説明

軽油基材及び軽油組成物

【課題】動植物油に由来する含酸素炭化水素化合物を含有する原料を用いて得られる、ライフサイクルCO排出特性及び酸化安定性、低温流動性に優れた軽油基材及び軽油組成物を提供すること。
【解決手段】本発明の軽油基材は、水素の存在下、動植物油に由来する含酸素炭化水素化合物、脂肪族炭化水素化合物、及び含硫黄炭化水素化合物を含有する被処理油を水素化処理することによって得られる炭化水素留分であって、ノルマルパラフィンの含有量が90質量%以上であり、炭化水素留分中の規定炭素数n(10≦n≦20;nは偶数を示す。)における総パラフィン含有量をA(単位:質量%)、炭素数n−1における総パラフィン含有量をBn−1(単位:質量%)、Aに対するBn−1の比を(Bn−1/A)としたとき、10≦n≦20における(Bn−1/A)の平均値が0.30以上であることを特徴とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は軽油基材及び軽油組成物に関する。
【背景技術】
【0002】
従来、軽油の基材としては、原油の常圧蒸留装置から得られる直留軽油に水素化精製や水素化脱硫処理を施したもの、原油の常圧蒸留装置から得られる直留灯油に水素化精製や水素化脱硫処理を施したもの等が知られている。従来の軽油組成物は上記軽油基材及び灯油基材を1種又は2種以上配合することにより製造されている。また、これらの軽油組成物には、必要に応じてセタン価向上剤や清浄剤等の添加剤が配合される(例えば、非特許文献1参照。)。
【0003】
ところで、近年、早急な大気環境改善及び環境負荷低減を目指して、内燃機関用燃料である軽油中の硫黄分及び芳香族含有量の低減が求められている。また同時に地球温暖化問題に対応するため、一層の燃費向上に貢献しかつ二酸化炭素(CO)削減に効果的な燃料性状が求められており、その解決手段の1つとして合成燃料や再生可能エネルギーであるバイオディーゼル燃料(以下、「BDF」とも表記する。)を代替燃料として用いることが検討されている。
【0004】
BDFは天然の動植物油脂を原料にした脂肪酸アルキルエステル混合物が主であり、排出ガス中のすす生成寄与度が大きいとされている芳香族化合物分や排出ガス後処理触媒への被毒等の影響が大きいとされている硫黄分をほとんど含まず、またそれ自身が分子中に酸素を持った含酸素化合物であるため、代替燃料の有力な候補として着目されている。また、植物由来であることから再生可能エネルギーと位置づけられているため、1997年に締結された国際間での二酸化炭素削減プロトコル、いわゆる京都議定書においてはBDF起因の二酸化炭素は排出量として計上されないルールである点も、BDFは政策的なメリットを有している。
【0005】
例えば、特許文献1には、天然油脂類あるいはその誘導体及び食用廃油等を原料とする炭化水素類の製造方法を提供することを目的として、天然油脂、廃天然油脂又はその誘導体と、活性化した水素とを金属触媒、合金触媒、金属担持触媒及び合金担持触媒からなる群より選ばれる触媒の存在下反応させることを特徴とする炭化水素類の製造方法が開示されている。
【0006】
また、特許文献2には、植物及び/又は動物及び/又は魚を起源とする生物学的原材料から調製される成分又は成分の混合物を0.1〜99容量%及び酸素を含む成分を0〜20容量%含むディーゼルエンジン用燃料組成物が開示されている。ここで両成分は、フィッシャー−トロプシュ工程からの粗油及び/又は画分にもとづくディーゼル成分と混合されるとされている。
【0007】
また、特許文献3には、脂肪酸を構成する炭素数が6から20までの飽和又は不飽和脂肪酸のメチルエステル又はエチルエステル、あるいはそれらの混合物からなる環境対応型ディーゼル燃料組成物が開示されている。
【特許文献1】特開2003−171670号公報
【特許文献2】特表2005−538204号公報
【特許文献3】特開2004−189885号公報
【非特許文献1】小西誠一著,「燃料工学概論」,裳華房,1991年3月,p.136−144
【発明の開示】
【発明が解決しようとする課題】
【0008】
しかしながら、天然の動植物油脂を原料とした脂肪酸アルキルエステルは本来重質な成分が多く、エンジン燃焼等における燃え切り性が悪くなり、燃焼時の未燃炭化水素排出を増加させる懸念がある。また、脂肪酸アルキルエステルは含酸素化合物であるため、燃焼時のアルデヒド類の排出を増加させる懸念がある。飽和脂肪酸基を多く有する脂肪酸アルキルエステル多くを含有するBDFの場合は、常温で固体であるために燃料としての取り扱いに劣り、また低温時の流動性能も確保することが困難である。不飽和脂肪酸基を多く含有するBDFの場合は、その化学組成上酸化安定性に劣り、色相の劣化やスラッジの生成及びエンジン部材への悪影響が懸念されている。更には、脂肪酸アルキルエステルを精製する際の原料である脂肪酸グリセライド、アルキルアルコール及び副生成物であるグリセリン混合物はエンジン部材や燃料噴射系への悪影響が極めて懸念されているものである。
【0009】
これらの傾向は従来の一般的な軽油等には見られなかった傾向であり、そのためBDF単独で使用する場合だけでなく、既存の軽油等に混合して使用する場合においても同様に問題となっており、BDF自体の性状に留意するだけでなく、BDF以外の軽油との混合使用時においても酸化安定性や低温性能、燃焼性等に従来以上に留意する必要がある。
【0010】
従って、有害排気成分の低減と共にライフサイクルCO排出特性及び酸化安定性に優れ、良好な低温性能を有する軽油組成物の提供に関して、天然の動植物油脂を原料にした脂肪酸アルキルエステル混合物である従来のBDFの使用では、これらの性能改善を同時に達成することはできない。さらに、これらのエンジン性能は他の燃料性状とも密接に関連するため、これらの要求性能を高水準で同時に達成できる高品質の燃料を設計することは非常に困難であり、なおかつ市販燃料油として求められている諸性能を十分満たし、また現実的な製造方法の検討を踏まえた例、知見は存在していない。
【0011】
本発明は、かかる実状に鑑みてなされたものであり、その目的は、動植物油に由来する含酸素炭化水素化合物を含有する原料を用いて得られる、ライフサイクルCO排出特性及び酸化安定性、低温流動性に優れた軽油基材及び軽油組成物を提供することにある。
【課題を解決するための手段】
【0012】
上記課題を解決するために、本発明は、水素の存在下、動植物油に由来する含酸素炭化水素化合物、脂肪族炭化水素化合物、及び含硫黄炭化水素化合物を含有する被処理油を水素化処理することによって得られる炭化水素留分であって、ノルマルパラフィンの含有量が90質量%以上であり、炭化水素留分中の規定炭素数n(10≦n≦20;nは偶数を示す。)における総パラフィン含有量をA(単位:質量%)、炭素数n−1における総パラフィン含有量をBn−1(単位:質量%)、Aに対するBn−1の比を(Bn−1/A)としたとき、10≦n≦20における(Bn−1/A)の平均値が0.30以上であることを特徴とする軽油基材を提供する。
【0013】
ここで、上記被処理油を水素化処理すると、動植物油に由来する含酸素炭化水素化合物の水素化脱酸素反応が進行し、炭化水素が生成する。本発明でいう「水素化脱酸素反応」とは、含酸素炭化水素化合物を構成する酸素原子を除去し、開裂した部分に水素を付加する反応を意味する。例えば脂肪酸トリグリセライドや脂肪酸は、それぞれエステル基、カルボキシル基等の含酸素基を有しているが、水素化脱酸素反応によって、これらの含酸素基に含まれる酸素原子が取り除かれ、含酸素炭化水素化合物は炭化水素に転換される。脂肪酸トリグリセライド等が有する含酸素基の水素化脱酸素には、主として二つの反応経路がある。第1の反応経路は、脂肪酸トリグリセライド等の含酸素基がそのまま二酸化炭素として脱離する脱炭酸経路であり、酸素原子は二酸化炭素として取り除かれる。第2の反応経路は、脂肪酸トリグリセライド等の炭素数を維持しながらアルデヒド、アルコールを経由して還元される水素化経路である。この場合、酸素原子は水に転換される。これらの反応が並列に進行した場合、炭化水素と水、二酸化炭素が生成する。
