪性の生体組織の応力に対するヤング率の関係を例示する(Krouskop TA, et al. Elastic Moduli of Breast and Prostate Tissue Under Compression. Ultrasonic Imaging. 1998;20:260-274.)。
【0040】
これによれば、脂肪部に作用した応力の算出に、計測領域のヤング率を求める回路を利用できるので、脂肪部の変位を求める実施形態1に比べて、装置を簡素化できる。
【0041】
なお、実施形態3においても、上述した実施形態2のように脂肪部に代えてカプラを基準伝播媒質とすることができる。この場合、図12に示すように、カプラにおけるヤング率と応力の特性を関係付けたグラフを、圧迫状態評価部19に予め記憶させることができる。
【0042】
また、計測領域と脂肪部にそれぞれプッシュパルスを照射する場合は、脂肪部にプッシュパルス及び探索パルスを照射する分、通常のダイナミックエラストグラフィよりも計測時間がかかる。そこで、計測領域と脂肪部に共通のプッシュパルスを照射することで、計測領域と脂肪部に横波が生じるタイミングを揃えることができるので、計測領域と基準伝播媒質の横波の伝播速度を同一の探索パルスで計測でき、計測時間を短縮できる。また、同一のプッシュパルスを用いると画像が不鮮明になる場合は、図13に示すように、横波が生じるタイミングが揃うように計測領域と脂肪部のそれぞれに照射するプッシュパルスの照射時間を近づけて同一時に照射することができる。これによれば、計測領域と脂肪部の探触子2からの距離の違いを考慮したプッシュパルスを照射でき、画像が不鮮明になることを抑制できる。
【符号の説明】
【0043】
1 被検体
2 探触子
3 送信回路
4 超音波送受信制御回路
5 受信回路
10 画像表示器
12 変位演算部
13 横波音速・ヤング率演算部
19 圧迫状態評価部


【特許請求の範囲】
【請求項1】
被検体との間に超音波を送受信する超音波探触子と、該超音波探触子から前記被検体の生体組織の計測領域に照射されたプッシュパルスにより前記計測領域に生じた横波の伝播速度を計測して前記計測領域の弾性値を求める弾性値演算部と、該弾性値演算部で求められた前記弾性値に基づいて弾性画像を生成する弾性画像生成部と、該弾性画像生成部で生成された前記弾性画像を表示する表示部とを備える超音波診断装置において、
応力と変位又は弾性値の特性が既知の基準伝播媒質に前記プッシュパルスを照射して求めた前記基準伝播媒質の変位又は弾性値と前記特性に基づいて、前記基準伝播媒質に加えられた応力を求める応力演算部を備えることを特徴とする超音波診断装置。
【請求項2】
請求項1に記載の超音波診断装置において、
前記基準伝播媒質に前記プッシュパルスが照射される前に、前記基準伝播媒質に照射された前記プッシュパルスよりも音圧の低い参照パルスの反射エコー信号と、前記プッシュパルスが照射された後に、前記基準伝播媒質に照射された前記プッシュパルスよりも音圧の低い探索パルスの反射エコー信号とに基づいて、前記プッシュパルスにより前記基準伝播媒質に生じた変位を求める変位演算部を備えることを特徴とする超音波診断装置。
【請求項3】
請求項1に記載の超音波診断装置において、
前記弾性値演算部は、前記計測領域と前記基準伝播媒質に照射された前記プッシュパルスより音圧の低い探索パルスの反射エコー信号に基づいて、前記計測領域と前記基準伝播媒質に生じた横波の伝播速度を計測して前記弾性値を求めることを特徴とする超音波診断装置。
【請求項4】
請求項3に記載の超音波診断装置において、
前記プッシュパルスと前記探索パルスを切り換えて照射する送信部を備え、
該送信部は、前記計測領域と前記基準伝播媒質にそれぞれプッシュパルスを照射する第1のモード、前記計測領域と前記基準伝播媒質に同一時にそれぞれプッシュパルスを照射する第2のモード、又は前記計測領域と前記基準伝播媒質に共通のプッシュパルスを照射する第3のモードのうち少なくとも1つのモードを有し、前記第1のモードの場合は、前記計測領域と前記基準伝播媒質にそれぞれ前記探索パルスを照射し、前記第2又は第3のモードの場合は、前記計測領域と前記基準伝播媒質に共通の探索パルスを照射することを特徴とする超音波診断装置。
【請求項5】
請求項1乃至4に記載の超音波診断装置において、
前記弾性画像生成部は、前記計測領域の弾性値に応じて前記弾性画像を色分けする色分け基準を有し、該色分け基準は、前記応力演算部で求められた応力に基づいて修正されることを特徴とする超音波診断装置。
【請求項6】
超音波探触子から被検体の生体組織の計測領域にプッシュパルスを照射し、前記計測領域に生じた横波の伝播速度を求めて前記計測領域の弾性値を求め、該弾性値に基づいて弾性画像を生成して表示する超音波診断装置の作動方法において、
前記プッシュパルスを応力と変位又は弾性値の特性が既知の基準伝播媒質に照射し、該基準伝播媒質の変位又は弾性値求めて前記特性に基づいて、前記基準伝播媒質に加えられた応力を求め、該応力に基づいて前記弾性値を評価し、該評価を前記弾性画像に表示することを特徴とする超音波診断装置の作動方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate


【公開番号】特開2012−100997(P2012−100997A)
【公開日】平成24年5月31日(2012.5.31)
【国際特許分類】
【出願番号】特願2010−254110(P2010−254110)
【出願日】平成22年11月12日(2010.11.12)
【出願人】(000153498)株式会社日立メディコ (1,613)
【Fターム(参考)】