説明

酸素を生成するための装置および方法

本発明は酸素を生成するための医療装置に関し、該装置は、第1コンディションを提供するための手段と、上記第1コンディションを第2コンディションに変化させるための手段とを備え、該装置は、上記第1コンディション下で、可逆的酸素固定剤によって構成される固定剤(SfF)、すなわち酸素選択性材料によって空気の酸素が吸着されるように、上記固定剤に上記空気(A)を接触させることによって、充填相中に空気から酸素を抽出するとともに、上記第1コンディション下で窒素を除去するように構成され、かつ、排出相中に、上記第1コンディションを上記第2コンディションに変化させることによって、固定剤から酸素を放出させるように構成される。本発明はまた、個々の医療目的のために酸素を生成するための方法にも関係する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、請求項1の前提部分に係る、酸素を生成するための装置に関する。本発明はさらに、請求項55の前提部分に係る、酸素を精製するための方法に関する。
【背景】
【0002】
医療分野では、様々な治療のために酸素が大いに必要とされている。例えば慢性閉塞性肺疾患(COPD)を患っている患者は、日常生活で酸素を必要とする。したがって、空気から酸素を抽出する可搬性/携帯システムが必要である。
【0003】
今日、酸素を提供する最も一般的な方法は、気体の形で行なわれる。これは、医療用の最も一般的な携帯システムでもある。ポンプで200バールの圧力に加圧された2リットルのボトルは400リットルの遊離酸素を提供し、重さは約4kgである。平均的な移動できる患者は毎分およそ2リットルのオーディネーション(ordination)を有し、1本のボトルからおよそ200分の酸素が患者に提供される。気体は工場では、空気Aを−190℃に冷却し、窒素を気体に維持しながら、酸素を液化することによって生成される。液体酸素は気化され、生成された気体状酸素はボトル詰めされる。このやり方では、酸素はボトル入りで患者に引き渡す必要がある。
【0004】
使用時に、酸素を節約するために、酸素節約装置が使用されることがある。酸素節約装置は、通常の場合のように連続的にではなく、吸入中にだけガスを投与する。これは投与量を通常のガス消費量の10分の1まで低減させる。この技術は、呼吸がはっきりしている意識のある患者以外では、呼吸を充分に明確に検出することができないので、そのような呼吸がはっきりしている意識のある患者に対してのみ有効である。
【0005】
気体状酸素に代わるものが液体酸素(LOX)である。液体酸素は−186℃まで冷却された酸素であり、体積当たりのガスが気体状ガスより多く、LOX1リットル当たり900リットルまでの遊離ガスを提供する。システムを非常に低温に維持しなければならないので、該技術は複雑であり、したがって高価である。
【0006】
酸素による定常的な在宅治療のための今日の最も一般的な技術は、よく画成されたキャビティサイズを有する、ゼオライトすなわちシリコンアルミニウム結晶のモレキュラシーブを使用することであり、窒素がキャビティによりよく嵌合するので、窒素より酸素をより容易に通過させることである。該技術は、窒素を詰まらせ、酸素を通過させるフィルタとして説明することができる。これはベッド内で行なわれる。以前に使用されたベッドは、生成された酸素の一部を流れに逆らってベッドに還流させ、以前に詰まった窒素を導出させることによって再生される。これはPSA(圧力変動吸収)、VSA(真空変動吸収)、またはTSA(熱変動吸収)と呼ばれるサイクルで行なわれる。PSAサイクルでは、新鮮な空気が高圧で吹き込まれ、大気圧で再生が行なわれる。VSAでは、新鮮な空気が大気圧で吹き込まれ、真空で再生が行なわれる。TSAサイクルでは、窒素をより容易に放出させるために、再生中に温度を上昇させる。
【0007】
これらのゼオライトシステムは今日、毎分5リットルまでのガスを生成させるために約2.5〜50kgの重さである。可搬装置を提供するための試みが、EP1485188に開示されている。それは、電池無しで重さ4.5kgであり、毎分0.3リットルの酸素を生成することのできる、ガス節約装置付きゼオライト濃縮装置である。この装置はエネルギ消費量が高く、短距離移動性につながる。
【発明の目的】
【0008】
本発明の1つの目的は、可搬性であり、すなわち1人のユーザで容易に運ぶことができ、単位時間当たりの充分な量の酸素をユーザに提供し、軽量であり、かつエネルギ消費量の低い、酸素を生成するための装置、特に医療目的に適する装置を提供することである。
【0009】
本発明の別の目的は、医療目的、特に可搬性の医療目的に適しており、かつ効率的である、酸素を生成するための方法を提供することである。
【発明の概要】
【0010】
以下の説明から明らかなこれらおよび他の目的は、付属の請求項1、55の導入部分として明記した種類で、さらに特徴部分に記載された特徴部を提示する、酸素を生成するための医療装置および酸素を生成するための方法によって達成される。本発明の装置および方法の好ましい実施形態を、付属の従属請求項2〜54、56〜58に記載する。
【0011】
酸素を生成するための医療装置であって、第1コンディションを提供するための手段および上記第1コンディションを第2コンディションに変化させるための手段を備えており、上記第1コンディション下で、可逆的酸素固定剤によって構成される固定剤すなわち酸素選択性材料によって空気の酸素が吸着されるように、上記空気を上記固定剤に接触させることによって、充填相中に、上記空気から酸素を抽出し、かつ上記第1コンディション下で窒素を除去するように構成されるとともに、排出相中に、上記第1コンディションを上記第2コンディションに変化させることによって、固定剤から酸素を放出するように構成された装置を提供することによって、軽量化され、可搬携帯型であり、かつ、部分的に酸素を窒素と結合させるゼオライトプロセスと比較して、酸素選択性材料が100%酸素を選択するので、例えばCOPD患者によって有利に使用されるように単位時間当たりの充分な量の酸素を生成する、より効率的な医療装置を設計することができる。酸素は空気のおよそ20%を構成する一方、窒素は空気のおよそ80%を構成する。
【0012】
したがって、必要なガス吸着空間は5分の1で足りる。したがって、これはより効率的に酸素を生成する、より軽量な装置を提供することを容易にする。
【0013】
該装置は、さらなる有利な実施形態を記載する従属請求項2〜54の特徴部を含むことが好ましい。
【0014】
個々の医療目的のための酸素生成方法であって、充填相中に、可逆的酸素固定剤/吸着剤によって構成される固定剤すなわち酸素選択性材料によって空気の酸素が吸着されるように、第1コンディション下で、上記空気を上記固定剤に接触させることによって空気から酸素を抽出するステップと、空気の窒素を除去するステップと、排出相中に、上記コンディションを第2コンディションに制御下で変化させることによって、吸着された酸素を放出するステップとを含む方法を提供することによって、より効率的な酸素生成が達成される。
【0015】
該方法は、さらなる有利な実施形態を記載する従属請求項56〜58の特徴部を含むことが好ましい。
【0016】
以下の詳細な説明を添付の図面と併せ読んだときに、本発明のさらなる理解が得られるであろう。図面では、幾つかの図にわたって同様の参照符号は同様の部品を指し示す。
【発明の詳細な説明】
【0017】
本発明は、酸素Oを生成するための医療装置の様々な実施形態を開示する。該装置は、第1コンディション下で、例えばコバルト−ビス−サリチルアルデヒド−エチレンジイミン(サルコミン)、コバルト−ビス−3−フルオロサリチルアルデヒド−エチレン−ジイミン(フルオミン)、コバルト−ビス−3−エトキシサリチルアルデヒド−エチレンジイミン(エトミン)のような金属錯体、コバルトポルフィリン、コバルトシッフベース、または単純な無機塩類の形の金属錯体によって構成することのできる可逆的酸素固定剤S/Fすなわち酸素選択性材料によって空気の酸素が固定/吸着されるように、上記固定剤に空気Aを接触させ、空気の窒素を除去し、かつ上記コンディションを第2コンディションに制御下で変化させることにより、吸着された酸素を放出することによって、酸素を抽出するように構成される。サルコミンおよび/またはフルオミンおよび/またはエトミンを使用するように意図することが好ましい。可逆的酸素固定剤を以下で固定剤S/Fと呼ぶ。
【0018】
該酸素生成プロセスでは、したがって2つの相がある。空気A中の酸素Oが固定剤S/Fと反応して吸着される充填相、および酸素が固定剤から放出される排出相である。装置は、上記充填相で、空気A中の酸素が固定剤と反応して吸着され、その状態で窒素Nが放出されるように、空気Aを第1コンディション下の可逆的酸素固定剤/吸着剤すなわち固定剤S/Fに接触させ、かつ上記排出相で、上記第1コンディションの変化によって酸素Oを放出するように構成される。上記第1コンディションは、昇圧を加えること、または温度低下すなわち冷却、または両方の組合せを含むことができ、上記第1コンディションの変化は、圧力の低下、真空/負圧を加えること、温度の上昇/加熱、またはそれらの組合せを含むことができる。したがって3つの主要なサイクル、すなわち圧力サイクル、真空サイクル、および温度サイクルがあり、これらを組み合わせることができる。
【0019】
図1a〜1dは、固定剤S/Fのベッドを含むチャンバ10を備え、充填相中に、流入する空気Aが固定剤と反応し、酸素が第1コンディション下で吸着されるように、固定剤S/Fが上記チャンバ内に配置されている状態で、空気Aをチャンバ10内に導入するための入口12と、充填相中に、窒素Nと固定剤S/Fのベッドに吸着されない酸素Oの可能な部分とを通過させ、かつ排出相中に、上記第1コンディションの変化の下で放出される酸素Oを通過させるための出口14とをチャンバが有するという共通の特徴を有する、酸素Oを生成するための医療装置1A、1B、1C、1Dの第1実施形態の異なる態様を示す。好ましくは、装置はさらに、入口を通して流入する空気Aが濾過されるように、チャンバ10の空気入口側に配置された第1フィルタ手段F1と、充填相中に、出口を通して流出する窒素Nおよび酸素Oの可能な部分がフィルタを通過して、固定剤S/Fの可能な残部が濾過され、かつ排出相中に、出口を通して流出する酸素Oがフィルタを通過して、固定剤S/Fの可能な残部が濾過されるように、チャンバ10の出口側に配置された第2フィルタ手段F2とを備える。窒素Nおよび酸素Oのための出口は、同一弁または代替的に2つの別々の弁とすることができる。装置は、断熱コンディションが達成されるように、チャンバ10を隔離するための隔離手段を含むことが好ましい。
【0020】