【0014】
ステアリン酸のアルキルエステルの場合を例とした水素化脱酸素の反応スキームを下記式(1)、(2)に示す。式(1)で表される反応スキームは上記第1の反応経路に相当するものであり、また、式(2)で示される反応スキームは上記第2の反応経路に相当するものである。また、式(1)、(2)中のRはアルキル基を示す。
1735COOR+H→C1736+CO+RH (1)
1735COOR+4H→C1838+2HO+RH (2)
【0015】
なお、炭化水素留分中の規定炭素数nは10〜20の範囲の偶数であるが、これは、動植物に由来する含酸素炭化水素化合物の炭素数が通常偶数であることによる。また、本発明におけるノルマルパラフィンの含有量、及び総パラフィン含有量、とはガスクロマトグラフ・飛行時間質量分析計(GC−TOFMS)を用いて測定される値(単位:質量%)を意味する。GC−TOFMSにおいては、先ず、試料の構成成分をガスクロマトグラフィーにより分離し、分離された各成分をイオン化する。次いで、イオンに一定の加速電圧を与えたときの飛行速度がイオンの質量によって異なることに基づき、イオンを質量分離し、イオン検出器への到達時間の違いに基づいて質量スペクトルを得る。なお、当該パラフィン量は質量スペクトルから直接求めてもよいが、質量スペクトルデータに基づいて、炭素数が同一である成分ごとにガスクロマトグラフィーのリテンションタイムと強度との相関を示すグラフを作成し、そのグラフにおける各成分のピーク面積比から当該パラフィン量を求めてもよい。
【0016】
つまり、本発明におけるBn−1/Aは、炭素数nの含酸素炭化水素化合物の水素化脱酸素反応における上記2つの反応経路の割合と相関する指標である。また、炭素数nの含酸素10≦n≦20における(Bn−1/A)の平均値が0.30以上であることは、B/A10、B11/A12、B13/A14、B15/A16,B17/A18及びB19/A20の平均値が0.30以上であることを意味する。なお、炭化水素留分の規定炭素数nにおける総パラフィン量A、Bn−1のうちどちらか一方、あるいは双方ともに数値が存在しない(総パラフィン量の値が0)場合は、(Bn−1/A)は算出せず、(Bn−1/A)の平均値にも加味しないこととする。
【0017】
また、被処理油に含まれる脂肪族炭化水素化合物は、水素化処理における反応熱による温度上昇を抑制する役割を担っている。一方、被処理油に含まれる含硫黄炭化水素化合物は、水素化処理における脱酸素活性を向上させる役割を担っている。
【0018】
本発明の軽油基材によれば、上記構成を有することで、ライフサイクルCO排出特性、酸化安定性及び低温流動性の全てを十分に且つバランスよく達成することができる。
【0019】
また、従来の軽油基材の製造方法においては、低温特性の改善等を目的として、ノルマルパラフィンの水素化異性化を行うのが一般的であるという当該分野の技術水準からみて、水素化異性化を経ずに得られる、ノルマルパラフィンの含有量が90質量%以上である本発明の軽油基材によって上記の優れた効果が得られることは、予想外の顕著な効果であるといえる。
【0020】
本発明においては、動植物油に由来する含酸素炭化水素化合物が脂肪酸類及び脂肪酸エステル類から選ばれる1種以上の化合物であることが好ましく、脂肪酸エステル類は脂肪酸のトリグリセライドであることがより好ましい。
【0021】
また、脂肪族炭化水素化合物としては、予め前記被処理油を水素化処理することによって得られた前記炭化水素留分を、リサイクルしたリサイクル油を好ましく用いることができる。この場合、リサイクル比(リサイクル油の含酸素炭化水素化合物に対する質量比)を0.5〜5倍とすることが好ましい。
【0022】
また、本発明は、上記本発明の軽油基材を10容量%以上含有する軽油基材と、軽油組成物全量を基準として10〜1000質量ppmの低温流動性向上剤と、を含有し、90%留出温度が360℃以下、硫黄分が10質量ppm以下、酸素分1質量%以下、脂肪酸アルキルエステル分3.5質量%以下、酸価0.13mgKOH/g以下、メタノール分0.01質量%以下、グリセライド分0.01質量%以下、目詰まり点−5℃以下であることを特徴とする軽油組成物を提供する。
【発明の効果】
【0023】
以上の通り、本発明によれば、動植物油に由来する含酸素炭化水素化合物を含有する原料を用いて得られる、ライフサイクルCO排出特性及び酸化安定性、低温流動性に優れた軽油基材及び軽油組成物を提供することが可能となる。
【発明を実施するための最良の形態】
【0024】
以下、本発明の好適な実施形態について詳細に説明する。
【0025】
本発明においては、動植物油に由来する含酸素炭化水素化合物、脂肪族炭化水素化合物、及び含硫黄炭化水素化合物を含有する被処理油が用いられる。動植物油に由来する物質としては、動植物油由来の油脂成分やその誘導体が、水素化脱炭酸反応が起こりやすいことから好適である。ここで油脂成分には、天然もしくは人工的に生産、製造される動植物油脂及び動植物油成分及び/又はこれらの油脂を由来して生産、製造される成分及びこれらの油脂製品の性能を維持、向上させる目的で添加される成分が包含される。また油脂成分の誘導体には、上記油脂製品を製造する過程で副生される成分や、意図的に誘導体に変換された成分が包含される。
【0026】
動植物油に由来する油脂成分としては、例えば、牛脂、菜種油、大豆油、パーム油、トウモロコシ油などが挙げられる。本発明においては動植物油に由来する油脂成分として、いかなる油脂を用いてもよく、これら油脂を使用した後の廃油でもよい。ただし、カーボンニュートラルの観点からは植物油脂が好ましく、脂肪酸アルキル鎖炭素数及びその反応性の観点から、菜種油、大豆油及びパーム油がより好ましい。なお、上記の油脂は1種を単独で又は2種以上を混合して用いてもよい。
【0027】
動植物油に由来する油脂成分の誘導体としては、上記油脂成分の脂肪酸トリグリセリドを構成する脂肪酸やそれらのメチルエステルなどのエステル体に加工されている成分を含んでいてもよい。これらの脂肪酸トリグリセリドを構成する脂肪酸の代表的例としては、飽和脂肪酸と称する分子構造中に不飽和結合を有しない脂肪酸である酪酸(CCOOH)、カプロン酸(C11COOH)、カプリル酸(C15COOH)、カプリン酸(C19COOH)、ラウリン酸(C1123COOH)、ミリスチン酸(C1327COOH)、パルミチン酸(C1531COOH)、ステアリン酸(C1735COOH)、及び不飽和結合を1つもしくは複数有する不飽和脂肪酸であるオレイン酸(C1733COOH)、リノール酸(C1731COOH)、リノレン酸(C1729COOH)、リシノレン酸(C1732(OH)COOH)等が挙げられる
【0028】
被処理油に含有される脂肪族炭化水素化合物は、水素化処理における反応熱による温度上昇を抑制する役割を担っている。脂肪族炭化水素化合物としては、直鎖状、分岐状及び環状のいずれであってもよく、またこれらの混合物であってもよい。また、これらの成分を含んだ後述する水素化処理で得られた炭化水素留分、石油精製工程及び化学品製造工程で得られる留分でもよい。特に、本発明では、水素化処理によって得られた留出物から、未反応原料、軽質ガス留分及び重質副生成物を除去した処理油、又は該処理油を精留塔で分留して得られる炭化水素留分が入手しやすいことから、これらの一部を被処理油へリサイクルすることが好ましい。精留塔で分留して得られる炭化水素留分の沸点範囲は150〜350℃が好ましい。
