説明

鉄筋コンクリート構造物の被り厚さ管理方法

【課題】鉄筋コンクリート構造物の被り厚さを広範囲に亘り定量的に把握して管理する方法を提供する。
【解決手段】コンクリート4の打設前に型枠5と対向する鉄筋2の列3の型枠対向面上に所定面積Sの検出電極10を該鉄筋列3から絶縁し且つ該鉄筋列3のコンクリート付着面積を実質的に維持しつつ固着し、型枠5の鉄筋対向面又は反対側面上の検出電極対向部位に前記所定面積Sの対向電極14を貼付する。コンクリート4の打設時に検出電極10及び対向電極14の間の静電容量Cを測定することにより、鉄筋列3に対するコンクリート4の被り厚さdを管理する。好ましくは、検出電極10を鉄筋列3の型枠対向面上の水平及び/又は垂直方向の全長に亘り固着する。検出電極10をコンクリート4中に埋め込み、構造物完成後にコンクリート4中の検出電極10とコンクリート4表面に貼付した対向電極14との間の静電容量Cを測定すれば、現実のコンクリート厚さdも検査できる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は鉄筋コンクリート構造物の被り厚さ管理方法に関し、とくに施工管理の一環として鉄筋に対するコンクリートの被り厚さを管理する方法に関する。
【背景技術】
【0002】
鉄筋コンクリート構造物は優れた耐久性を有し、住宅や橋梁・トンネル等の社会資本の主要な構成要素となっている。但し、鉄筋コンクリート構造は材料・設計・施工・維持管理・外的環境の影響等を受けて品質に差を生じるため、耐久性を確保するためには適切な材料選定・設計・施工・維持管理が前提となる。とくに、鉄筋コンクリート構造物の鉄筋を被覆するコンクリートの厚さ(以下、被り厚さということがある。)は、鉄筋の腐蝕防止ひいては構造物の耐久性を確保するために極めて重要な要素であり、構造部位毎に適切な被り厚さの基準が定められている。このため鉄筋コンクリート構造物では、基準以上の被り厚さが確保されているか否かを確認する施工管理と、完成後に所要の被り厚さが存在しているか否かを検査する維持管理とが必要となる。
【0003】
従来、鉄筋コンクリート構造物の施工時における被り厚さは、メジャー等による鉄筋と型枠との間隔の測定や、スペーサと呼ばれる部材の鉄筋と型枠との間への配置等によって管理する方法が一般的である(例えば非特許文献1)。また、構造物の完成後においては、レーダ探査法・電磁誘導法・X線透過法等の非破壊検査システムにより被り厚さを検査して維持管理する方法が試みられている(非特許文献2)。レーダ探査法とは、コンクリート表面からコンクリート内部へ向け放射した電磁波の鉄筋からの反射波によりコンクリート表面から鉄筋まで深さ(被り厚さ)を測定する方法である。また電磁誘導法とは、励磁コイルと検出コイルを用い検出コイルに流れる渦電流により鉄筋までの距離(被り厚さ)を調査する方法である。
【非特許文献1】嶋本恒雄ほか「建築学小事典」理工学社、1999年3月25日第4版第5刷、10章25頁
【非特許文献2】魚本健人「コンクリ−ト構造物の非破壊検査」ダム技術No.158、1999年11月
【特許文献1】特願2003−214841公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
しかし、従来の施工時における被り厚さの管理方法は、被り厚さを広範囲に亘り定量的にチェックすることが難しい問題点がある。例えばスペーサを用いて被り厚さを管理する方法ではスペーサの位置ズレ等が発生することがあり、施工担当者が目視でスペーサの有無を確認するだけでは信頼性の高い被り厚さの施工管理は困難である。また、鉄筋と型枠との間にメジャー等を当てて被り厚さを定量的に把握する方法は手間がかかるので、限られた工期内に広範囲に亘る被り厚さを定量的に把握することは実際上困難である。