図1aは、本発明の第1実施形態の第1態様に係る、酸素Oを生成するための装置1Aの側面図を概略的に示す。この第1態様では、装置は、圧力サイクル、真空サイクル、および温度サイクルの組合せによって、酸素Oを生成するように意図される。酸素Oを生成するための装置は、チャンバ10、加圧手段16、例えば入口12を通して上記チャンバ10内に空気Aを吹き込むように構成されたファンまたは圧縮器、チャンバ10の下流に配置されたフローセレクタ18、圧力調整手段20、例えばチャンバ10の下流および好ましくはフローセレクタ18の下流に設けられチャンバ10内の圧力を調整するように構成された背圧調整器、減圧手段22、すなわちチャンバ10に負圧を提供するための手段、例えばフローセレクタの下流に配置された真空ポンプ22など、ならびに好ましくは蓄積手段24、例えば真空ポンプ22の上流に配置された真空アキュムレータまたはデプレッションリザーバを備える。装置はさらに、酸素Oを人/患者に排出するための出口を備える。装置はさらに温度調整手段26、例えばチャンバ10内に配置され、充填相中に冷却を、かつ排出相中に加熱をもたらすように構成された加熱器/冷却器を備える。
【0021】
充填相中に、空気Aは、圧縮器またはファンによって、第1フィルタ手段F1を通して吹き込まれるように構成される。チャンバ10内に提供された固定剤S/Fは、空気Aの酸素Oと反応して固定剤S/Fに結合されるように構成される。窒素Nおよびベッドに吸着されないと考えられる酸素Oは、チャンバ10の出口14を通して流出するように構成され、第2フィルタ手段F2は固定剤S/Fの可能な残部を濾過するように構成される。窒素Nおよび酸素Oの可能な部分は次いで、背圧調整器20を通してフローセレクタ18によって方向付けられ、窒素出口弁28で排出されるように構成される。背圧調整器20は同時に、チャンバ10内の圧力を調整し、それを第1圧力レベルに維持するように構成される。温度調整手段26はこの相で、固定剤S/Fと酸素Oとの間のより効果的な反応をもたらすために、チャンバ10内の空気Aを冷却するように構成される。
【0022】
排出相中に、酸素Oはコンディションの制御された変化によって放出されるように構成される。チャンバ10の圧力を低下させるために、加圧手段16、例えば圧縮器16またはファン16は遮断されるように構成される。圧力を低下させることによって、酸素Oを圧力勾配に応じて放出させることができる。真空ポンプ22によってチャンバ10に負圧がもたらされ、負圧は酸素Oのより効果的な放出を達成する。放出された酸素Oは、チャンバ10の出口14を通して流出するように構成され、第2フィルタ手段F2は固定剤S/Fの可能な残部を濾過するように構成される。酸素Oの流れは、圧力調整器20によって、かつ真空ポンプ22によって生じる負圧によって、流れるように構成される。酸素Oの流れはさらに、フローセレクタ18によってアキュムレータ24に向けられ、または代替的に直接真空ポンプ22に向けられるように構成される。チャンバ10はしたがって、フローセレクタ18およびアキュムレータ24を介して真空ポンプ22と流体連通するように構成される。アキュムレータ24は、所望ならば酸素Oを蓄積する可能性を提供する。酸素Oは、真空ポンプ22に配設された酸素出口弁を介して排出されるように構成される。温度調整手段26はこの相で、酸素Oのより効果的な放出を達成するために、チャンバ10内の空気Aを加熱するように構成される。
【0023】
第1実施形態では、第1コンディションは圧力および冷却を含み、変化したコンディションは、負圧および加熱、すなわち圧力サイクル、真空サイクル、および温度サイクルの組合せを含む。異なるサイクルを適用し、そのコンディションを制御することによって、酸素Oを生成するプロセスを最適化し、こうして効果的な酸素生成を達成することができる。
【0024】
図1bは、本発明の第1実施形態の第2態様に係る、酸素Oを生成するための装置の側面図を概略的に示す。この第2態様では、装置は、圧力サイクルによって酸素Oを生成するように意図される。酸素Oを生成するための装置は、チャンバ10、入口を通して上記チャンバ10内に空気Aを吹き込むように構成された圧縮器、チャンバ10の下流に配置されたフローセレクタ18、チャンバ10の下流に、かつ好ましくはフローセレクタ18の下流に設けられ、チャンバ10内の圧力を調整するように構成された背圧調整器20を備える。装置はさらに、酸素Oを人/患者に排出するための出口を含む。
【0025】
充填相中に、空気Aは、圧縮器によって、第1フィルタ手段F1を通して吹き込まれるように構成される。チャンバ10内に提供された固定剤S/Fは、空気Aの酸素Oと反応し、固定剤S/Fに結合するように構成される。窒素Nおよびベッドに吸着されないと考えられる酸素Oは、チャンバ10の出口14を通して流出するように構成され、固定剤S/Fの可能な残部を濾過するために、第2フィルタ手段F2が配置される。窒素Nおよび酸素Oの可能な部分は次いで、背圧調整器20を通してフローセレクタ18によって方向付けられ、窒素出口弁から排出されるように構成される。背圧調整器20は同時に、チャンバ10内の圧力を調整し、それを第1圧力レベルに維持するように構成される。
【0026】
排出相中に、圧縮器は遮断されるように構成される。酸素Oは、圧力調整器20によって達成される圧力の制御された低下によって放出されるように構成される。放出された酸素Oは、圧力調整器20によってチャンバ10の出口14を通して流出するように構成され、固定剤S/Fの可能な残部を濾過するために、第2フィルタ手段F2が配置される。酸素Oの流れはさらに、圧力調整器20を介してフローセレクタ18によって方向付けられ、酸素出口弁を通して放出されるように構成される。
【0027】
図1cは、本発明の第1実施形態の第3態様に係る、酸素Oを生成するための装置の側面図を概略的に示す。この第3態様では、装置は真空サイクルによって酸素Oを生成するように意図される。酸素Oを生成するための装置は、チャンバ10と、空気をチャンバ10内に導入するための手段16と、チャンバ10の下流に配置されたフローセレクタ18と、フローセレクタ18の下流に配置された減圧手段22、例えば真空ポンプ22と、および好ましくは、真空ポンプ22の上流に配置された真空アキュムレータ24またはデプレッションリザーバとを備える。装置はさらに、酸素Oを人/患者に排出するための出口を備える。加えて、装置は、減圧手段の下流に配置されるように意図された追加の酸素アキュムレータ(図示せず)、および酸素をユーザ/患者に供給するための手段を備える。これは、より多くの酸素を蓄積する可能性をもたらす。
【0028】
充填相中に、空気Aは、好ましくはファンによって第1フィルタ手段F1を通してチャンバ10内に導入されるように構成される。チャンバ10内に提供された固定剤S/Fは、空気Aの酸素Oと反応し、固定剤S/Fに結合されるように構成される。窒素Nおよびベッドに吸着されないと考えられる酸素Oは、減圧手段22、例えば真空ポンプ22によって、チャンバ10の出口14を通して流出するように構成され、固定剤S/Fの可能な残部を濾過するために第2フィルタ手段F2が配置される。窒素Nおよび酸素Oの可能な部分は次いで、フローセレクタ18によって方向付けられ、フローセレクタ18に設けられた窒素出口弁から排出されるように構成される。
【0029】
排出相中に、酸素Oは、減圧手段22、例えば真空ポンプ22によってチャンバ10に負圧を加えることによって放出されるように構成される。放出された酸素Oはチャンバ10の出口14を通して流出するように構成され、固定剤S/Fの可能な残部を濾過するために第2フィルタ手段F2が配置される。酸素Oの流れは、真空ポンプ22によって生成される負圧によって流れるように構成され、酸素Oの流れはさらにフローセレクタ18によってアキュムレータ24に向けられるように、または代替的に直接真空ポンプ22に向けられるように構成される。チャンバ10はこうして、フローセレクタ18およびアキュムレータ24を介して、真空ポンプ22と流体連通するように構成される。アキュムレータ24は、所望ならば、酸素Oを蓄積する能力を提供する。酸素Oは、真空ポンプ22に配置された酸素出口弁を介して排出されるように構成される。
【0030】
図1dは、本発明の第1実施形態の第4態様に係る、酸素Oを生成するための装置の側面図を概略的に示す。この第4態様では、装置は、温度サイクルによって酸素Oを生成するように意図される。酸素Oを生成するための装置は、チャンバ10と、空気をチャンバ内に導入するための手段16と、チャンバ10の下流に配置されたフローセレクタ18と、温度調整手段26、例えばチャンバ10内の温度を制御するように構成された冷却器/加熱器(冷却手段および加熱手段を含む温度調整器20)とを備える。装置はさらに、酸素Oを人/患者に排出するための出口を備える。
【0031】
充填相中に、空気Aは、好ましくはファンによって第1フィルタ手段F1を通してチャンバ10内に導入されるように構成される。チャンバ10内に提供された固定剤S/Fは、空気Aの酸素Oと反応し、固定剤S/Fと結合するように構成される。これは、この相では、固定剤S/Fと酸素Oとの間の効果的な反応をもたらすために、チャンバ10内の空気Aを冷却するように構成された温度調整手段26、例えば加熱器/冷却器によって達成される。窒素Nおよびベッドに吸着されないと考えられる酸素Oは、チャンバ10の出口14を通して流出するように構成され、固定剤S/Fの可能な残部を濾過するために第2フィルタ手段F2が配置される。窒素Nおよび酸素Oの可能な部分は次いで、フローセレクタ18によってそれを通して方向付けられ、窒素出口弁から排出されるように構成される。
【0032】
排出相中に、酸素Oは、温度の制御された上昇によって放出されるように構成される。温度調整器20(加熱器/冷却器)は、酸素Oの効果的な放出を達成するために、この相でチャンバ10内で反応した固定剤S/Fを加熱するように構成される。放出された酸素Oはチャンバ10の出口14を通して流出するように構成され、固定剤S/Fの可能な残部を濾過するために第2フィルタ手段F2が配置される。酸素Oの流れは、フローセレクタ18によってそれを通して方向付けられ、酸素出口弁で排出されるように構成される。
【0033】
図2は、本発明の第2実施形態に係る、酸素Oを生成するための装置100の側面図を概略的に示す。第2実施形態に係る装置100は、図1a〜1dに係る装置1A〜1Dと同じ基本的機能を達成する。第1実施形態と比較した相違点は、それが少なくとも2つのチャンバ110、130を備え、各チャンバ110、130が固定剤S/Fのベッドを含み、それが酸素生成の半連続プロセスを容易にすることである。図2では、装置は2つのベッドを有するが、代替的に任意の所望の数のベッドを有することができる。
【0034】