【0029】
動植物油に由来する含酸素炭化水素化合物と脂肪族炭化水素化合物との比率は特に限定されないが、例えば両者の比熱が同じであれば1対1の混合であれば温度上昇は動植物油に由来する含酸素炭化水素化合物を単独で反応させる場合の半分となることから、反応器の最高使用温度に応じて比率を定めればよい。ただし、脂肪族炭化水素化合物の比率が大きくなると、動植物油に由来する含酸素炭化水素化合物の濃度が低下して反応性が低下するのと配管等の流量が増加して大きな負荷となるので、動植物油に由来する含酸素炭化水素化合物に対する脂肪族炭化水素化合物の量は5質量倍以下が好ましい。
【0030】
さらに、反応器を複数直列に連結し、反応器間において脂肪族炭化水素化合物を追加添加することも可能である。
【0031】
また、被処理油に含まれる含硫黄炭化水素化合物は特に制限されないが、具体的には、スルフィド、ジスルフィド、ポリスルフィド、チオール、チオフェン、ベンゾチオフェン、ジベンゾチオフェン及びこれらの誘導体などが挙げられる。被処理油に含まれる含硫黄炭化水素化合物は単一の化合物であってもよく、あるいは2種以上の混合物であってもよい。さらに、硫黄分を含有する石油系炭化水素留分を被処理油に混合してもよい。
【0032】
硫黄分を含有する石油系炭化水素留分としては、一般的な石油精製工程で得られる留分を用いることができる。例えば、常圧蒸留装置や減圧蒸留装置から得られる所定の沸点範囲に相当する留分、あるいは、水素化脱硫装置、水素化分解装置、残油直接脱硫装置、流動接触分解装置などから得られる、所定の沸点範囲に相当する留分を使用してもよい。なお、上記の各装置から得られる留分は1種を単独で又は2種以上を混合して用いてもよい。
【0033】
被処理油に含まれる硫黄分は、動植物油脂に由来する含酸素炭化水素化合物に対して、好ましくは硫黄原子換算として1〜50質量ppmが必要であり、好ましくは5〜30質量ppm、より好ましくは10〜20質量ppmである。硫黄原子換算として含有量が1質量ppm未満であると、脱酸素活性を安定的に維持することが困難となる傾向にある。他方、50質量ppmを超えると、水素化精製工程で排出される軽質ガス中の硫黄濃度が増加するのに加え、水素化精製油に含まれる硫黄分含有量が増加する傾向にあり、ディーゼルエンジン等の燃料として用いる場合にエンジン排ガス浄化装置への悪影響が懸念される。なお、本発明における硫黄分は、JIS K 2541「硫黄分試験方法」又はASTM−5453に記載の方法に準拠して測定される硫黄分の質量含有量を意味する。
【0034】
含硫黄炭化水素化合物は、被処理油と予め混合してその混合物を水素化処理装置の反応器に導入してもよく、あるいは被処理油を反応器に導入する際に、反応器の前段において供給してもよい。
【0035】
本発明にかかる水素化処理においては、アルミニウム、ケイ素、ジルコニウム、ホウ素、チタン及びマグネシウムから選ばれる2種以上の元素を含んで構成される多孔性無機酸化物並びに該多孔性無機酸化物に担持された周期律表第6A族及び第8族の元素から選ばれる1種以上の金属を含有する触媒が好ましく用いられる。
【0036】
本発明で用いられる触媒の担体としては、上述のように、アルミニウム、ケイ素、ジルコニウム、ホウ素、チタン及びマグネシウムから選ばれる2種以上を含んで構成される多孔性無機酸化物が好ましく用いられる。かかる多孔性無機酸化物としては、脱酸素活性及び脱硫活性を一層向上できる点から、アルミニウム、ケイ素、ジルコニウム、ホウ素、チタン及びマグネシウムから選ばれる2種以上であることがより好ましく、アルミニウムと他の元素とを含む無機酸化物(酸化アルミニウムと他の酸化物との複合酸化物)が更に好ましい。
【0037】
多孔性無機酸化物が構成元素としてアルミニウムを含有する場合、アルミニウムの含有量は、多孔性無機酸化物全量を基準として、アルミナ換算で、好ましくは1〜97質量%、より好ましくは10〜97質量%、更に好ましくは20〜95質量%である。アルミニウムの含有量がアルミナ換算で1質量%未満であると、担体酸性質などの物性が好適でなく、十分な脱酸素活性及び脱硫活性が発揮されない傾向にある。他方、アルミニウムの含有量がアルミナ換算で97質量%を超えると、触媒表面積が不十分となり、活性が低下する傾向にある。
【0038】
アルミニウム以外の担体構成元素である、ケイ素、ジルコニウム、ホウ素、チタン及びマグネシウムを担体に導入する方法は特に制限されず、これらの元素を含有する溶液などを原料として用いればよい。例えば、ケイ素については、ケイ素、水ガラス、シリカゾルなど、ホウ素についてはホウ酸など、リンについては、リン酸やリン酸のアルカリ金属塩など、チタンについては硫化チタン、四塩化チタンや各種アルコキサイド塩など、ジルコニウムについては硫酸ジルコニウムや各種アルコキサイド塩などを用いることができる。
【0039】
さらに、多孔性無機酸化物は、構成元素としてリンを含有することが好ましい。リンの含有量は、多孔性無機酸化物全量を基準として、好ましくは0.1〜10質量%、より好ましくは0.5〜7質量%、更に好ましくは2〜6質量%である。リンの含有量が0.1質量%未満の場合には十分な脱酸素活性及び脱硫活性が発揮されない傾向にあり、また、10質量%を超えると過度の分解が進行して水素化処理油の収率が低下する恐れがある。
【0040】
上記の酸化アルミニウム以外の担体構成成分の原料は、担体の焼成より前の工程において添加することが好ましい。例えば、アルミニウム水溶液に予め上記原料を添加した後、これらの構成成分を含む水酸化アルミニウムゲルを調製してもよく、調合した水酸化アルミニウムゲルに対して上記原料を添加してもよい。あるいは、市販の酸化アルミニウム中間体やベーマイトパウダーに水もしくは酸性水溶液を添加して混練する工程において上記原料を添加してもよいが、水酸化アルミニウムゲルを調合する段階で共存させることがより好ましい。酸化アルミニウム以外の担体構成成分の効果発現機構は必ずしも解明されたわけではないが、アルミニウムと複合的な酸化物状態を形成していると推察され、このことが担体表面積の増加や活性金属との相互作用を生じることにより、活性に影響を及ぼしていると考えられる。
【0041】
担体としての上記多孔性無機酸化物には、周期律表第6A族及び第8族の元素から選ばれる1種以上の金属を担持することが好ましい。これらの金属の中でも、コバルト、モリブデン、ニッケル及びタングステンから選ばれる2種以上の金属を組み合わせて用いることが好ましい。好適な組み合せとしては、例えば、コバルト−モリブデン、ニッケル−モリブデン、ニッケル−コバルト−モリブデン、ニッケル−タングステンが挙げられる。これらのうち、ニッケル−モリブデン、ニッケル−コバルト−モリブデン及びニッケル−タングステンの組み合せがより好ましい。水素化処理に際しては、これらの金属を硫化物の状態に転換して使用する。
【0042】
触媒質量を基準とする活性金属の含有量としては、タングステン及びモリブデンの合計担持量の範囲は、酸化物換算で12〜35質量%が好ましく、15〜30質量%がより好ましい。タングステン及びモリブデンの合計担持量が12質量%未満であると、活性点が少なくなり、十分な活性が得られなくなる傾向がある。他方、35質量%を越えると、金属が効果的に分散せず、十分な活性が得られなくなる傾向がある。コバルト及びニッケルの合計担持量の範囲は、酸化物換算で1.0〜15質量%が好ましく、1.5〜12質量%がより好ましい。コバルト及びニッケルの合計担持量が1.0質量%未満であると、十分な助触媒効果が得られず、活性が低下する傾向がある。他方、15質量%を越えると、金属が効果的に分散せず、十分な活性が得られなくなる傾向がある。