【0005】
他方、従来のレーダ探査法・電磁誘導法・X線透過法等の非破壊検査システムは、構造物完成後における被り厚さの定量的な把握が可能であるものの、いちどきには比較的狭い範囲の被り厚さしか把握することができず、また検出精度が必ずしも高くないので、施工段階において広い範囲の被り厚さを把握するには適していない。
【0006】
最近では、鉄筋コンクリート構造物の要求性能について完成時における確認だけでなく施工中における検査(工事検査)の必要性が高まっており、施工中の被り厚さを記録・保存することが施工者に求められてきている。また、完成後に被り厚さ不足が判明した場合は補修に莫大なコストを要するので、施工中に被り厚さが定量的に管理できれば合理的且つ経済的である。鉄筋コンクリート構造物の耐久性への社会要求性能の更なる高まりが今後予想されることから、施工中に広範囲の被り厚さを定量的に且つ容易に把握できる施工管理技術の確立が望まれている。
【0007】
そこで本発明の目的は、鉄筋コンクリート構造物の被り厚さを広範囲に亘り定量的に把握して管理する方法を提供することにする。
【課題を解決するための手段】
【0008】
図1の実施例を参照するに、本発明の鉄筋コンクリート構造物の被り厚さ管理方法は、鉄筋コンクリート構造物1の鉄筋2に対するコンクリート4の被り厚さdを管理する方法において、コンクリート4の打設前に型枠5と対向する鉄筋2の列3の型枠対向面上に所定面積Sの検出電極10を該鉄筋列3から絶縁し且つ該鉄筋列3のコンクリート付着面積を実質的に維持しつつ固着し、型枠5の鉄筋対向面又は反対側面上の検出電極対向部位に前記所定面積Sの対向電極14を貼付し、コンクリート4の打設時に検出電極10及び対向電極14の間の静電容量Cを測定することにより鉄筋列3に対するコンクリート4の被り厚さdを管理してなるものである。
【0009】
好ましくは、検出電極10を鉄筋列3の型枠対向面上の水平及び/又は垂直方向の全長に亘り固着する。更に好ましくは、検出電極10をコンクリート4中に埋め込み、構造物完成後に検出電極10と対向するコンクリート4の表面上の部位に対向電極14を貼付し、コンクリート4中の検出電極10とコンクリート4表面の対向電極14との間の静電容量Cを測定することにより鉄筋列3に対する現実のコンクリート厚さdを検査する。
【発明の効果】
【0010】
本発明による鉄筋コンクリート構造物の被り厚さ管理方法及び装置は、コンクリート打設前に型枠と対向する鉄筋列の型枠対向面上に所定面積の検出電極を鉄筋列から絶縁し且つ鉄筋列のコンクリート付着面積を維持しつつ固着し、型枠上の検出電極対向部位に所定面積の対向電極を貼付し、コンクリート打設時に検出電極と対向電極との間の静電容量を測定することにより鉄筋列に対するコンクリートの被り厚さを管理するので、次の有利な効果を奏する。
【0011】
(イ)被り厚さのチェックを広範囲にわたり容易に行い且つ被り厚さを定量的に検出できるので、現場の省力化及び施工品質の信頼性向上に貢献できる。
(ロ)鉄筋・型枠工事において被り厚さを定量的に確認して被り厚さ不足の危険に対処できるので、完成後の被り厚さ検査に比し被り厚さ不足の補修の低コスト化が図れる。
(ハ)従来面倒であった施工中における被り厚さを定量的に記録・保存する手段としての利用が期待できる。
(ニ)コンクリート打設前の確認だけでなく、コンクリート打設中の充填確認に利用できる。
(ホ)検出電極をコンクリート中に埋め込むので、構造物完成後における被り厚さ検査等に利用できる。
【発明を実施するための最良の形態】
【0012】