装置は、相互に平行に接続された第1チャンバ110および第2チャンバ130を備え、各チャンバは固定剤S/Fのベッドを含み、各チャンバは、充填相中に流入する空気Aが固定剤と反応して第1コンディション下で酸素Oが吸着されるように、固定剤S/Fが配置された上記それぞれのチャンバ110、130に空気Aを導入するための入口112、121と、および充填相中に、窒素Nおよび固定剤S/Fのベッドに吸着されない酸素Oの可能な部分を通過させ、かつ排出相中に、上記第1コンディションの変化の下で放出された酸素Oを通過させるための出口114、123とを有する。好ましくは、各チャンバは、入口112、121を通して流入する空気Aが濾過されるように、チャンバ110、130の入口側に配置された第1フィルタ手段F1と、充填相中に、出口114、123を通して流出する窒素Nおよび可能な酸素Oがフィルタを通過して、固定剤S/Fの可能な残部が濾過され、かつ排出相中に流出する酸素が濾過されるように、チャンバの出口側に配置された第2フィルタ手段F2とを備える。変形例では、チャンバ110、130は、断熱コンディションが達成されるように隔離手段によって隔離される。装置はさらに、加圧手段116、例えば圧縮器116またはファン116と、加圧手段の下流に配置され、第1チャンバ110および第2チャンバ130の入口112、121に流れを交互に方向付けるように構成されたインフローセレクタ117とを備える。装置はさらに、第1チャンバ110と流体連通するように配置された第1アウトフローセレクタ118と、第2チャンバ130と流体連通するように配置された第2アウトフローセレクタ138とを備える。装置100はまた、第1アウトフローセレクタ118が圧力調整器と流体連通するときには、第2フローコミュニケータが減圧手段122と流体連通し、その逆に、第2アウトフローセレクタ118が圧力調整器と流体連通するときには、第1フローコミュニケータが減圧手段122と流体連通するように、第1および第2アウトフローセレクタ118、138と交互に流体連通するように構成された圧力調整器120と、第1および第2アウトフローセレクタ118、138と交互に流体連通するように構成された減圧手段122、例えば真空ポンプ122とを備える。装置はさらに、減圧手段122の上流に配置された真空アキュムレータ124を備えることが好ましい。装置はさらに、酸素Oおよび窒素出口弁を備える。チャンバは隔離手段によって隔離することが好ましい。装置は、チャンバ内の両方のベッドと熱接触するように構成された熱伝達手段を備え、プロセス中に断熱コンディションを達成することが好ましい。
【0035】
酸素生成プロセス中に、空気Aはインフローセレクタ117を通して吹き込まれるように構成され、上記インフローセレクタ117は空気Aを第1チャンバ110に方向付けるように構成される。すなわち、充填プロセスは第1チャンバ110で行なわれ、チャンバ内に提供された固定剤S/Fは空気Aの酸素Oと反応し、固定剤S/Fに結合するように構成される。窒素Nおよびベッドに吸着されないと考えられる酸素Oは、第1チャンバ110の出口を通して流出するように構成され、固定剤S/Fの可能な残部を濾過するために第2フィルタ手段F2が配置される。窒素Nおよび酸素Oの可能な部分は次いで、背圧調整器120を介して第1アウトフローセレクタ118によって方向付けられ、窒素出口弁から排出されるように構成される。背圧調整器120は同時に、第1チャンバ110内の圧力を調整し、圧力を第1圧力レベルに維持するように構成される。実質的に全ての酸素Oが第1チャンバ110内の固定剤S/Fの第1ベッドに吸着されたときに、排出プロセス、すなわち酸素Oの放出が上記第1チャンバ110で始まるように意図される。これは、空気Aが第2チャンバ130に向けられるように構成されたインフローセレクタ117を切り替えることによって行なわれる。すなわち、充填プロセスが第2チャンバ130で実行される。
【0036】
排出相中に、第1チャンバ110で、酸素Oはコンディションの制御された変化によって放出されるように構成される。第1アウトフローセレクタ118は今、アキュムレータ124および減圧手段122と流体連通するように切り替えられるように構成される。酸素Oは、圧力を低下しかつ真空ポンプ122によって第1チャンバ110に負圧を提供することによって、放出されるように構成される。放出された酸素Oは第1チャンバ110の出口を通して流出するように構成され、固定剤S/Fの可能な残部を濾過するために第2フィルタ手段F2が配置される。酸素Oの流れは、真空ポンプ122によって生成される負圧によって、流れるように構成される。酸素Oの流れはさらに、第1アウトフローセレクタ118によってアキュムレータ124に、または代替的に直接真空ポンプ122に向けられるように構成される。アキュムレータ124は、所望ならば酸素Oを蓄積する能力を提供する。酸素Oは、真空ポンプ122に配置された酸素出口弁を介して排出されるように構成される。第1チャンバ110の排出プロセスは、実質的に全ての酸素Oが抽出されるまで続く。
【0037】
第1チャンバ110の排出プロセス中に、第2チャンバ130で充填プロセスが行なわれ、インフローセレクタ117は空気Aを第1チャンバ110に方向付けるように構成される。すなわち、充填プロセスは第2チャンバ130で実行される。これは、第1チャンバ110の充填プロセスの場合と同様に機能する。窒素Nおよび酸素Oの可能な部分がここで、背圧調整器120を通して第2アウトフローセレクタ138によって方向付けられ、窒素出口弁から排出されるように構成される。実質的に全ての酸素Oが第2チャンバ130内の固定剤S/Fの第2ベッドに吸着されると、排出プロセス、すなわち酸素Oの放出が上記第2チャンバ130で始まるように意図され、この時点でインフローセレクタ117は、空気Aの流れを第1チャンバ110に方向付けるように切り替えられるように構成され、第1チャンバ内で再び充填プロセスが実行される。こうしてプロセスは、ベッドを切り替えることによって続けられる。この実施例では2つのチャンバが接続されるが、代替的に、1つ以上のチャンバが酸素Oを放出し、1つ以上のベッドが酸素Oを吸着し、1つ以上のチャンバが中間相となるように、より多くのチャンバを接続してもよい。
【0038】
例えば第1チャンバが充填相にあるときに、酸素は固定剤と反応し、吸着される。酸素は吸着されるときにエネルギを放出し、したがってチャンバ内の加熱を引き起こし、それは吸着プロセスに否定的な影響を及ぼす。第2チャンバはそのとき、同時に排出相にあり、その間に吸着された酸素が放出される。酸素は放出されるときにエネルギを受け取り、したがってチャンバ内の冷却を引き起こし、それは放出プロセスに否定的な影響を及ぼす。この問題に対処するために、装置は、固定剤S/Fの第1および第2ベッドと熱接触するように構成された熱伝達材料を含む熱伝達手段128を備え、ベッドの一方が酸素Oを吸着するときに、反応エネルギのために材料が加熱され、他方のベッドが酸素Oを放出するときに、反応エネルギのためにそれが冷却され、こうして断熱プロセスが達成されるようにすることが好ましい。
【0039】
上述した第2実施形態に係る酸素生成プロセスは主として圧力プロセスである。そのようなプロセスでは、充填中および排出中の温度差を回避するために、一定温度が望ましい。これは上記断熱プロセスに従って達成され、したがってプロセスはより効率的になる。さらに、セミアクティブプロセス、すなわちチャンバ間の交番により、単一チャンバを使用する場合と比較して、プロセスはより効率的になる。図1a〜1dの第1実施形態の場合と同様に、様々なサイクル、すなわち圧力サイクル、真空サイクル、および温度サイクル、またはそれらの組合せを適用することができる。
【0040】
図3aは、本発明の第3実施形態の第1態様に係る、酸素を生成するための装置200の図を概略的に示す。これは第2実施形態の代替物であり、4つのチャンバが使用される。
【0041】
装置200Aは、空気入口212、窒素出口214、および酸素出口215を有する第1チャンバ210と、空気入口222、窒素出口224、および酸素出口225を有する第2チャンバ220と、空気入口232、窒素出口234、および酸素出口235を有する第3チャンバ230と、空気入口242、窒素出口244、および酸素出口245を有する第4チャンバ240と、管構造250と、上記管構造250に流入するように構成された熱伝達媒体と、媒体を移送するための手段、例えばポンプ270とを備える。各チャンバは固定剤S/Fのベッドを含む。各チャンバ210、220、230、240はさらに、入口216、226、236、246、および出口218、228、238、248を備える。第1チャンバ210の出口218は第2チャンバ220の入口226に接続され、第2チャンバ220の出口228は第3チャンバ230の入口236に接続され、第3チャンバ230の出口238は第4チャンバ240の入口246に接続され、第4チャンバ240の出口248は第1チャンバ210の入口216に接続される。チャンバ210、220、230、240は管構造250によって接続され、上記管構造250は各チャンバを貫通して配置され、各チャンバ内およびそれらの間に連続流路を形成する。第1チャンバ210の入口216と第2チャンバ220の出口228との間の管250に、弁手段260が設けられる。第2チャンバ220の出口228と第3チャンバ230の入口236との間の管250に、圧縮器が設けられる。装置はさらに、管構造250内の媒体の温度を調整するように構成された温度調整手段を備える。
【0042】
温度調整手段290は、例えば図3aに示す相で、第1チャンバ内を流れる媒体の部分の温度が、例えば20℃の低温となり、かつ同時に第3チャンバ内を流れる媒体の温度が例えば100℃の高温となるように、管250内の媒体の圧力を調整するように構成される。同時に第2チャンバ内を流れる媒体の部分は低温から高温に上昇し、かつ第4チャンバ内を流れる媒体の部分は高温から低温に冷却される。該プロセスは、冷却が第2チャンバ220で行なわれ、排出相すなわち酸素放出が第3チャンバ230で行なわれ、かつ加熱が第4チャンバ240で行なわれるのと同時に、充填相すなわち酸素吸着が第1チャンバ210で低温の媒体として行なわれるように機能する。第2チャンバ内の低温媒体が冷却され、充填プロセスがこのチャンバで開始され、そこで媒体は反応エネルギを受け取って加熱される。第4チャンバ内の高温媒体は冷却され、媒体からチャンバ内の固定剤へのエネルギ伝達のため、チャンバは加熱され、排出相が開始される。充填および排出相が第1および第2チャンバ内でそれぞれ完了すると、第2チャンバ220で充填相が実行され、第3チャンバ230で冷却、第4チャンバ240で排出相、および第1チャンバで加熱が実行されるように、シフトが行なわれる。次いでこれらのシフトは、充填および排出相が完了したときに、それに相応して続行される。
【0043】
図3bは、本発明の第3実施形態の第2態様に係る、酸素を生成するための装置200Bの図を概略的に示す。
【0044】
特徴部270を除き、図3aの全ての特徴部が図3bに存在する。加えて、装置は第1、第2、第3、および第4絞り262、264、266、268を備え、第1絞り262は第1チャンバ210と第2チャンバ220との間の管250に配置され、第2絞り264は第2チャンバ220と第3チャンバ230との間の管250に配置され、第3絞り266は第3チャンバ230と第4チャンバ240との間の管250に配置され、第4絞り268は第4チャンバ240と第1チャンバ210との間の管250に配置される。装置はまた、管250のそれぞれの絞り262、264、266、268の隣にそれぞれ配置された第1、第2、第3、および第4加圧手段272、274、276、278をも備える。
【0045】
図3bの装置は基本的に図3aの装置と同様に機能する。相違は媒体が相変化を経験することであり、これらの相変化を制御するために、狭窄および加圧手段が必要である。酸素は第1チャンバで吸着され、酸素は第3チャンバで放出される図3bに示す状態で、第4狭窄が作動し、すなわち媒体がポンプで減圧されるときに負圧が形成されるように絞りが実行され、第2加圧手段が作動する。媒体はこうして液相から気相への相変化を経験し、変化中、媒体の温度は維持される。これは非常に効率的なプロセスをもたらす。
【0046】