【0043】
これらの活性金属を触媒に含有させる方法は特に限定されず、通常の脱硫触媒を製造する際に適用される公知の方法を用いることができる。通常、活性金属の塩を含む溶液を触媒担体に含浸する方法が好ましく採用される。また、平衡吸着法、Pore−filling法、Incipient−wetness法なども好ましく採用される。例えば、Pore−filling法は、担体の細孔容積を予め測定しておき、これと同じ容積の金属塩溶液を含浸する方法である。なお、含浸方法は特に限定されるものではなく、金属担持量や触媒担体の物性に応じて適当な方法で含浸することができる。
【0044】
本発明において、水素化処理に使用する触媒の種類や組合せは特に限定されない。例えば、一種類の触媒を単独で使用してもよく、活性金属種や担体構成成分の異なる触媒を複数使用してもよい。異なる触媒を複数使用する場合の好適な組み合せとしては、例えば、ニッケル−モリブデンを含有する触媒の後段にコバルト−モリブデンを含有する触媒、ニッケル−モリブデンを含有する触媒の後段にニッケル−コバルト−モリブデンを含有する触媒、ニッケル−タングステンを含有する触媒の後段にニッケル−コバルト−モリブデンを含有する触媒、ニッケル−コバルト−モリブデンを含有する触媒の後段にコバルト−モリブデンを含有する触媒を用いることが挙げられる。これらの組み合せの前段及び/又は後段にニッケル−モリブデン触媒を更に組み合せてもよい。
【0045】
担体成分が異なる複数の触媒を組み合せる場合には、例えば、担体の総質量を基準として酸化アルミニウムの含有量が30質量%以上であり且つ80質量%未満の触媒の後段に、酸化アルミニウムの含有量が80〜99質量%の範囲にある触媒を用いればよい。
【0046】
本発明においては、上記触媒のうちの1種類を単独で使用してもよく、活性金属種や担体構成成分の異なる触媒を複数組み合わせて使用してもよい。複数種の触媒を使用する場合の好適な組み合せとしては、例えば、ニッケル−モリブデンを含有する触媒の後段にコバルト−モリブデンを含有する触媒、ニッケル−モリブデンを含有する触媒の後段にニッケル−コバルト−モリブデンを含有する触媒、ニッケル−タングステンを含有する触媒の後段にニッケル−コバルト−モリブデンを含有する触媒、ニッケル−コバルト−モリブデンを含有する触媒の後段にコバルト−モリブデンを含有する触媒を用いることが挙げられる。これらの組み合せの前段及び/又は後段にニッケル−モリブデン触媒を更に組み合せてもよい。
【0047】
さらに、上記の触媒(水素化処理触媒)以外に、必要に応じて被処理油に随伴して流入するスケール分をトラップしたり触媒床の区切り部分で水素化処理触媒を支持したりする目的でガード触媒、脱金属触媒、不活性充填物を用いてもよい。なお、これらは単独又は組み合せて用いることができる。
【0048】
水素の存在下で上記の被処理油と触媒とを接触させる際の条件は、水素圧力1〜6MPa、液空間速度(LHSV)0.1〜0.7h−1であり、好ましくは、水素圧力2〜4MPa、液空間速度0.2〜0.5h−1であることがより好ましい。水素圧力が6MPa以上においては脱炭酸反応と水素化反応の比率が一定であるが、6MPa未満の場合は圧力の低下に応じて脱炭酸比率が増加し、反応による発熱量を抑制する効果が出現する。ただし、水素圧力1MPa未満では、反応性が低下したり活性が急速に低下したりする傾向がある。一方、液空間速度は0.7h−1以上においては脱炭酸反応と水素化反応の比率が一定であるが、0.7h−1未満の場合は空間速度の低下に応じて脱炭酸比率が増加し、反応による発熱量を抑制する効果が出現する。ただし、上記の下限値未満の場合は、極めて大きな内容積の反応器が必要となり過大な設備投資が必要となる傾向がある。
【0049】
水素化処理における水素油比(水素/油比)100〜1500NL/Lの範囲であることが好ましく、200〜1200NL/Lの範囲であることがより好ましく、250〜1000NL/Lの範囲であることが特に好ましい。水素油比が上記上限を超える場合には上記水素圧力と液空間速度条件における脱炭酸反応の比率の増加効果を阻害し、また上記下限を下回る場合には十分な水素化反応が進行しないおそれがある。
【0050】
水素化処理における反応温度は180〜390℃の範囲であることが好ましく、200〜380℃の範囲であることがより好ましく、250〜365℃の範囲であることが特に好ましい。反応温度が180℃より低い場合には、十分な水素化反応が進行せず、390℃より高い場合には、過度の分解や原料油の重合、その他の副反応が進行するおそれがある。
【0051】
反応器の形式としては、固定床方式を採用することができる。すなわち、水素は被処理油に対して向流又は並流のいずれの形式を採用することができる。また、複数の反応器を用いて、向流、並流を組み合せた形式としてもよい。一般的な形式としては、ダウンフローであり、気液双並流形式を採用することができる。また、反応器は単独又は複数を組み合せてもよく、一つの反応器内部を複数の触媒床に区分した構造を採用してもよい。
【0052】
反応器内で水素化処理された水素化処理油は気液分離工程や精留工程等を経て所定の留分を含有する水素化処理油に分画される。例えば、軽油留分や残さ留分に分画される。さらに必要に応じてガス、ナフサ留分、灯油留分を分画することもある。この場合、軽質留分と中間留分とのカット温度は100〜200℃が好ましく、120〜180℃がより好ましく、140〜160℃がさらに好ましい。また、中間留分と重質留分とのカット温度は300〜400℃が好ましく、300〜380℃がより好ましく、300〜360℃がさらに好ましい。また、生成するこのような軽質炭化水素留分の一部を水蒸気改質装置において改質することにより水素を製造することができる。このようにして製造された水素は、水蒸気改質に用いた原料がバイオマス由来炭化水素であることから、カーボンニュートラルという特徴を有しており、環境への負荷を低減することができる。なお、被処理油に含まれている酸素分や硫黄分の反応に伴って水、一酸化炭素、二酸化炭素、硫化水素などが発生する可能性があるが、複数の反応器の間や生成物回収工程に気液分離設備やその他の副生ガス除去装置を設置してもよい。
【0053】
水素ガスは加熱炉を通過前もしくは通過後の被処理油に随伴させて最初の反応器の入口から導入することが一般的であるが、これとは別に、反応器内の温度を制御するとともに、反応器内全体にわたって水素圧力を維持する目的で触媒床の間や複数の反応器の間から水素ガスを導入してもよい。このようにして導入される水素を一般にクエンチ水素と呼ぶ。被処理油に随伴して導入する水素ガスに対するクエンチ水素の割合は、10〜60容量%であることが好ましく、15〜50容量%であることがより好ましい。クエンチ水素の割合が10容量未満であると後段の反応部位での反応が十分に進行しない傾向があり、クエンチ水素の割合が60容積%を超えると反応器入口付近での反応が十分に進行しない傾向がある。
【0054】
本発明の軽油基材は、上記のような水素化処理によって得られる炭化水素留分であって、ノルマルパラフィンの含有量が90質量%以上であり、炭化水素留分中の規定炭素数n(10≦n≦20;nは偶数を示す。)における総パラフィン含有量をA(単位:質量%)、炭素数n−1における総パラフィン含有量をBn−1(単位:質量%)、Aに対するBn−1の比を(Bn−1/A)としたとき、10≦n≦20における(Bn−1/A)の平均値が0.30以上のものである。
【0055】
なお、ノルマルパラフィンの含有量が低下すると、軽油基材のセタン価が低下し、軽油製品化したときの実用性能に懸念を生じる恐れがある。
【0056】