図1は、この場合柱躯体である鉄筋コンクリート構造物1の施工管理に本発明を適用した実施例を示す。同図の鉄筋コンクリート構造物1は、柱躯体の主筋及び帯筋となる鉄筋2を配筋すると共にその鉄筋2を取り囲む形状で型枠5を組み立て、型枠5内にコンクリート4を打ち込んで養生し、コンクリート硬化後に型枠5を取り外すことにより構築する。本発明は、鉄筋2に対するコンクリート4の被り厚さを、型枠5と対向する鉄筋2の列3と型枠5との間の間隔dを定量的に把握することにより管理する。
【0013】
鉄筋列3と型枠5との間隔dは、鉄筋列3上に固着した検出電極10と型枠5に貼り付けた対向電極14との間の静電容量Cを測定することにより把握する。検出電極10は所定の面積Sとし、例えば図1のように鉄筋列3の型枠対向面上に水平方向の全長に亘り、鉄筋列3から電気的に絶縁して固着する。検出電極10を筋列3から絶縁する理由は、検出電極10の面積S及び測定対象の距離dを限定するためである。例えば図1に示すように、所定幅の絶縁層11と導電層(例えば亜鉛メッキ、銅、導電性不織布等)12とを重ね合わせた帯状の積層テープを検出電極10とし、その絶縁層11を鉄筋列3の型枠対向面上に密着させて取り付けることにより検出電極10と鉄筋列3から絶縁する。この場合、積層テープの長さにより検出電極10の面積Sを定めることができる。但し、検出電極10は鉄筋列3から絶縁して固着すれば足り積層テープに限定されない。
【0014】
鉄筋コンクリート構造では鉄筋2とコンクリート4との一体化の確保が必須条件であり、検出電極10は鉄筋列3とコンクリート4との一体化を阻害しないように固着する必要がある。鉄筋2とコンクリート4との一体化は鉄筋表面とコンクリートとの付着作用により得られる。このため検出電極10は、鉄筋列3の各鉄筋2とコンクリート4との付着面積が実質的に維持されるように固着する。例えば検出電極10を積層テープとした図1の実施例では、積層テープが鉄筋2の周方向に巻きつかないように注意しながら、積層テープを鉄筋2との接着面が線状となるように鉄筋列3に固着する。
【0015】
対向電極14は、例えば型枠工事の際に、検出電極10と対向する型枠5上の部位に貼り付ける。対向電極14は型枠5の鉄筋対向面に貼付する方が型枠5の厚さの影響がないため若干精度の向上が望めるが、例えば図2に示すように型枠5の鉄筋対向面と反対側面に貼り付けてもよい。対向電極14の面積Sを検出電極10の面積Sと同一とすることにより、鉄筋群3の型枠対向面と型枠5との間に平行電極対を形成する。
【0016】
鉄筋・型枠工事が終了しコンクリート4を打設する前に、検出電極10と対向電極14との間に、両電極10、14間の静電容量Cを測定して両電極10、14間の間隔dを検出する検出手段16を接続する。図1の検出手段16は、両電極10、14間の静電容量Cを測定する静電容量測定手段18と記憶手段17とを有する。静電容量測定手段18の一例は、数百ボルト程度の高周波交流電圧を印加して両電極10、14間のインピーダンス変化から静電容量Cを測定する従来技術に属する静電容量計である。
【0017】
検出手段16の測定原理を示す図4を参照するに、検出電極10と対向電極14との間の静電容量Cは(1)式で表わすことができる。(1)式においてSは両電極10、14の面積、dは両電極10、14間の距離、εは両電極10、14間の誘電率(コンクリート打設前は空気の誘電率)を表わす。例えば、検出手段16の記憶手段17に空気の誘電率ε及び両電極10、14の面積Sを記憶しておけば、両電極10、14間の静電容量Cの測定値と(1)式とから両電極10、14間の距離dを算出できる。図1の検出手段16の一例は、静電容量Cの測定値と(1)式とから距離dを算出するプログラム内蔵のコンピュータである。
【0018】
C=ε・S/d ………………………………………………………………………(1)
C=2πε/log(b/a) ……………………………………………………(2)