上述した第3実施形態に係る酸素生成プロセスは主として、温度プロセスである。そのようなプロセスでは、反応エネルギをできるだけ多く再使用/回復することが望ましく、それは図3aおよび3bの装置200A、200Bによって達成される。
【0047】
図4〜6は、連続酸素生成プロセスの様々な実施形態に係る装置を示し、該装置は一般的に、充填領域および排出領域を有するチャンバと、上記チャンバ内に配置された回転可能な部材であって固定剤S/Fを含む回転可能な部材と、上記チャンバ内で上記回転可能な部材を回転させるように構成された駆動手段と、空気入口を通して空気Aを上記チャンバ内に導入するための手段と、入口を通して導入された空気Aの酸素Oが反応して、回転可能な部材の固定剤S/Fによって吸着されるように、充填相中に第1コンディションを提供する手段と、上記相中に窒素出口を通して窒素Nを排出するための手段と、酸素Oが上記固定剤S/Fから放出されるように、上記第1コンディションの変化をもたらすための手段と、酸素出口を通して酸素Oを排出するための手段とを備える。したがって酸素生成プロセスは連続的である。すなわち、充填領域では、チャンバに導入された空気Aの酸素Oが固定剤S/Fによって連続的に吸着され、排出領域では酸素Oが連続的に抽出され、使用のために放出される。
【0048】
装置はさらに、入口を通して流入する空気Aが濾過されるように、チャンバの入口側に配置された第1フィルタ手段F1と、出口を通して流出する窒素Nおよび酸素Oの可能な部分がフィルタを通過して、固定剤S/Fの可能な残部が濾過されるように、チャンバの窒素出口に配置された第2フィルタ手段F2と、固定剤の可能な残部が濾過されるようにチャンバの酸素出口に配置された第3フィルタ手段とを備えることが好ましい。チャンバは隔離手段によって隔離されることが好ましい。
【0049】
図4aは、本発明の第4実施形態に係る酸素Oを生成するための装置の側面図を概略的に示し、図4bは装置300の背面図を概略的に示す。
【0050】
装置300は、充填領域330および排出領域340を有するチャンバ310と、上記チャンバ310内に回転可能に配置された回転可能な部材320であって薬剤S/Fを含む回転可能な部材と、上記チャンバ310内で上記回転可能な部材320を矢印Rで示す意図された回転方向に回転させるように構成された駆動手段350と、空気入口312を通して上記チャンバ310の充填領域330内に空気Aを吹き込むように構成された加圧手段316と、充填領域の空気入口312の下流に設けられ、窒素Nを排出させるように構成された窒素出口314と、チャンバ310の周辺部で、回転可能な部材320の回転軸に対して加圧手段316の実質的に反対側に設けられ、酸素出口315を介してチャンバ310から外に酸素Oを吸引するように構成された減圧手段322、例えば真空ポンプ322と、窒素出口に配置された圧力調整器318と、充填領域330で空気入口の上流に設けられ、回転可能な部材320を冷却するように構成された冷却手段324と、排出領域340で回転可能な部材320の回転軸に対して冷却手段324の実質的に反対側に設けられた加熱手段326と、充填領域330で高圧を維持しかつ排出領域340で低圧を維持するように構成された密閉手段323とを備える。
【0051】
回転可能な部材320は、円筒または円板の形状を有することが好ましい。チャンバ310は回転可能な部材320の周りに配置され、好ましくは中空円筒の形状を有する。駆動手段350は、回転可能な部材320の軸を構成する駆動軸312、および回転可能な部材320を回転させるように構成されたロータリモータを備えることが好ましい。冷却手段324はチャンバ310の充填領域330に取り付けることが好ましく、加熱手段326はチャンバ310の排出領域340に取り付けることが好ましい。
【0052】
回転可能な部材320は、チャンバ310内で連続的に回転するように構成される。冷温の空気Aが、加圧手段316、例えば圧縮器によって、空気入口を通してチャンバ310内に、チャンバ310の充填領域330内に導入するように構成され、チャンバ内で回転可能な部材320の固定剤S/Fと接触するように構成され、空気Aは、回転可能な部材320の固定剤S/Fと反応し吸着されるような圧力および温度を有するように構成される。窒素Nおよび酸素Oの可能な部分は、窒素出口を通し、かつ圧力調整器318を通して排出されるように構成される。圧力調整器318は、充填領域330内の圧力を調整し、それを高圧に維持するように構成される。回転可能な部材320が回転するにつれて、酸素Oが吸着される部材の部分が密閉手段323を介して排出領域340に到達する。排出領域340で、加熱手段326は回転可能な部材を加熱し、したがってチャンバ310の固定剤S/Fを加熱するように構成される。同時に、減圧手段322は充填領域330に負圧を形成するように構成される。加熱および負圧のため、酸素Oが回転可能な部材320の固定剤S/Fから放出され、酸素出口を通して、かつ減圧手段322を通して放出されるように構成され、そこから酸素がユーザに供給されるように意図される。回転可能な部材320が回転し続けるにつれて、酸素Oが放出された部材の部分が密閉手段323を介して充填領域330に到達する。充填領域330で、冷却手段324は、回転可能な部材320の固定剤S/Fが通過するときにそれを冷却するように構成される。回転可能な部材320の部分はこれでチャンバ310の内部を1周したことになり、空気Aが加圧手段316によって吹き込まれるように構成された原点に戻る。冷却手段324による固定剤S/Fの冷却および加圧手段316によって固定剤S/Fに提供される圧力は、空気Aを固定剤S/Fと接触させ、酸素Oが固定剤S/Fによって吸着されるように、空気Aの酸素Oを固定剤S/Fと反応させる。
【0053】
上述し、図4に示した実施形態では、圧力サイクル、真空サイクル、および温度サイクルの組合せが使用される。例えば図1a〜1dの場合と同様に、様々なサイクルまたはサイクルの組合せを使用することができる。圧力サイクルだけを使用する場合、加熱手段326、冷却手段322、および減圧手段316は不要である。真空サイクルだけを使用する場合、加熱手段326、冷却手段322、および加圧手段311は不要である。温度サイクルを使用する場合、減圧手段316および加圧手段311は不要である。
【0054】
上述した第4実施形態に係る酸素生成プロセスは連続プロセスであり、それが効率を高める。
【0055】
図5は、本発明の第5実施形態に係る、酸素Oを生成するための装置400の側面図を概略的に示す。この実施形態では、第4実施形態の温度サイクルの変形例を示す。
【0056】
装置は、充填領域430および排出領域440を有するチャンバ410と、上記チャンバ410内に回転可能に配置された回転可能な部材420であって固定剤S/Fを含む回転可能な部材と、上記チャンバ410内で上記回転可能な部材420を矢印Rで示す意図された回転方向に回転させるように構成された駆動手段450と、チャンバ410の周辺部に設けられ、空気熱伝達管構造411の空気入口412を通して空気Aを上記チャンバ410内に吹き込むように構成された、空気Aをチャンバ410内に導入するための手段と、充填領域430で空気入口412の下流に設けられた窒素入口413および管の端部に設けられた窒素Nを排出するための窒素出口414を有する窒素熱伝達管構造416であって、窒素熱伝達管構造416に対して相対的に回転するように構成された回転可能な部材420の外周に沿って該部材と熱接触する状態で配置された窒素熱伝達管構造と、チャンバ410の排出領域440に設けられた酸素入口422および管の端部に設けられた酸素Oを排出するための酸素出口424を有する酸素熱伝達管構造418であって、窒素熱伝達管構造416に隣接して回転可能な部材420の外周の一部分に沿って配置された酸素熱伝達管構造とを備える。装置はさらに、図4のように、空気入口412の上流で充填領域430に設けられ、回転可能な部材420を冷却するように構成された冷却手段426と、回転可能な部材420の回転軸に対して冷却手段の実質的に反対側で排出領域440に設けられた加熱手段428と、充填領域430で低温を、排出領域440で高温を維持するように構成された密閉手段429とを備える。
【0057】
回転可能な部材420は、円筒または円板の形状を有することが好ましい。チャンバ410は回転可能な部材420を中心に配置され、好ましくは、中空円筒の形状を有する。駆動手段450は、回転可能な部材420の軸を構成する駆動軸と、回転可能な部材420を回転させるように構成されたロータリモータとを備えることが好ましい。冷却手段はチャンバ410の充填領域430に取り付けることが好ましく、加熱手段はチャンバ410の排出領域440に取り付けることが好ましい。
【0058】
回転可能な部材420は、チャンバ410内で連続的に回転するように構成される。冷温の空気Aは空気熱伝達管の空気入口412内に導入され、管内をチャンバ410の充填領域430まで移送されるように構成され、そこで空気Aは回転可能な部材420の固定剤S/Fと接触するように構成され、空気Aは回転可能な部材420の固定剤S/Fと反応して吸着されるように構成される。窒素Nおよび酸素Oの可能な部分は窒素入口413内へ流入し、窒素熱伝達管構造416を通過するように構成され、流れは回転可能な部材420の回転に逆行する。回転可能な部材420が回転するにつれて、酸素Oが吸着される部材の部分が排出領域440に到達する。加熱手段428は、排出領域440で例えば100℃の温度に加熱するように構成される。回転可能な部材420が回転し続けると、酸素Oが放出された部材の部分が充填領域430/冷却領域に向かって回転し続ける。この領域で冷温であり、回転可能な部材420の回転運動に逆行して流れる窒素Nは、回転可能な部材の高温の固定剤S/Fと熱交換するように構成され、したがって高温の固定剤S/Fは冷却され、窒素Nは加熱されるので、温度が均等化される。加熱された窒素Nは、排出領域440/加熱領域に向かって流れ続けるように構成され、回転可能な部材の冷温の固定剤S/Fと熱交換するように構成され、したがって冷温の固定剤S/Fが加熱され、窒素Nが冷却されるので、温度が均等化される。固定剤S/Fの加熱のため、酸素Oは回転可能な部材420の固定剤S/Fから放出され、酸素入口422に流入し、酸素熱伝達管構造418を通過し、酸素出口424を通して排出されるように構成され、そこから酸素はユーザに供給されるように意図される。高温の酸素Oが流動するように構成された酸素熱伝達管構造418はまた、回転可能な部材420の固定剤S/Fが加熱されるようにも構成される。酸素熱伝達管構造418は窒素熱伝達管構造416に隣接して排出領域440/加熱領域に配置されることが好ましく、上記管は空気熱伝達管に沿ってチャンバ410の充填領域430/加熱領域を通過するように配置され、例えばユーザにとって最適な温度、または代替的に、導入される空気Aの通常の入口温度を達成するか、あるいは両方を達成するように、酸素Oおよび窒素Nおよび管に導入されその中を流れる空気Aの間で熱交換が行なわれる。冷却手段426は、充填領域430で例えば20℃の温度まで冷却するように構成される。冷却手段による固定剤S/Fの冷却は、酸素Oが固定剤S/Fによって吸着されるように、空気Aの酸素Oを固定剤S/Fと反応させる。