また、10≦n≦20における(Bn−1/A)の平均値は0.30以上であり、好ましくは0.40以上、より好ましくは0.50以上である。当該平均値が0.30に満たない場合は、環境低負荷型環境基材中のパラフィン分布が歪になることによる、基材自体の低温性能悪化、及び基材使用時の軽油組成物における低温流動性向上剤の添加効果が悪化する。
【0057】
また、本発明の軽油組成物は、本発明の軽油基材を10容量%以上含有する軽油基材と、軽油組成物全量を基準として10〜1000質量ppmの低温流動性向上剤と、を含有し、90%留出温度が360℃以下、硫黄分が10質量ppm以下、酸素分1質量%以下、脂肪酸アルキルエステル分3.5質量%以下、酸価0.13mgKOH/g以下、メタノール分0.01質量%以下、グリセライド分0.01質量%以下、目詰まり点−5℃以下であるという要件を満たす。
【0058】
本発明の軽油組成物は、目的とする軽油組成物の性状が得られる限りにおいて、本発明の軽油基材以外の基材を含有してもよい。かかる基材としては、原油の常圧蒸留装置から得られる直留灯・軽油留分、常圧蒸留装置から得られる直留重質油や残査油を減圧蒸留装置で処理して得られる減圧灯・軽油留分、減圧重質軽油あるいは脱硫重油を接触分解又は水素化分解して得られる接触分解灯・軽油留分、水素化分解灯・軽油留分、これらの石油系炭化水素を水素化精製して得られる水素化精製灯・軽油留分、若しくは水素化脱硫灯・軽油留分等、また、天然ガス、アスファルト、石炭、バイオマスなどを原料にして合成される合成灯・軽油留分等を好ましく使用できる。本発明の軽油組成物では、所定の条件を満たす範疇で、これらの灯・軽油留分基材及び灯油留分基材を複数配合してもよい。
【0059】
本発明の軽油組成物の目詰まり点(CFPP)は、JIS2号軽油規格である−5℃以下を満たす必要がある。さらに、ディーゼル車のプレフィルタ閉塞防止の点から、−6℃以下であることが好ましく、−7℃以下であることがより好ましい。ここで目詰まり点とはJIS K 2288「軽油−目詰まり点試験方法」により測定される目詰まり点を指す。
【0060】
本発明の軽油組成物の硫黄分は、エンジンから排出される有害排気成分低減と排ガス後処理装置の性能向上の点から10質量ppm以下であることが必要であり、好ましくは5質量ppm以下、より好ましくは3質量ppm以下、さらに好ましくは1質量ppm以下である。なお、ここでいう硫黄分とは、JIS K2541「硫黄分試験方法」により測定される軽油組成物全量基準の硫黄分の質量含有量を意味する。
【0061】
本発明の軽油組成物の酸素分は、酸化安定性向上の観点から1質量%以下であることが必要であり、好ましくは0.8質量%以下、より好ましくは0.6質量%以下、さらに好ましくは0.4質量%以下、最も好ましくは0.2質量%以下である。なお、酸素分は一般的な元素分析装置で測定することができ、例えば、試料を白金炭素上でCOに転換し、あるいはさらにCOに転換した後に熱伝導度検出器を用いて測定することもできる。
【0062】
本発明の軽油組成物の引火点は、45℃以上であることが好ましい。引火点が45℃に満たない場合には、安全上の理由により軽油組成物として取り扱うことができない。同様の理由により、引火点は54℃以上であることが好ましく、58℃以上であることがより好ましい。なお、本発明でいう引火点はJISK 2265「原油及び石油製品引火点試験方法」で測定される値を示す。
【0063】
本発明の軽油組成物のセタン指数は、45以上であることが好ましい。セタン指数が45に満たない場合には、排出ガス中のPM、アルデヒド類、あるいはさらにNOxの濃度が高くなる傾向にある。また、同様の理由により、セタン指数は48以上であることが好ましく、51以上であることが最も好ましい。なお、本発明でいうセタン指数とは、JIS K 2280「石油製品−燃料油−オクタン価及びセタン価試験方法並びにセタン指数算出方法」の「8.4変数方程式を用いたセタン指数の算出方法」によって算出される価を意味する。ここで、上記JIS規格におけるセタン指数は、一般的にはセタン価向上剤を添加していない軽油に対して適用されるが、本発明ではセタン価向上剤を添加した軽油組成物についても上記「8.4変数方程式を用いたセタン指数の算出方法」を適用し、当該算出方法により算出される値をセタン指数として表す。
【0064】
本発明の軽油組成物の15℃における密度は、発熱量確保の点から、750kg/m以上であることが好ましく、760kg/m以上がより好ましく、770kg/m以上がさらに好ましい。また、当該密度は、NOx、PMの排出量を低減する点から、850kg/m以下であることが好ましく、845kg/m以下がより好ましく、840kg/m以下がさらに好ましい。なお、ここでいう密度とは、JIS K 2249「原油及び石油製品の密度試験方法並びに密度・質量・容量換算表」により測定される密度を意味する。
【0065】
本発明の軽油組成物は、HFRR摩耗痕径(WS1.4)が好ましくは460μm以下、より好ましくは430μm以下、さらに好ましくは410μm以下となる潤滑性能を有することが望ましい。HFRR摩耗痕径(WS1.4)が460μmを超える場合は、特に分配型噴射ポンプを搭載したディーゼルエンジンにおいて、運転中のポンプの駆動トルク増、ポンプ各部の摩耗増を引き起こし、排ガス性能、微小粒子性能の悪化のみならずエンジン自体が破壊される恐れがある。また、高圧噴射が可能な電子制御式燃料噴射ポンプにおいても、摺動面等の摩耗が懸念される。なお、本発明でいうHFRR摩耗痕径(WS1.4)とは、社団法人石油学会から発行されている石油学会規格JPI−5S−50−98「軽油−潤滑性試験方法」により測定される値を意味する。
【0066】
本発明の軽油組成物における芳香族分には特に制限はないが、環境負荷低減効果を高め、NOx及びPM低減の観点から、20容量%以下であることが好ましく、より好ましくは19容量%以下、さらに好ましくは18容量%以下である。なお、本発明でいう芳香族分とは、社団法人石油学会により発行されている石油学会法JPI−5S−49−97「炭化水素タイプ試験方法−高速液体クロマトグラフ法」に準拠され測定された芳香族分の容量百分率(容量%)を意味する。
【0067】
本発明の軽油組成物の水分は、燃料タンク等への部材への悪影響、及びエステル化合物の加水分解抑制の観点から、300容量ppm以下であることが好ましく、250容量ppm以下であることがより好ましく、200容量ppm以下であることがさらに好ましい。なお、ここでいう水分とは、JIS K 2275「水分試験方法(原油及び石油製品)」で規定される水分である。
【0068】
本発明の軽油組成物における蒸留性状としては、90%留出温度が360℃以下であることが必要であり、好ましくは340℃以下、より好ましくは330℃以下、さらに好ましくは320℃以下である。90%留出温度が360℃を超えると、PMや微小粒子の排出量が増加する傾向にある。また、90%留出温度は、好ましくは280℃以上、より好ましくは285℃以上、さらに好ましくは290℃以上、さらにより好ましくは295℃以上である。90%留出温度が280℃に満たないと、燃費向上効果が不十分となり、エンジン出力が低下する傾向にある。なお、ここでいう90%留出温度とは、JIS K 2254「石油製品−蒸留試験方法−常圧法」に準拠して測定される値を意味する。
【0069】
本発明の軽油組成物の30℃における動粘度は特に制限はないが、2.5mm/s以上であることが好ましく、2.7mm/s以上であることがより好ましく、2.9mm/s以上であることがさらに好ましい。当該動粘度が2.5mm/sに満たない場合は、燃料噴射ポンプ側の燃料噴射時期制御が困難となる傾向にあり、またエンジンに搭載された燃料噴射ポンプの各部における潤滑性が損なわれるおそれがある。また、本発明の軽油組成物の30℃における動粘度は5mm/s以下であることが好ましく、4.7mm/s以下であることがより好ましく、4.5mm/s以下であることがさらに好ましい。当該動粘度が5mm/sを超えると、燃料噴射システム内部の抵抗が増加して噴射系が不安定化し、排出ガス中のNOx、PMの濃度が高くなってしまう。なお、ここでいう動粘度とは、JIS K 2283「原油及び石油製品−動粘度試験方法及び粘度指数算出方法」により測定される動粘度を意味する。
【0070】
本発明の軽油組成物においては、エンジン部材への悪影響の観点から、酸価は0.13mgKOH/g以下であることが必要である。酸価は混合物内の遊離脂肪酸量を示しているため、この値が大きいと酸性化合物による部材への悪影響が懸念される。そのため、酸価は0.10mgKOH/g以下であることが好ましく、0.08mgKOH/g以下であることがより好ましく、0.05mgKOH/g以下であることがさらに好ましい。なお、ここでいう酸価とは、JIS K 2501「石油製品及び潤滑油−中和価試験方法」により測定される酸価を意味する。
【0071】
本発明の軽油組成物においては、エンジン燃焼等における燃え切り性の悪化の観点から脂肪酸メチルエステル分は3.5質量%以下であることが必要である。好ましくは2.0質量%以下、より好ましくは1.0質量%以下、さらに好ましくは0.5質量%以下である。なお、ここでいう脂肪酸メチルエステル分とはEN 14103に準拠して測定される脂肪酸メチルエステル分を意味する。
【0072】
本発明の軽油組成物においては、燃料噴射系への悪影響の観点から、メタノール分は0.01質量%以下であることが必要である。好ましくは0.008質量%以下、より好ましくは0.006質量%以下、さらに好ましくは0.005質量%以下である。なお、ここでいうメタノール分とはJIS K 2536及びEN 14110に準拠して測定されるメタノール分を意味する。
【0073】
本発明の軽油組成物においては、燃料噴射系への悪影響の観点から、グリセライド分は0.01質量%以下であることが必要である。好ましくは0.008質量%以下、より好ましくは0.006質量%以下、さらに好ましくは0.005質量%以下である。なお、ここでいうグリセライド分とはEN 14105に準拠して測定されるグリセライド分を意味する。
【0074】
上記の混合油には、低温性能を向上させるために低温流動性向上剤が配合される。低温流動性向上剤の種類は特に限定されないが、エチレン−酢酸ビニル共重合体に代表されるエチレン−不飽和エステル共重合体、アルケニルコハク酸アミド、ポリエチレングリコールのジベヘン酸エステルなどの線状の化合物、アルキルフマレート又はアルキルイタコネート−不飽和エステル共重合体などからなるくし形ポリマーなどの低温流動性向上剤、フタル酸、コハク酸、エチレンジアミン四酢酸、ニトリロ酢酸などの酸又はその酸無水物などとヒドロカルビル置換アミンなどとの反応生成物などからなる極性窒素化合物を含有する低温流動性向上剤などを挙げることができ、これらの化合物の1種又は2種以上を組み合わせて使用してもよい。この中でも汎用性の観点から、エチレン−酢酸ビニル共重合体系添加剤、極性窒素化合物を含有する低温流動性向上剤が好ましく使用することができ、ワックス結晶微細化促進及び、ワックスの凝集沈降を防止する点で、極性窒素化合物を含有する低温流動性向上剤の使用がさらに好ましい。
【0075】
低温流動性向上剤の含有量は、組成物全量を基準として、10〜1000mg/Lであり、好ましくは50〜500mg/L、より好ましくは100〜300mg/Lである。低温流動性向上剤の含有量が前記下限値未満であると、その添加による低温流動性向上効果が不十分となる傾向にある。また、低温流動性向上剤の含有量が前記上限値を超えても、含有量に見合う低温流動性の更なる向上効果は得られない。
【0076】
本発明の軽油組成物においては、必要に応じてセタン価向上剤を適量配合し、得られる軽油組成物のセタン価を向上させることができる。セタン価向上剤としては、軽油のセタン価向上剤として知られる各種の化合物を任意に使用することができ、例えば、硝酸エステルや有機過酸化物等が挙げられる。これらのセタン価向上剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いても良い。
【0077】
本発明においては、上述のセタン価向上剤の中でも硝酸エステルを用いることが好ましい。かかる硝酸エステルには、2−クロロエチルナイトレート、2−エトキシエチルナイトレート、イソプロピルナイトレート、ブチルナイトレート、第一アミルナイトレート、第二アミルナイトレート、イソアミルナイトレート、第一ヘキシルナイトレート、第二ヘキシルナイトレート、n−ヘプチルナイトレート、n−オクチルナイトレート、2−エチルヘキシルナイトレート、シクロヘキシルナイトレート、エチレングリコールジナイトレートなどの種々のナイトレート等が包含されるが、特に炭素数6〜8のアルキルナイトレートが好ましい。
【0078】
セタン価向上剤の含有量は、組成物全量基準で500質量ppm以上であることが好ましく、600質量ppm以上であることがより好ましく、700質量ppm以上であることがさらに好ましく、800質量ppm以上であることが特に好ましく、900質量ppm以上であることが最も好ましい。セタン価向上剤の含有量が500質量ppmに満たない場合は、十分なセタン価向上効果が得られず、ディーゼルエンジン排出ガスのPM、アルデヒド類、さらにはNOxが十分に低減されない傾向にある。また、セタン価向上剤の含有量の上限値は特に限定されないが、軽油組成物全量基準で、1400質量ppm以下であることが好ましく、1250質量ppm以下であることがより好ましく、1100質量ppm以下であることがさらに好ましく、1000質量ppm以下であることが最も好ましい。
【0079】
セタン価向上剤は、常法に従い合成したものを用いてもよく、また、市販品を用いてもよい。なお、セタン価向上剤と称して市販されているものは、セタン価向上に寄与する有効成分(すなわちセタン価向上剤自体)を適当な溶剤で希釈した状態で入手されるのが通例である。このような市販品を使用して本発明の軽油組成物を調製する場合には、軽油組成物中の当該有効成分の含有量が上述の範囲内となることが好ましい。
【0080】
本発明の軽油組成物においては、上記セタン価向上剤以外の添加剤を必要に応じて配合することができ、特に、潤滑性向上剤及び/又は清浄剤が好ましく配合される。
【0081】
潤滑性向上剤としては、例えば、カルボン酸系、エステル系、アルコール系及びフェノール系の各潤滑性向上剤の1種又は2種以上が任意に使用可能である。これらの中でも、カルボン酸系及びエステル系の潤滑性向上剤が好ましい。カルボン酸系の潤滑性向上剤としては、例えば、リノ−ル酸、オレイン酸、サリチル酸、パルミチン酸、ミリスチン酸、ヘキサデセン酸及び上記カルボン酸の2種以上の混合物が例示できる。エステル系の潤滑性向上剤としては、グリセリンのカルボン酸エステルが挙げられる。カルボン酸エステルを構成するカルボン酸は、1種であっても2種以上であってもよく、その具体例としては、リノ−ル酸、オレイン酸、サリチル酸、パルミチン酸、ミリスチン酸、ヘキサデセン酸等がある。
【0082】
潤滑性向上剤の配合量は、50質量ppm以上300質量ppm以下であることが必要であり、好ましくは75質量ppm以上200質量ppm以下、より好ましくは100質量ppm以上150質量ppm以下である。潤滑性向上剤の配合量が前記の範囲内であると、配合された潤滑性向上剤の効能を有効に引き出すことができ、例えば分配型噴射ポンプを搭載したディーゼルエンジンにおいて、運転中のポンプの駆動トルク増を抑制し、ポンプの摩耗を低減させることができる。
【0083】
清浄剤としては、例えば、イミド系化合物;ポリブテニルコハク酸無水物とエチレンポリアミン類とから合成されるポリブテニルコハク酸イミドなどのアルケニルコハク酸イミド;ペンタエリスリトールなどの多価アルコールとポリブテニルコハク酸無水物から合成されるポリブテニルコハク酸エステルなどのコハク酸エステル;ジアルキルアミノエチルメタクリレート、ポリエチレングリコールメタクリレート、ビニルピロリドンなどとアルキルメタクリレートとのコポリマーなどの共重合系ポリマー、カルボン酸とアミンの反応生成物等の無灰清浄剤等が挙げられ、中でもアルケニルコハク酸イミド及びカルボン酸とアミンとの反応生成物が好ましい。これらの清浄剤は、1種を単独で又は2種以上を組み合わせて使用することができる。
【0084】
アルケニルコハク酸イミドを使用する例としては、分子量1000〜3000程度のアルケニルコハク酸イミドを単独使用する場合と、分子量700〜2000程度のアルケニルコハク酸イミドと分子量10000〜20000程度のアルケニルコハク酸イミドとを混合して使用する場合とがある。カルボン酸とアミンとの反応生成物を構成するカルボン酸は1種であっても2種以上であってもよく、その具体例としては、炭素数12〜24の脂肪酸及び炭素数7〜24の芳香族カルボン酸等が挙げられる。炭素数12〜24の脂肪酸としては、リノール酸、オレイン酸、パルミチン酸、ミリスチン酸等が挙げられるが、これらに限定されるものではない。また、炭素数7〜24の芳香族カルボン酸としては、安息香酸、サリチル酸等が挙げられるが、これらに限定されるものではない。また、カルボン酸とアミンとの反応生成物を構成するアミンは、1種であっても2種以上であってもよい。ここで用いられるアミンとしては、オレイルアミンが代表的であるが、これに限定されるものではなく、各種アミンが使用可能である。
【0085】
清浄剤の配合量は特に制限されないが、清浄剤を配合した効果、具体的には、燃料噴射ノズルの閉塞抑制効果を引き出すためには、清浄剤の配合量を組成物全量基準で30質量ppm以上とすることが好ましく、60質量ppm以上とすることがより好ましく、80質量ppm以上とすることがさらに好ましい。30質量ppmに満たない量を添加しても効果が現れない可能性がある。一方、配合量が多すぎても、それに見合う効果が期待できず、逆にディーゼルエンジン排出ガス中のNOx、PM、アルデヒド類等を増加させる恐れがあることから、清浄剤の配合量は300質量ppm以下であることが好ましく、180質量ppm以下であることがより好ましい。
【0086】
なお、先のセタン価向上剤の場合と同様、潤滑性向上剤又は清浄剤と称して市販されているものは、それぞれ潤滑性向上又は清浄に寄与する有効成分が適当な溶剤で希釈された状態で入手されるのが通例である。このような市販品を本発明の軽油組成物に配合する際には、軽油組成物中の当該有効成分の含有量が上述の範囲内となることが好ましい。
【0087】
また、本発明における軽油組成物の性能をさらに高める目的で、後述するその他の公知の燃料油添加剤(以下、便宜上「その他の添加剤」という。)を単独で、又は数種類組み合わせて添加することもできる。その他の添加剤としては、例えば、エチレン−酢酸ビニル共重合体、アルケニルコハク酸アミドなどの低温流動性向上剤;フェノール系、アミン系などの酸化防止剤;サリチリデン誘導体などの金属不活性化剤;ポリグリコールエーテルなどの氷結防止剤;脂肪族アミン、アルケニルコハク酸エステルなどの腐食防止剤;アニオン系、カチオン系、両性系界面活性剤などの帯電防止剤;アゾ染料などの着色剤;シリコン系などの消泡剤等が挙げられる。
【0088】
その他の添加剤の添加量は任意に決めることができるが、添加剤個々の添加量は、軽油組成物全量基準でそれぞれ好ましくは0.5質量%以下、より好ましくは0.2質量%以下である。
【実施例】
【0089】
以下、実施例及び比較例に基づいて本発明をさらに詳細に説明するが、本発明は以下の実施例に何ら限定されるものではない。
【0090】
[触媒の調製]
<触媒A>
濃度5質量%のアルミン酸ナトリウム水溶液3000gに水ガラス3号18.0gを加え、65℃に保温した容器に入れた。他方、65℃に保温した別の容器において濃度2.5質量%の硫酸アルミニウム水溶液3000gにリン酸(濃度85%)6.0gを加えた溶液を調製し、これに前述のアルミン酸ナトリウムを含む水溶液を滴下した。混合溶液のpHが7.0になる時点を終点とし、得られたスラリー状の生成物をフィルターに通して濾取し、ケーキ状のスラリーを得た。
【0091】
ケーキ状のスラリーを還流冷却器を取り付けた容器に移し、蒸留水150mlと27%アンモニア水溶液10gを加え、75℃で20時間加熱攪拌した。該スラリーを混練装置に入れ、80℃以上に加熱し水分を除去しながら混練し、粘土状の混練物を得た。得られた混練物を押出し成形機によって直径1.5mmシリンダーの形状に押し出し、110℃で1時間乾燥した後、550℃で焼成し、成形担体を得た。
【0092】
得られた成形担体50gをナス型フラスコに入れ、ロータリーエバポレータ−で脱気しながら三酸化モリブデン17.3g、硝酸ニッケル(II)6水和物13.2g、リン酸(濃度85%)3.9g及びリンゴ酸4.0gを含む含浸溶液をフラスコ内に注入した。含浸した試料は120℃で1時間乾燥した後、550℃で焼成し、触媒Aを得た。調製した触媒Aの物性を表1に示す。
【0093】
【表1】

【0094】
[軽油基材の製造]
(実施例1)
実施例1においては、表2に示す性状を有する植物油脂(パーム油)と、該植物油脂に対して質量比1.0の脂肪族炭化水素化合物とを混合し、その混合油に硫黄化合物(DMDS;ジメチルジサルファイド)をパーム油に対して5質量ppm(硫黄原子換算)添加して被処理油を調製した。なお、本実施例で用いた脂肪族炭化水素化合物は、予め上記被処理油について後述する条件で水素化処理を行い、得られた炭化水素留分をリサイクルしたリサイクル油である。
【0095】
上記の被処理油を表3に示す反応条件1で水素化処理を行い、精留塔で沸点範囲200〜350℃の留分を分留し、目的の軽油基材を得た。得られた軽油基材の諸性状を表4に示す。なお、表3中の「リサイクル比」とは、被処理油中の植物油に対するリサイクル油(脂肪族炭化水素化合物)の質量比を意味する。また、触媒の反応器への充填量は50ccとした。
【0096】
(比較例1)
表3に示す反応条件2で水素化処理を行ったこと以外は実施例1と同様にして、軽油基材を製造した。得られた軽油基材の諸性状を表4に示す。
【0097】
(比較例2)
表3に示す反応条件3で水素化処理を行ったこと以外は実施例1と同様にして、軽油基材を製造した。得られた軽油基材の諸性状を表4に示す。
【0098】
(比較例3)
表3に示す植物油脂をエステル化して植物油脂のアルキルエステル化物を得た。この植物油脂のアルキルエステル化物は、植物油脂とメタノールとの反応により得られたメチルエステル化合物であり、ここではアルカリ触媒(ナトリウムメチラート)の存在下で70℃、1時間程度の撹拌を行い、アルキルアルコールと直接反応させてエステル化合物を得るエステル交換反応を行った。得られた植物油脂メチルエステルの性状を表5に示す。
【0099】
また、表5には、後述する軽油組成物の製造に用いた、原油の常圧蒸留装置から得られる直留灯・軽油留分を水素化精製して得られる水素化精製灯・軽油留分(水素化精製油1、2)の性状を併せて示す。
【0100】
【表2】

【0101】
【表3】

【0102】
【表4】

【0103】
【表5】

【0104】
[軽油組成物の調製]
(実施例2、3、比較例4〜7)
実施例2、3及び比較例4〜7においては、表4に示した水素化処理油1〜3並びに表5に示した植物油脂メチルエステル及び水素化精製油1、2を表6、7に示す割合で混合し、該軽油基材混合物に低温流動性向上剤(エチレン−酢酸ビニル共重合体)を表6、7に示す濃度で添加して軽油組成物を調製した。各軽油組成物の15℃における密度、30℃における動粘度、引火点、硫黄分、酸素分、曇り点、目詰まり点、(曇り点-目詰まり点)、蒸留性状、セタン価、10%残油の残留炭素分、脂肪酸メチルエステル分、メタノール分、グリセライド分、酸価を表6、7に示す。
【0105】
なお、燃料油の性状は以下の方法により測定した。
総パラフィン量及びノルマルパラフィン量は、上述の通り、ガスクロマトグラフ・飛行時間質量分析計(GC−TOFMS)を用いることによって得た。本発明における測定装置及び測定条件を以下に示す。
(GC部)
装置:HEWLETT PACKARD製、HP6890 Series GC System & Injector
カラム:A glient HP−5(30m×0.32mmφ、0.25μm−film)
キャリアガス:He、1.4mL/分(一定流量)
注入口温度:320℃
注入モード:スプリット(スプリット比=1:100)
オーブン温度:50℃にて5分間保持し、5℃/分で昇温し、320℃にて6分間保持する。
注入量:1μL
(TOFMS部)
装置:日本電子製、JMS−T100GC
対抗電極電圧:10.0kV
イオン化法:FI+(電界イオン化)
GCインターフェース温度:250℃
測定質量範囲:35〜500。
密度は、JIS K 2249「原油及び石油製品の密度試験方法並びに密度・質量・容量換算表」により測定される密度を指す。
動粘度は、JIS K 2283「原油及び石油製品−動粘度試験方法及び粘度指数算出方法」により測定される動粘度を指す。
引火点はJIS K 2265「原油及び石油製品引火点試験方法」で測定される値を示す。
硫黄分は、JIS K 2541「硫黄分試験方法」により測定される軽油組成物全量基準の硫黄分の質量含有量を指す。
酸素分は元素分析法により測定した。
曇り点は、JIS K 2269「原油及び石油製品の流動点並びに石油製品曇り点試験方法」により測定される曇り点を意味する。
目詰まり点は、JIS K 2288「軽油−目詰まり点試験方法」により測定される目詰まり点を指す。
蒸留性状は、全てJIS K 2254「石油製品−蒸留試験方法」によって測定される値である。
芳香族分は、社団法人石油学会により発行されている石油学会法JPI−5S−49−97「炭化水素タイプ試験方法−高速液体クロマトグラフ法」に準拠され測定された芳香族含有量の容量百分率(容量%)を意味する。
酸価とは、JIS K 2501「石油製品及び潤滑油−中和価試験方法」により測定される酸価を意味する。
セタン価は、JIS K 2280「石油製品−燃料油−オクタン価及びセタン価試験方法並びにセタン指数算出方法」の「7.セタン価試験方法」に準拠して測定されるセタン価を意味する。
10%残油の残留炭素分は、JIS K 2270「原油及び石油製品−残留炭素分試験方法」により測定される10%残油の残留炭素分を意味する。
脂肪酸メチルエステル分は、EN14103に準拠して測定される脂肪酸メチルエステル分を意味する。
トリグリセライド分は、EN14105に準拠して測定される値を示す。
【0106】
[ライフサイクルCOの評価]
ライフサイクルCOは、ディーゼルエンジン搭載車両における軽油組成物の燃焼に伴い発生したCO(以下、「Tank to Wheel CO」という。
)と、採掘から車両タンクへの燃料給油までに発生したCO(以下、「Well to Tank CO」という。)と分けて算出した。
Tank to Wheel COは、上記車両試験を行ったときのCO排出量、走行燃費及び燃料密度に基づいて、各軽油組成物単位発熱量当たりの排出量として算出した。
また、Well to Tank COは、原料及び原油ソースの採掘、輸送、加工、配送、車両への給油までの一連の流れにおけるCO排出量の総和として算出した。なお、Well to Tank COの算出にあたっては、下記(1B)〜(5B)に示す二酸化炭素の排出量を加味して演算を行った。かかる演算に必要となるデータとしては、本発明者らが有する製油所運転実績データを用いた。
(1B)各種処理装置、ボイラー等設備の燃料使用に伴う二酸化炭素の排出量。
(2B)水素を使用する処理においては、水素製造装置における改質反応に伴う二酸化炭素の排出量。
(3B)接触分解装置等の連続触媒再生を伴う装置を経由する場合は、触媒再生に伴う二酸化炭素の排出量。
(4B)軽油組成物を、横浜で製造又は陸揚げし、横浜から仙台まで配送し、仙台で車両に給油したときの二酸化炭素の排出量。
(5B)動植物油脂及び動植物油脂由来の成分は原産地をマレーシア及びその周辺地域とし、製造を横浜で行うとした際の二酸化炭素の排出量。
なお、動植物油脂及び動植物油脂由来の成分を使用した場合、いわゆる京都議定書においてはこれらの燃料に起因する二酸化炭素は排出量として計上されないルールが適用される。本計算においては、燃焼時に発生する「Tank to Wheel CO」に対してこれを適用させた。
得られた結果を表6、7に示す。
【0107】
(酸化安定性試験)
115℃、酸素バブリング下、16時間の条件で燃料を加速劣化させ、試験前後での酸化を測定した。なお、ここでいう酸価とは、JIS K 2501「石油製品及び潤滑油−中和価試験方法」により測定される酸価を意味する。得られた結果を表6、7に示す。
【0108】
【表6】

【0109】
【表7】

【0110】
表6、7から明らかなように、実施例2、3においては、90%留出温度が360℃以下、引火点45℃以上、セタン価が50以上、目詰まり点−5℃以下、(曇り点−目詰まり点)の値が+5℃以上、硫黄分が10質量ppm以下、酸素分1質量%以下、トリグリセライド分0.01質量%以下、脂肪酸アルキルエステル分3.5質量%以下、酸価0.13mgKOH/g以下、且つ酸化安定性試験後の酸価増加量が0.12mgKOH/g以下の軽油組成物を容易にかつ確実に得ることができた。一方、上記特定の軽油基材(実施例1)を用いずに軽油組成物を調製した比較例4〜7においては、本発明の目的とする軽油組成物は得られなかった。

【特許請求の範囲】
【請求項1】
水素の存在下、動植物油に由来する含酸素炭化水素化合物、脂肪族炭化水素化合物、及び含硫黄炭化水素化合物を含有する被処理油を水素化処理することによって得られる炭化水素留分であって、ノルマルパラフィンの含有量が90質量%以上であり、前記炭化水素留分中の規定炭素数n(10≦n≦20;nは偶数を示す。)における総パラフィン含有量をA(単位:質量%)、炭素数n−1における総パラフィン含有量をBn−1(単位:質量%)、Aに対するBn−1の比を(Bn−1/A)としたとき、10≦n≦20における(Bn−1/A)の平均値が0.30以上であることを特徴とする軽油基材。
【請求項2】
前記動植物油に由来する含酸素炭化水素化合物が脂肪酸類及び脂肪酸エステル類から選ばれる1種以上の化合物であることを特徴とする、請求項1に記載の軽油基材。
【請求項3】
前記脂肪酸エステル類が脂肪酸のトリグリセライドであることを特徴とする、請求項1又は2に記載の軽油基材。
【請求項4】
請求項1〜3のいずれか1項に記載の軽油基材を10容量%以上含有する軽油基材と、軽油組成物全量を基準として10〜1000質量ppmの低温流動性向上剤と、を含有し、90%留出温度が360℃以下、硫黄分が10質量ppm以下、酸素分1質量%以下、脂肪酸アルキルエステル分3.5質量%以下、酸価0.13mgKOH/g以下、メタノール分0.01質量%以下、グリセライド分0.01質量%以下、目詰まり点−5℃以下であることを特徴とする軽油組成物。