【0019】
(1)式は距離dに対して面積Sが十分大きい場合に成立するが、一般に鉄筋2に対するコンクリート4の被り厚さdは30〜70mm程度であるのに対し、本発明では検出電極10及び対向電極14を鉄筋列3の型枠対向面の水平方向全長に亘る5〜10m以上とすることができるので、(1)式に基づき距離dを有効に算出できる。算出した距離dにより、コンクリート打設前の被り厚さdを定量的に把握することができ、例えば検出手段16の記憶手段17に記憶した被り厚さdの規定値と比較することにより被り厚さdの不足等を検出する。なお、対向電極14を鉄筋対向面と反対側面に貼付した場合は、型枠5の誘電率を考慮して検出電極10と対向電極14との間の距離を算出し、その距離dから型枠5の厚さを減算することにより被り厚さdを算出する。
【0020】
本発明では、検出電極10及び対向電極14を鉄筋列3の型枠対向面上に水平方向の全長に亘り設けることができるので、いちどきに広い範囲の被り厚さdを確認することが可能である。例えば鉄筋列3の水平方向の一部分にゆがみ等が生じている場合でも、検出手段16による被り厚さdに変化を生じることから、そのゆがみを検出することができる。また図1のように鉄筋列3の異なる高さ部位に複数の電極対10、14を設けておけば、異なる高さ部位における鉄筋列3のゆがみを検出できる。
【0021】
検出電極10及び対向電極14は水平方向に限らず、例えば図2に示すように鉄筋列3の型枠対向面の垂直方向全長に亘して設けてもよい。図2は柱躯体の鉄筋群の四隅に垂直方向全長に亘る電極対10、14を設けた例であり、例えば検出手段16を四隅の電極対10、14に順次接続することにより、四隅における被り厚さdの不足等を確認できる。図1に示す水平方向の電極対10、14の配置と図2に示す垂直方向の電極対10、14の配置とを組み合わせることにより、鉄筋列3の型枠対向面上におけるゆがみの位置を検出することも可能である。但し、検出電極10及び対向電極14の配置は(1)式が成立する範囲内で任意に選択可能であり、図1及び2の実施例に限定されない。
【0022】
図3は、鉄筋2の群(鉄筋籠)の周囲における被り厚さdを計測する本発明の他の実施例を示す。この場合は、鉄筋群(鉄筋籠)の周縁の型枠対向面上に検出電極10を周縁に沿って環状に固着し、型枠5上の対向部位に対向電極14を環状に貼付することにより、鉄筋群の周囲における被り厚さdを(1)式により検出することができる。また、図3に示すように断面矩形の鉄筋籠の中心点Oから検出電極10(鉄筋2)までを距離aとし、中心点Oから対向電極14(型枠5)の対抗面までを距離bとした場合は、検出電極10と対向電極14との間の静電容量Cを(2)式で近似することができ、両電極10、14間の静電容量Cの測定値と(2)式とから両電極10、14間の距離d(=b−a)を算出してもよい。
【0023】
こうして本発明の目的である「鉄筋コンクリート構造物の広範囲に亘る被り厚さを定量的に把握して管理する方法」の提供が達成できる。
【0024】
本発明は、コンクリート4を打設する前における被り厚さdの管理だけでなく、コンクリート4の打設時におけるコンクリート充填確認にも利用できる。例えば、打設するコンクリート4の誘電率εを検出手段16の記憶装置17に記憶しておけば、コンクリート4の打設時に静電容量Cの測定値と(1)式(又は(2)式)とから検出電極10及び対向電極14間のコンクリート4の充填厚さdを算出できる。例えば算出した充填厚さdとコンクリート打設前に確認した被り厚さdとの相異に基づき、検出手段16により両電極10、14間におけるコンクリート4の未充填を検出する。コンクリート未充填が検出された場合は、未充填がなくなるまでバイブレーションを施すことによりコンクリート未充填を防止する。