【0059】
管構造411、416、418の配置のため、酸素の生成は、第4実施形態に係る温度サイクルと比較して、反応エネルギの大半が回復されるので、より効率的になる。
【0060】
図6は、本発明の第6実施形態に係る、酸素Oを生成するための装置500の側面図を概略的に示す。この実施形態では、圧縮器および真空ポンプのどちらも必要としない、圧力および/または真空サイクルの変形例を示す。
【0061】
装置500は、充填領域530および排出領域540を有するチャンバ510と、上記チャンバ510内に回転可能に配置された回転可能な部材520であって固定剤S/Fを含む回転可能な部材と、上記チャンバ510内で上記回転可能な部材520を矢印Rで示す意図された回転方向に回転させるように構成された駆動手段550と、チャンバ510の周辺部に設けられ、空気Aをチャンバ510に導入するための手段とを備える。回転可能な部材520は円筒または円板の形状を有する。チャンバ510は回転可能な部材520を中心に配置される。装置500はさらに可撓性密閉手段522を備え、該密閉手段522は、チャンバ510の内面511に向かって略半径方向に突出する多数の密閉仕切り522またはブレードを含み、仕切り522の間にチャンバ510のキャビティ518が形成されるようにチャンバ510全体に分散され、各密閉仕切りは回転可能な部材とともに回転するように構成される。装置500はさらに、空気入口512と、充填領域530に配置された窒素出口514と、窒素出口514に配置された第1圧力調整器513と、排出領域540に配置された酸素出口516と、酸素出口516に配置された第2圧力調整器515とを備える。空気入口512で、チャンバ510および2つの隣接する仕切り522は比較的大きいキャビティ518を形成する。すなわち回転可能な部材520の周縁間の半径方向の距離は比較的大きく、上記距離は充填領域530に沿って窒素出口514まで徐々に低減し、こうして狭窄として機能するテーパ部525が形成され、そこから排出領域540が始まり、排出領域540の特定の距離から領域545まで距離は排出領域の拡幅部535で比較的急速に増大し、領域545から酸素出口516までさらに急速に実質的に減少する。駆動手段550は、回転可能な部材520の軸を構成する駆動軸と、回転可能な部材520を回転させるように構成されたロータリモータとを備えることが好ましい。
【0062】
回転可能な部材520は、チャンバ510内で連続的に回転するように構成される。冷温の空気Aは空気入口512を介して、チャンバ510の2つの隣接する仕切り522によって形成されるキャビティ518内に導入されるように構成される。導入された空気Aはこうして上記キャビティ518内に収容される。回転可能な部材520が仕切り522とともに回転すると、キャビティ518は充填領域530に沿って狭窄部525に向かって移動し、したがって回転可能な部材520が回転するにつれてキャビティ518の容積は減少し、その結果、キャビティ518内の圧力は上昇し、空気Aの酸素Oがチャンバ510内の回転可能な部材520の部分の固定剤S/Fと反応し、吸着される。回転可能な部材520が回転するにつれて、仕切り522および狭窄部525は加圧手段を構成する。キャビティ518が窒素出口514に到達すると、圧力調整器は、圧力を低下するように構成され、窒素Nは窒素出口514を通して排出されるように構成される。キャビティ518が排出領域540に到達すると、キャビティ518が回転可能な部材520とともに排出領域540に沿って移動するにつれて、キャビティ518の容積が増大し、その結果キャビティ518内の圧力が負圧まで低下するので、酸素Oがキャビティ518内で回転可能な部材520の部分の固定剤S/Fから放出される。回転可能な部材520がさらに回転すると、キャビティ518の容積は圧力正規化領域545に到達し、そこでキャビティ518の容積は急速に減少するので、キャビティ518の圧力は、放出された酸素Oを排出することのできる圧力以上に達する。キャビティ518が酸素出口516に到達すると、圧力はより高い圧力に上昇するように構成され、放出された酸素Oは次いで圧力調整器を通して酸素出口516から排出され、ユーザによって使用されるように構成される。回転可能な部材520がさらに回転すると、チャンバ510は次いで再度空気入口512の位置に到達し、プロセスが再び開始される。
【0063】
上述した実施形態の代替的変形例として、回転可能な部材は非円筒状の形状を有することができ、チャンバの内部は、適切な大きさに形成された場合、基本的に上記と同じ効果を達成する中空円筒の形状を有することができる。
【0064】
上述した第6実施形態に係る酸素生成プロセスは主として圧力プロセスである。この構成の装置の利点は、圧縮器も真空ポンプも不要であり、それにより部品の数が低減され、費用効率が高くなることである。
【0065】
図7a〜7dは、本発明の第7実施形態に係る、酸素Oを生成するための装置600の様々な状態の側面図を概略的に示す。
【0066】
装置600は、一端に配置された固定剤S/Fを含む円筒状の形状を有するチャンバ610と、固定剤S/Fとチャンバ610の固定剤S/F端とは反対側の端との間に設けられたピストン620であって、チャンバ610内で軸に沿って、ピストン620と固定剤S/Fとの間にキャビティ611が形成される開位置と、ピストン620が固定剤S/Fの位置に配置される閉位置との間で往復運動するように構成されたピストン620と、チャンバ610の固定剤S/F側の端部に配置され、空気Aをチャンバ610内に導入するための空気入口弁612と、チャンバ610の固定剤S/F側の端部に配置され、窒素Nまたは酸素Oを排出するための出口弁614と、窒素出口622および酸素出口624を有するフローセレクタ618と、酸素Oを蓄積するためのアキュムレータと、第2酸素出口626とを備える。装置はさらに、装置を断熱状態に維持するための隔離手段628を備える。
【0067】
酸素生成は4段階I、II、III、IVで実行され、第1および第2段階I、IIは充填相を構成し、第3および第4段階III、IVは排出相を構成する。装置600は、酸素生成プロセス中に装置600が断熱状態に維持されるように、チャンバ610またはむしろチャンバ610の固定剤S/Fを分離するように構成された、分離手段を含むことが好ましい。代替的に、装置600は、充填相中にチャンバ610を冷却するように構成され、かつ排出相中にチャンバ610を加熱するように構成された、温度調整手段628を備えることができる。
【0068】
第1段階Iで、空気Aは、ピストン620がその開位置にあるときに、空気入口弁612を通してチャンバ610内に導入されるように構成される。この段階で、窒素/酸素出口弁614は、フローセレクタ618の窒素出口622および酸素出口624とともに閉じられる。
【0069】
第2段階IIで、空気入口弁612は閉じるように構成され、かつピストン620はその閉位置に移動するように構成され、キャビティ611の容積は減少し、キャビティ611に閉じ込められた空気Aは圧縮され、その結果、圧力が上昇する。空気Aの高い圧力のため、空気Aの酸素Oは固定剤S/Fと反応し、固定剤S/Fによって吸着される。次いで出口弁614は開くように構成され、空気Aの窒素Nはフローセレクタ618まで流れるように構成され、上記フローセレクタ618は窒素Nを窒素出口622に向かわせるように構成され、そこで窒素は排出される。
【0070】
第3段階IIIで、出口弁614は閉じるように構成され、空気入口弁612は閉じたまま維持される。ピストン620はその開位置に移動するように構成され、キャビティ611の容積は増大し、キャビティ611に負圧が形成される。負圧のため、酸素Oは固定剤S/Fから放出される。
【0071】
第4段階IVで、出口弁614は閉じるように構成され、空気入口弁612は閉じたまま維持される。ピストン620はその閉位置に移動するように構成され、キャビティ611の容積は減少し、キャビティ611に閉じ込められた空気Aは圧縮されるので、圧力は周囲圧力またはそれより少し高い圧力に上昇する。次いで出口弁614は開くように構成され、酸素Oはフローセレクタ618まで流れるように構成され、上記フローセレクタ618は酸素Oを酸素出口624に向かわせるように構成され、そこで酸素は、酸素Oを蓄積するためのアキュムレータ内に導入され、次いで所望するときにユーザが使用するためにアキュムレータの出口を通して排出されるように構成されることが好ましい。
【0072】
上述した第2実施形態に係る酸素生成プロセスは主として圧力プロセスであり、図6のプロセスの変形例である。したがって、装置のこの構成の利点は、圧縮器も真空ポンプも不要であり、それにより部品の数が低減され、費用効率が高くなることである。これはさらに、往復運動のため、単位時間当たりの高い酸素生産量を促進し、必要な固定剤/吸着剤の材料の量が低減される装置を提供する。
【0073】
図8aおよび8bは、本発明の第8実施形態に係る、酸素Oを生成するための装置700の略側面図を示す。
【0074】
装置700はチャンバ710を備え、チャンバ710は固定剤S/Fを含む。装置700はさらに、チャンバ710の外側に設けられたコネクタ弁712と、接続されているときに上記弁を通してチャンバ710内に吸気Aを供給するために、コネクタ弁712に取外し可能に接続されるように構成された加圧手段716、例えば圧縮器またはファンと、窒素Nを排出するためにチャンバ10の外側に配置された窒素出口714と、酸素Oを排出するためにチャンバ10の外側に配置された酸素出口715と、充填相ではポケット722内に取外し可能に配置するように意図された冷却器724を受容し、かつ排出相では上記ポケット722内に取外し可能に配置するように意図された加熱器726を受容するために、チャンバ内に配置された上記ポケット722を含む温度調整手段720と、冷却器724/加熱器726と熱接触する熱伝達手段728、例えばフランジ構成とを備え、上記温度調整手段720は、加圧手段716がコネクタ弁712に接続されているときには冷却するように構成され、かつ加圧手段716がコネクタ弁712から切り離されているときには加熱するように構成される。装置700は、チャンバ710を隔離するように構成された隔離手段726を備えることが好ましい。
【0075】
図8aは、充填相の装置700を示す。充填相中に、加圧手段716はコネクタ弁712に接続されるように構成される。空気Aは、コネクタ弁712を介して加圧手段716によってチャンバ710内に導入されるように構成される。温度調整手段720は、熱伝達手段728と熱接触する冷却器724によって、チャンバ710内の空気Aおよび固定剤S/Fを冷却するように構成される。次いで空気Aの酸素Oは固定剤S/Fと反応し、固定剤S/Fによって吸着される。空気Aの窒素Nは、窒素出口714を通して排出されるように構成される。
【0076】
図8bは、排出相の装置700を示す。排出相中に、充填された固定剤S/Fを含むチャンバ710は、コネクタ弁712を加圧手段から切り離すことによって、加圧手段716から切り離されている。温度調整手段720は、熱伝達手段728と熱接触する加熱器726によって、固定剤S/Fを加熱するように構成される。酸素Oは固定剤S/Fから放出され、ユーザによる使用のために酸素出口715を通して排出されるように構成される。
【0077】
圧力および熱機能すなわち充填相中の冷却機能および排出相中の加熱機能を用いて酸素Oを生成するための装置700について上述し、図7に示した。しかし、異なるサイクルおよび機能ならびにそれらの組合せを使用することができる。
【0078】
装置700は、救急車で、または酸素が必要とされる他の用途に使用するように意図される。再充填可能な酸素貯蔵装置は、不使用時に救急車内で充填位置に配置され、次いで装置は待機位置に着くように意図される。例えば患者に必要になったときに、チャンバが取り出され、患者に酸素が提供されるように、加熱によって酸素が生成される。使用されると、チャンバは充填位置に再設置され、充填され、再びいつでも使用できるように準備する。装置はこのように現場で再使用することができる。したがって幾つかの酸素ボトルを用意しておき、使用されたときに交換するか新しいものを取り出す必要が無くなる。チャンバは例えばボトルの形を有することができる。
【0079】
本発明に係る全ての実施形態で、装置は、入口を通して流入する空気Aが濾過されるように、少なくとも1つのチャンバの空気入口側に配置された第1フィルタ手段F1と、窒素出口を通して流出する窒素Nおよび酸素Oの可能な部分がフィルタを通過して、固定剤S/Fの可能な残部が濾過されるように、窒素出口に配置され、かつ酸素出口を通して流出する酸素Oがフィルタを通過して、固定剤S/Fの可能な残部が濾過されるように、酸素出口に配置された第2フィルタ手段F2とを含むことができる。
【0080】
装置はまた、全ての実施形態で、酸素出口を通して排出された酸素を蓄積するように構成された蓄積手段24をも備えることができる。これは例えば、たとえ生産が連続的でなくても酸素を連続的に供給し、あるいはユーザが所望する場合、酸素の流量を短期間増加または減少させることを可能にする。
【0081】
様々な実施形態で、様々なサイクルおよびその組合せについて説明してきた。一般的に、充填相中の充填温度は圧力に依存するので、上記相中に高圧が加えられるときには高温を使用することができる。すなわち、通常、充填相に関連して温度が示される場合、それは冷却と呼ばれるが、圧力が充分であることを前提として、かなり高い温度を適用することができ、それでも依然として酸素と固定剤との反応が達成される。したがって冷却とは相対的な意味の冷却であり、冷却は室温より上の温度、すなわち例えば20℃より高いかもしれない。さらに、排出温度は負圧に依存するので、真空に近い負圧によって、低温を使用することができる。したがって、加熱とは、相対的な意味での加熱であり、加熱は室温より低い温度であるかもしれない。
【0082】
周囲温度とは無関係であるために、充填温度を周囲温度より高くすることができる。利点は、周囲温度の温度変化がプロセスに影響を及ぼさないことである。
【0083】
さらに、充填温度が充分に低いことを前提として、充填圧力は通常の大気圧より低くすることができる。これは、例えば航空機内または高山での場合に当てはまる。
【0084】
全ての実施形態で、装置は、酸素の量を制御するための手段をも備えることができる。装置は例えば、生成された酸素と空気が混合されるように、制御された仕方で空気をチャンバに通過させるための手段を備えることができる。利点は、例えば麻酔装置における酸素の量を制御する容易な方法を促進することができる。システムはまた、ガス混合物を固定剤S/Fと接触させることによって、ガス混合物中の酸素の量を制御することもできる。固定剤S/Fが特定な圧力および温度にある状態で、固定剤は次いで、酸素含有量が低すぎる場合にガス混合物に酸素を供給するだけでなく、酸素含有量が高すぎる場合に酸素を抽出もする。これは、例えば麻酔機で、あるいは患者が様々な酸素濃度に対してどのように反応するかを診断するときに、あるいは純酸素を有するだけが重要ではない任意の状態で役立つことができる。
【0085】
本発明の実施形態に係る装置はさらに、例えばポンプで過圧にするか、あるいはは固定剤のベッドの温度を上昇させることによって、加圧酸素を提供することを容易にする。
【0086】
上記実施形態に係る酸素を生成するための装置は、窒素をも生成する。単に周囲空気に排出する代わりに、例えば火災/火災のリスクにより、酸素含有量を低減することによって酸素の欠乏した環境が所望される場合に、窒素を使用することができる。
【0087】
装置はまた、酸素含有量が空気の酸素含有量より低いガスをも生成することができる。これは、通常より低い酸素濃度が有用な任意の用途に、使用することができる。例えば、患者が空気より低い酸素含有量にどのように反応するかを見て患者を診断するために、または運動選手が低酸素含有量を有する空気を呼吸する場合に、または人々が海面の酸素分圧より低い酸素分圧を有する空気を呼吸することによって高高度に順応する場合に、使用することができる。
【0088】
本発明の実施形態の一態様によれば、装置は酸素節約装置を備えることができ、それは、通常の場合のように連続的ではなく、吸入中にだけガスを投与するという利点を有する。これにより投与量は通常のガス消費量の10分の1まで減少し、したがってさらにいっそう小型で軽量の可搬性医療装置を製造することが容易になる。この技術は、呼吸がはっきりしている意識のある患者以外では、呼吸を充分に明確に検出することができないので、そのような呼吸がはっきりしている意識のある患者にしか機能しないという不利点を有する。
【0089】
固定剤S/Fにおける酸素の取込みおよび排出のレベルを測定し、この情報を使用して取込みおよび排出モードを制御することによって、装置のエネルギ消費量を低下し、最適化することができる。これはまた、周囲空気の酸素含有量が通常の周囲空気より低いか高い状況、例えば近辺での何らかの他の酸素消費のため、酸素含有量の低い空気から酸素が取り込まれる場合に、または大気圧が低下する高地の空気から酸素を取り込む場合に、装置が対処することを可能にする。これが役立つ別の状況として、例えば患者によって吐き出された酸素の一部をユニットが回収するため、使用される空気が酸素を豊富に含む場合、または酸素含有量が何らかの他の理由から増加する場合がある。
【0090】
本発明の実施形態の一態様によれば、装置は様々なエネルギ源、例えばバッテリ、本線接続などによって動作することができ、すなわちバッテリまたは他の電源によって動作することのできるユニットは、患者が移動できる場合、または動かせない場合にそれぞれ、これらの動作プロセスを組み合わせることができる。
【0091】
本発明の実施形態の一態様によれば、装置は、エンハンスト窒素Nを最初に送達するのを防止するために、排出モードを起動する前に、固定剤が常に飽和状態に充填されるように制御する構成を含む。
【0092】
本発明の実施形態の一態様によれば、装置は、患者の要求に適応可能な動作モードを含み、この目的のために、呼吸経路内またはそれに隣接して呼吸を直接検出するか、容積またはインピーダンスまたは超音波/光のいずれかの胸部の変化を検出するか、あるいは酸素の必要性を測定するか、もしくは例えば光センサ(例えばPPG)を用いて血中の酸素飽和度を検出するか、代替的に他の患者フィードバック、例えば呼吸を制御する神経信号への接続によって間接的に検出することに基づいて、呼吸を検出するためのセンサを備えることができる。
【0093】
本発明の実施形態の一態様によれば、装置は酸素投与が必要なときに知らせるための手段すなわちモードを備え、上記手段は患者によって制御可能である。
【0094】
本発明の実施形態の一態様によれば、装置は、患者がより効率的に受け入れるために、吸気相に沿って動作モード、例えば酸素圧および酸素量を変化させるための手段を備え、モードは個別にプログラム可能である。
【0095】
本発明の実施形態の一態様によれば、装置は、患者の様々な状態中に、例えば患者の覚醒時、睡眠中、脈拍変化時等に提供すべき様々な呼吸モードをプログラムするためのプログラミング手段を備える。
【0096】
本発明の実施形態の一態様によれば、装置は、緊急時に濃縮酸素用量を送達するための手段を備える。
【0097】
本発明の実施形態の一態様によれば、装置は、動作中に例えばバッテリまたは固定剤の動作、性能に関する情報を動作中に患者に与えるように構成された監視手段を備える。
【0098】
本発明の実施形態の一態様によれば、装置は、アラームの型に応じたアイデンティティを有する、すなわち様々な状況を警告する様々なアラームを有する、アラーム機能付きアラーム手段を備える。アラーム機能は、音、光、または触覚、例えば振動を介して達成される。装置は予後値に基づくアラームモードを備えることができる。
【0099】
本発明の実施形態の一態様によれば、装置は患者が吸入しなかった酸素を利用するための手段を備え、それによって化学パッケージすなわち固定剤の寿命を向上し、エネルギ消費を低減させる。
【0100】
本発明の実施形態の一態様によれば、装置は、固定剤からの酸素の放出を増加させる熱源として患者の体温を利用するために、患者の身体と直接接触するように構成されてもよい。
【0101】
本発明の実施形態の一態様によれば、装置は、固定剤を含む交換可能な化学パッケージを備える。化学パッケージすなわち固定剤は予備調整されてもよく、予備調整されなくてもよい。
【0102】
本発明の実施形態の一態様によれば、装置は患者に接続するように構成された接続部を備え、上記接続部は、酸素の取込みを患者にとってより効果的にするために、すなわち呼吸を改善するために、患者への酸素出口に乱流をもたらすように構成される。
【図面の簡単な説明】
【0103】
【図1a】本発明の第1実施形態の第1態様に係る、酸素を生成するための装置の側面図を概略的に示す。
【図1b】本発明の第1実施形態の第2態様に係る、酸素を生成するための装置の側面図を概略的に示す。
【図1c】本発明の第1実施形態の第3態様に係る、酸素を生成するための装置の側面図を概略的に示す。
【図1d】本発明の第1実施形態の第4態様に係る、酸素を生成するための装置の側面図を概略的に示す。
【図2】本発明の第2実施形態に係る、酸素を生成するための装置の側面図を概略的に示す。
【図3a】本発明の第3実施形態の第1態様に係る、酸素を生成するための装置の図を概略的に示す。
【図3b】本発明の第3実施形態の第2態様に係る、酸素を生成するための装置の図を概略的に示す。
【図4a】本発明の第4実施形態に係る、酸素を生成するための装置の側面図を概略的に示す。
【図4b】図4aの酸素を生成するための装置の背面図を概略的に示す。
【図5】本発明の第5実施形態に係る、酸素を生成するための装置の側面図を概略的に示す。
【図6】本発明の第6実施形態に係る、酸素を生成するための装置の側面図を概略的に示す。
【図7a】本発明の第7実施形態に係る、酸素を生成するための装置の1状態の側面図を概略的に示す。
【図7b】本発明の第7実施形態に係る、酸素を生成するための装置の別の状態の側面図を概略的に示す。
【図7c】本発明の第7実施形態に係る、酸素を生成するための装置のさらに別の状態の側面図を概略的に示す。
【図7d】本発明の第7実施形態に係る、酸素を生成するための装置のさらに異なる状態の側面図を概略的に示す。
【図8a】本発明の第8実施形態に係る、酸素を生成するための装置の充填相の側面図を概略的に示す。
【図8b】図8の装置の排出相の側面図を概略的に示す。