【0025】
また、本発明では検出電極10をコンクリート4中に埋め込むので、検出電極10に接続したケーブル等をコンクリート表面に導き出しておけば、構造物完成後にコンクリート4の被り厚さの検査に利用することも可能である。すなわち、完成後のコンクリート表面上の検出電極10と対向する部位に対向電極14を貼付し、コンクリート4の誘電率εを検出手段16の記憶装置17に記憶し、検出電極10に接続されたケーブルと対向電極14とを検出手段16に接続して両電極10、14間の静電容量Cを測定する。静電容量Cの測定値と(1)式(又は(2)式)とから、鉄筋列3に対する現実のコンクリート4の被り厚さdを検査することができる。この検査方法によれば、従来の非破壊検査システムは困難であった広い範囲の被り厚さdを容易に把握することが可能である。
【実施例1】
【0026】
以上、検出電極10及び対向電極14間の静電容量Cに基づく被り厚さdの管理方法について説明したが、実際の鉄筋コンクリート構造物1の建築現場では周囲の鉄筋2や重機等からの外乱の影響があり、(1)式(又は(2)式)による被り厚さdの測定値に誤差が生じ得る。図5は、外乱の影響を避けるため、鉄筋列3の型枠対向面上に検出電極10と隣接させて対照電極対20を固着した本発明の実施例を示す。なお、同図(B)では、検出電極10を上述した絶縁層11と導電層12とを重ね合わせた積層テープとしている。
【0027】
図示例の対象電極対20は、同図(C)に示すように、所定厚さd2及び誘電率ε2の絶縁層21を挟持した所定面積S2の一対の電極20a、20bと、該電極対20a、20bを鉄筋列3の型枠対向面上に該鉄筋列3から絶縁して固着する絶縁固着層23とを有する。対照電極対20の絶縁層21の厚さは例えば1〜10mm程度とすることができる。例えば、同図(B)に示す絶縁層11と導電層12とを有する積層テープを二重に重ね合わせて同図(C)に示す対照電極対20としてもよい。
【0028】
対照電極対20を設けた図5の実施例に適用する被り厚さdの検出手段16の一例を図6に示す。同図の検出手段16は、検出電極10及び対向電極14間の静電容量C1を測定する静電容量測定手段18と、電極対20a、20b間の静電容量C2を測定する静電容量測定手段25と、静電容量C1の測定値と静電容量C2の測定値との比を算出する比較手段26とを有する。静電容量測定手段18、25の一例は、上述した静電容量計である。
【0029】
外乱の影響を考慮した場合、面積S1、間隔d1の検出電極10及び対向電極14の間の誘電率をε1とした場合、両電極10、14間の静電容量C1は(11)式で表わすことができる。(11)式のαは、外乱の影響を示すパラメタである。他方、対照電極20a、20bを面積S2、対照電極20a、20bが挟持する絶縁層21を厚さd2、誘電率ε2とした場合、対象電極対20a、20b間の静電容量C2は(12)式で表わすことができる。(11)式及び(12)式はパラメタαを含むので、外乱の影響により測定値C1、C2に誤差が生じ得る。これに対し(13)式に示す静電容量C1、C2の比(=C1/C2)は、パラメタαを含まないので外乱の影響を除くことができる。
【0030】
C1=α・ε1・S1/d1 ………………………………………………………(11)
C2=α・ε2・S2/d2 ………………………………………………………(12)
C1/C2=(ε1/ε2)・(S1/S2)・(d2/d1) ……………(13)
δ=20log(C1/C2) ……………………………………………………(14)
【0031】