【特許請求の範囲】
【請求項1】
酸素生成用の装置(1A、1B、1C、1D;100;200A;200B;300;400;500;600;700)において、
第1コンディションを提供する手段と、前記第1コンディションを第2コンディションに変化させる手段とを備え、可逆的酸素固定剤によって構成された固定剤(S/F)すなわち酸素選択性材料によって空気の酸素が吸着されるよう、充填相中に、前記第1コンディション下で空気(A)を前記固定剤に接触させることによって空気から酸素を抽出するとともに、前記第1コンディション下で窒素を除去するように構成され、かつ、排出相中に、前記第1コンディションを前記第2コンディションに変化させることによって、前記固定剤から酸素を放出させるように構成されたことを特徴とする、装置。
【請求項2】
可搬性ユニットであることを特徴とする、請求項1に記載の装置。
【請求項3】
前記第1コンディションを提供する前記手段が、圧縮器もしくはファンその他の加圧手段、冷却手段、または加圧手段と冷却手段との組合せの1つ以上を含み、
前記第1コンディションを前記第2コンディションに制御下で変化させるための前記手段が減圧手段および/または加熱手段を含むことを前提として、前記第1コンディションを提供する前記手段が通常の気圧すなわち大気圧および通常の温度すなわちほぼ室温を含む場合、かつ、前記第1コンディションを提供する前記手段が加圧手段および/または冷却手段を含むことを前提として、前記第2コンディションに変化させる前記手段が通常の圧力および温度を含む場合、前記第1コンディションを前記第2コンディションに制御下で変化させるための前記手段が、真空ポンプその他の減圧手段、加熱手段、または減圧手段と加熱手段との組合せの1つ以上を含むことを特徴とする、請求項1または2に記載の装置。
【請求項4】
固定剤(S/F)のベッドを含むように構成された少なくとも1つのチャンバ(10;110、130;210、220、230、240;310;410;510;610;710)を備え、
前記固定剤(S/F)は、充填相中に流入する空気が前記第1コンディション下で該固定剤と反応して酸素が吸着されるように、前記チャンバ内に配置され、
前記チャンバの各々は、空気(A)を前記チャンバ内に導入する入口(12;112、121;212、222、232、242;312;412;512;612;712)と、充填相中に、窒素(N)および固定剤(S/F)のベッドに吸着されなかった酸素(O)の可能な部分を通過させるように構成された窒素出口(14;114、123;214、224、234、244;314;413、414;514;614;714)と、排出相中に、前記第1コンディションの変化の下で放出された酸素(O)を通過させる酸素出口(14;114、123;216、226、236、246;315;422、424;516;614;716)とを有することを特徴とする、請求項1〜3のいずれか一項に記載の装置。
【請求項5】
空気を前記チャンバ内に導入する手段(16;116;316;716)を備えることを特徴とする、請求項4に記載の装置。
【請求項6】
前記チャンバ(10;110;310;510;610;710)を加圧するように構成された加圧手段(16;116;316;522、525;620;716)を備えることを特徴とする、請求項4または5に記載の装置。
【請求項7】
前記加圧手段(16;116;316;716)が前記空気入口(12;112;312;712)の上流に設けられることを特徴とする、請求項6に記載の装置。
【請求項8】
前記チャンバ内の空気が圧縮されるように、前記加圧手段(522、525;620)が前記チャンバ(510;610)内に移動可能に配置されることを特徴とする、請求項7に記載の装置。
【請求項9】
前記チャンバ内の圧力を調整するように構成された圧力調整手段(20;120;522;525、540、545;620)を備えることを特徴とする、請求項4〜8のいずれか一項に記載の装置。
【請求項10】
前記圧力調整手段(20;120)が前記出口(14;114)の下流に配置されることを特徴とする、請求項9に記載の装置。
【請求項11】
前記圧力調整手段(522;525、540、545;620)が前記チャンバ(510;610)内に移動可能に配置されることを特徴とする、請求項10に記載の装置。
【請求項12】
前記チャンバ(10;110;310;510;610)内に負圧を形成するように構成された減圧手段(22;122;322;522、535;620)を備えることを特徴とする、請求項4〜11のいずれか一項に記載の装置。
【請求項13】
前記減圧手段(22;122;322)が前記酸素出口(14;114;315)の下流に配置されることを特徴とする、請求項12に記載の装置。
【請求項14】
前記チャンバ(510;610)内の空気が減圧されるように、前記減圧手段(522、535;620)が前記チャンバ(510;610)内に移動可能に配置されることを特徴とする、請求項12に記載の装置。
【請求項15】
前記チャンバ(10;110;210;310;410;710)内の温度を調整するように構成された温度調整手段(26;128;250、290;324、326;416、418、424、426;724、726、728)を備えることを特徴とする、請求項4〜14のいずれか一項に記載の装置。
【請求項16】
前記温度調整手段が、充填相中に前記チャンバ(10;110;210;310;410;710)の内容物を冷却するように構成された冷却手段(26;128;250、290;324;416、418、424;724、728)と、排出相中に前記チャンバ(10;110;210;310;410;710)の内容物を加熱するように構成された加熱手段(26;128;250,290;326;416、418、426;726、728)とを備えることを特徴とする、請求項15に記載の装置。
【請求項17】
前記温度調整手段が、前記チャンバ内で熱交換を行なうように構成された熱伝達手段(128;250、290;416、418;728)を備えることを特徴とする、請求項16に記載の装置。
【請求項18】
少なくとも2つのチャンバのうちの少なくとも1つ、例えば第1チャンバが充填相にあるときに、他のチャンバの少なくとも1つ、例えば第2チャンバが排出相にあるように構成された、少なくとも2つのチャンバ(110;130;210、220、230、240)と、
前記少なくとも2つのチャンバのそれぞれにおける充填相および排出相が終了したときに、少なくとも1つのチャンバ、例えば前記第1チャンバが充填相で吸着された酸素を放出するように構成されているとともに、他のチャンバの1つ、例えば前記第2チャンバが酸素を吸着するように構成され、次いで順に交替するように、相をシフトさせるための手段と
を備えることを特徴とする、請求項4〜17のいずれか一項に記載の装置。
【請求項19】
前記残りのチャンバの少なくとも1つが中間相にあることを特徴とする、請求項18に記載の装置。
【請求項20】
4つのチャンバ(210、220、230、240)を備え、
前記4つのチャンバの各々が固定剤を含み、前記4つのチャンバが、空気入口(212、222、232、242)と、窒素出口(214、224、234、244)と、酸素出口(215、225、235、245)とを有し、前記チャンバが熱伝達媒体を受容するように構成された熱伝達管構造(250)を介して直列に接続され、前記媒体が前記管を貫流するように構成され、例えば第1チャンバ内で酸素が吸着されるとともに、前記第1チャンバに対して下流に接続された例えば第2チャンバが冷却され、前記第2チャンバの下流に接続された例えば第3チャンバ内で酸素が放出され、例えば第4チャンバが加熱され、次いで冷却された前記第2チャンバ内で酸素が吸着され、前記第3チャンバが冷却され、前記第4チャンバ内で酸素が放出され、前記第1チャンバが加熱されるようにシフトされる如く、前記媒体の温度を制御する温度調整手段(290)が配置されることを特徴とする、請求項17または18に記載の装置。
【請求項21】
酸素が吸着されるチャンバの前で媒体の流れを絞るためにそれぞれのチャンバ間の管(250)にそれぞれ配置された狭窄(262、264、266、268)と、媒体の流れを与えるためにそれぞれのチャンバ間の管にそれぞれ配置された加圧手段(272、274、276、278)とを備えることを特徴とする、請求項20に記載の装置。
【請求項22】
少なくとも2つのチャンバの前記空気入口(112、121)の上流に設けられ、前記空気入口間の空気の流れをシフトさせて半連続的酸素生成プロセスが達成されるように構成されたインフローセレクタ(117)を備えることを特徴とする、請求項18または19に記載の装置。
【請求項23】
前記チャンバ(310;410;510)が、前記第1コンディション手段を提供するように構成された充填領域(330;430;530)と、前記第2コンディション手段を提供するように構成された排出領域(340;440;540)とを含むことを特徴とする、請求項4〜17のいずれか一項に記載の装置。
【請求項24】
前記空気入口(312;412;512)および前記窒素出口(314;414;514)が前記充填領域に設けられ、かつ前記酸素出口(315;422;516)が前記排出領域に設けられることを特徴とする、請求項23に記載の装置。
【請求項25】
前記チャンバ(310;410;510)内で前記固定剤を回転させて、該固定剤が前記充填領域内で空気と接触し、そこで動作時に酸素が吸着され、かつ、該固定剤が排出領域内で空気と接触し、そこで酸素が放出されて酸素が連続的に生成されるように構成された回転手段(320、350;420、450;520、550)を備えることを特徴とする、請求項23または24に記載の装置。
【請求項26】
前記回転手段が、前記固定剤を包含する回転可能な部材(320;420;520)と、前記回転可能な部材を回転させるように構成された駆動手段(350;450;550)とを含み、前記固定剤が前記回転可能な部材の少なくとも周縁部を構成することを特徴とする、請求項25に記載の装置。
【請求項27】
前記回転可能な部材が実質的に円筒状の形状を有することを特徴とする、請求項23〜26のいずれか一項に記載の装置。
【請求項28】
前記チャンバ(310;510)内を密閉するように構成された密閉手段(323;522)を備えることを特徴とする、請求項23〜27のいずれか一項に記載の装置。
【請求項29】
前記密閉手段(323)が、前記充填領域の前記第1コンディションおよび前記排出領域の前記第2コンディションが維持されるように密閉するように構成されていることを特徴とする、請求項28に記載の装置。
【請求項30】
空気が前記チャンバの内面と前記固定剤との間に形成される空間に沿って移送されるように、前記密閉手段(522)が前記回転手段とともに動くように構成されているとともに、前記チャンバの内面(511)に対して密閉するように構成されていることを特徴とする、請求項28または29に記載の装置。
【請求項31】
前記温度調整手段(26;128;250、290;324、326;416、418、424、426;724、726、728)が前記チャンバに接続されることを特徴とする、請求項15〜30のいずれか一項に記載の装置。
【請求項32】
前記冷却手段(324;424)が前記チャンバ(310;410)に接続され、前記充填領域(330;430)を冷却するように構成されていることを特徴とする、請求項23〜31のいずれか一項に記載の装置。
【請求項33】
前記加熱手段(326;426)が前記チャンバ(310;410)に接続され、前記排出領域(340、440)で加熱するように構成されていることを特徴とする、請求項23〜31のいずれか一項に記載の装置。
【請求項34】
前記チャンバ内で窒素、酸素および酸素の吸着および放出からの反応エネルギの間で熱交換が行なわれるように、前記熱伝達手段が、相互に相対的に配置された窒素熱伝達管構造(416)および酸素熱伝達管構造(418)を備えることを特徴とする、請求項17〜33のいずれか一項に記載の装置。
【請求項35】
窒素、酸素および空気の間で熱交換が行なわれ、窒素、酸素および空気の温度の制御が容易になるように、当該装置が、前記窒素熱伝達管構造(416)および前記酸素熱伝達管構造(418)に対して相対的に配置された空気熱伝達管構造(411)を備えることを特徴とする、請求項34に記載の装置。
【請求項36】
前記加圧手段(326;522、525)が前記充填領域で加圧するように構成されていることを特徴とする、請求項23〜35のいずれか一項に記載の装置。
【請求項37】
前記加圧手段が、前記密閉手段(522)と前記充填領域(530)のテーパ部(525)とを備え、
前記密閉手段(522)が前記テーパ部に入ったときに、移送された空気が圧縮されるように、前記テーパ部が構成されていることを特徴とする、請求項28〜36のいずれか一項に記載の装置。
【請求項38】
前記密閉手段(522)が多数の可撓性密閉用の仕切り(522)ないしはブレードを備えもー、前記仕切りが、前記チャンバ(510)内のキャビティ(518)が前記仕切り(522)間に形成されるように、略半径方向に前記チャンバ(510)の内面に向かって突出し前記チャンバ(510)全体に分配配置されていることを特徴とする、請求項37に記載の装置。
【請求項39】
前記排出手段(322;522、535)が前記排出領域(340;540)に負圧を形成するように構成されていることを特徴とする、請求項23〜38のいずれか一項に記載の装置。
【請求項40】
前記排出手段(522、540)が密閉手段(522)と前記排出領域(540)の拡幅部(535)とを備え、前記密閉手段(522)が前記拡幅部に入ったときに、移送された空気が負圧に減圧されるように構成されていることを特徴とする、請求項28〜39のいずれか一項に記載の装置。
【請求項41】
前記圧力調整手段が、開位置と閉位置との間で往復運動をするように前記チャンバ内に配置されたピストン(620)を含むことを特徴とする、請求項9〜40のいずれか一項に記載の装置。
【請求項42】
前記ピストンがその開位置にある第1段階(I)で、空気が前記チャンバ内に導入されるように構成され、前記ピストンが閉位置に移動することによって空気を圧縮する第2段階(II)で、酸素が固定剤によって吸着され、かつ窒素が窒素出口を通して排出されるように構成され、ピストンが開位置に移動することによって負圧が生じる第3段階で、酸素が放出されるように構成され、ピストンが閉位置に移動する第4段階で、酸素が酸素出口を通して排出されるように構成されていることを特徴とする、請求項41に記載の装置。
【請求項43】
前記チャンバ(710)が前記空気導入手段(716)に着脱自在に接続され、前記チャンバを前記空気導入手段から取り外して酸素を例えば患者に提供することができ、かつ酸素を例えば患者に提供した後、前記チャンバを前記空気導入手段に再接続することによって、前記チャンバを再充填すること、すなわち酸素を吸着させることができるように構成されていることを特徴とする、請求項5〜42のいずれか一項に記載の装置。
【請求項44】
前記空気入口(712)が前記チャンバの外部に配置されたコネクタを含み、前記コネクタが、充填相中に前記空気導入手段(716)に接続され、排出相中に前記加圧手段から切り離されるものであることを特徴とする、請求項5〜43のいずれか一項に記載の装置。
【請求項45】
前記酸素出口を通して排出された酸素を蓄積するように構成された蓄積手段を備えることを特徴とする、請求項4〜44のいずれか一項に記載の装置。
【請求項46】
前記入口を通して流入する空気(A)が濾過されるように、少なくとも1つのチャンバの前記空気入口側に配置された第1フィルタ手段(F1)と、
前記窒素出口を通して流出する窒素(N)および酸素(O)の可能な部分がフィルタを通過して固定剤(S/F)の可能な残部が濾過されるように、前記窒素出口に配置されるとともに、前記酸素出口を通して流出する酸素(O)がフィルタを通過して、固定剤(S/F)の可能な残部が濾過されるように、前記酸素出口に配置された第2フィルタ手段(F2)と
を備えることを特徴とする、請求項4〜45のいずれか一項に記載の装置。
【請求項47】
前記チャンバに断熱コンディションを提供するための手段(128;628)を備えることを特徴とする、請求項4〜46のいずれか一項に記載の装置。
【請求項48】
酸素量を制御するための手段を備えることを特徴とする、請求項1〜47のいずれか一項に記載の装置。
【請求項49】
充填相中に排出される窒素を処理するための手段を備えることを特徴とする、請求項1〜48のいずれか一項に記載の装置。
【請求項50】
前記可逆的酸素固定剤がサルコミンおよび/またはフルオミンおよび/またはエトミンであることを特徴とする、請求項1〜49のいずれか一項に記載の装置。
【請求項51】
酸素節約装置を備えることを特徴とする、請求項1〜50のいずれか一項に記載の装置。
【請求項52】
医療用装置であることを特徴とする、請求項1〜51のいずれか一項に記載の装置。
【請求項53】
前記可逆的酸素固定剤がポルフィリンまたはコバルトシッフベースであることを特徴とする、請求項1〜52のいずれか一項に記載の装置。
【請求項54】
請求項1〜53のいずれか一項に記載の装置の患者の治療への使用。
【請求項55】
充填相中に、第1コンディション下で、可逆的酸素固定剤/吸着剤(S/F)によって構成されている固定剤(S/F)すなわち酸素選択性材料に空気(A)を接触させて、空気の酸素を前記固定剤に吸着させることによって、前記空気(A)から酸素を抽出するとともに、空気の窒素を除去するステップと、
排出相中に、前記コンディションを第2コンディションに制御下で変化させることによって、吸着された酸素を放出するステップと
を含むことを特徴とする、酸素を生成するための方法。
【請求項56】
前記第1コンディションが高圧、低温、高圧と低温との組合せ、または大気圧および室温のいずれか1つを含み、前記第1コンディションから前記第2コンディションへの前記制御下の変化が減圧、加熱、または減圧と加圧との組合せのいずれか1つを含み、前記第2コンディションが減圧手段および/または加熱手段を含むことを前提として、前記第1コンディションが通常の圧力すなわち大気圧、および通常の温度すなわち略室温を含み、かつ前記第1コンディションが加圧手段および/または冷却手段を含むことを前提として、前記第2コンディションが通常の圧力および温度を含むことを特徴とする、請求項55に記載の方法。
【請求項57】
前記固定剤(S/F)がサルコミンおよび/またはフルオミンおよび/またはエトミンであることを特徴とする、請求項55または56に記載の方法。
【請求項58】
個別医療目的に適用可能であることを特徴とする、請求項55〜57のいずれか一項に記載の方法。

【図1a】
image rotate

【図1b】
image rotate

【図1c】
image rotate

【図1d】
image rotate

【図2】
image rotate

【図3a】
image rotate

【図3b】
image rotate

【図4a】
image rotate

【図4b】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7a】
image rotate

【図7b】
image rotate

【図7c】
image rotate

【図7d】
image rotate

【図8a】
image rotate

【図8b】
image rotate


【公表番号】特表2009−512614(P2009−512614A)
【公表日】平成21年3月26日(2009.3.26)
【国際特許分類】
【出願番号】特願2008−536550(P2008−536550)
【出願日】平成18年10月17日(2006.10.17)
【国際出願番号】PCT/SE2006/050406
【国際公開番号】WO2007/046765
【国際公開日】平成19年4月26日(2007.4.26)
【出願人】(508109988)インハロックス テクノロジー アーベー (1)
【Fターム(参考)】