本発明者は、実際の鉄筋コンクリート構造物の工事現場において、被り厚さd=25、30、35、40cmの間隔で検出電極10と対向電極14とを設けると共に、検出電極10に隣接して対象電極対20を設け、電極10、14間の静電容量C1と対照電極対20a、20b間の静電容量C2との比を確認する実験を行った。本実験では、幅100mm及び長さ5mの亜鉛メッキ製の積層テープを検出電極10として用い、その積層テープを二重に重ね合わせたものを対象電極対20とした。また、静電容量C1、C2の比を(14)式によりδとして算出した。実験結果を表1及び図7のグラフに示す。図7のグラフから分かるように、静電容量C1、C2の比δは被り厚さdに極めてよく比例していることが確認できた。
【0032】
例えば、図6の検出手段16の記憶手段17に表1又は図7のグラフに示した被り厚さdと静電容量C1、C2の比δとの関係を記憶しておけば、検出手段16の比較手段26で算出した静電容量C1、C2の測定値の比と前記関係とから、検出手段16により外乱の影響を受けずに被り厚さdを高精度に求めることが可能となる。
【0033】
【表1】

【図面の簡単な説明】
【0034】
【図1】本発明の一実施例の説明図である。
【図2】本発明の他の一実施例の説明図である。
【図3】本発明の更に他の一実施例の説明図である。
【図4】本発明の原理を示す説明図である。
【図5】本発明の更に他の実施例の説明図である。
【図6】図5の実施例の原理を示す説明図である。
【図7】図5の実施例の実験結果の一例を示すグラフである。
【符号の説明】
【0035】
1…鉄筋コンクリート構造物
2…鉄筋 3…鉄筋列
4…コンクリート 5…型枠
7…鉄筋・型枠間の空隙
10…検出電極 11…絶縁層
12…導電層 14…対向電極
16…検出手段 17…記憶手段
18…静電容量測定手段
20…対照電極対 21a、21b…対象電極
22…絶縁層 23…絶縁固着手段
25…静電容量測定手段 26…比較手段

【特許請求の範囲】
【請求項1】
鉄筋コンクリート構造物の鉄筋に対するコンクリートの被り厚さを管理する方法において、コンクリート打設前に型枠と対向する鉄筋列の型枠対向面上に所定面積の検出電極を該鉄筋列から絶縁し且つ該鉄筋列のコンクリート付着面積を実質的に維持しつつ固着し、型枠の鉄筋対向面又は反対側面上の検出電極対向部位に前記所定面積の対向電極を貼付し、コンクリート打設時に前記検出及び対向電極間の静電容量を測定することにより前記鉄筋列に対するコンクリートの被り厚さを管理してなる鉄筋コンクリート構造物の被り厚さ管理方法。
【請求項2】
請求項1の管理方法において、前記検出電極を前記鉄筋列の型枠対向面上の水平及び/又は垂直方向の全長に亘り固着してなる鉄筋コンクリート構造物の被り厚さ管理方法。
【請求項3】
請求項1又は2の管理方法において、前記検出電極をコンクリート中に埋め込み、構造物完成後に検出電極と対向するコンクリート表面上の部位に対向電極を貼付し、前記コンクリート中の検出電極とコンクリート表面の対向電極との間の静電容量を測定することにより前記鉄筋列に対する現実のコンクリート厚さを検査してなる鉄筋コンクリート構造物の被り厚さ管理方法。
【請求項4】
請求項1から3の何れかの管理方法において、前記検出電極を、絶縁層及び導電層を重ね合わせた所定幅の積層テープとしてなる鉄筋コンクリート構造物の被り厚さ管理方法。
【請求項5】
請求項1から4の何れかの管理方法において、前記鉄筋列の型枠対向面上に検出電極と隣接させて所定絶縁層を挟持した所定面積の対照電極対を前記鉄筋列から絶縁して固着し、コンクリート打設時に前記検出及び対向電極間の静電容量の測定値と前記対照電極対間の静電容量の測定値との比に基づき前記コンクリートの被り厚さを管理してなる鉄筋コンクリート構造物の被り厚さ管理方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate