説明

防油堤(土盛堤等)貫通部等の埋設配管の検査方法

【課題】安価で柔軟性に富み、配管が貫通する防油堤などの被貫通体を破壊することなく、配管の貫通部が数m以上であっても貫通部全長にわたって検査できる埋設配管の検査方法を提供する。
【解決手段】配管1の検査対象部分は、配管1における被貫通体3の内部に位置する貫通部1aおよび前記被貫通体の前後近辺である。(A被貫通体3の外部において配管1に強磁性体金属箔13を巻き、その上にコイル7を巻き、(B)その後、コイル7に交流電流を流すことで、磁歪効果による検査用ガイド波を配管1に発生させてこの検査用ガイド波を配管1の長手方向に伝播させ、(C)検査用ガイド波が貫通部1aにおいて反射する反射ガイド波を検出し、該反射ガイド波の強度に基づいて、貫通部1aの健全性を評価する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、防油堤(土盛堤)などの被貫通体の一方側から他方側へ貫通する、防油堤(土盛堤等)貫通部等の埋設配管の検査方法に関する。より詳しくは、本発明は、配管の検査対象部分を、配管における被貫通体の内部に位置する貫通部とする配管の検査方法に関する。特に、本発明は、配管に強磁性体金属箔を巻き、その上にコイルを巻き、そのコイルに交流電流を流すことで、磁歪効果により発生するガイド波を用いた配管の検査方法に関する。
【背景技術】
【0002】
防油堤(土盛堤)は、石油化学プラントなどにおいては、石油タンクを囲むように築かれる。通常、防油堤には、送油管などの配管が貫通している。このような配管は、防油堤に埋設されて防油堤の内部に位置する貫通部を有している。
【0003】
前記貫通部の腐食状況を検査する方法として、次の2つの方法がある。
【0004】
第1の方法は、防油堤を掘削した上で、貫通部の外面腐食状況を目視検査するなどして、貫通部における腐食状況を検査する方法である。
【0005】
第2の方法は、圧電素子で超音波を発生させ、この超音波を配管に沿って配管金属内を伝播させることで、貫通部における腐食状況を検査する方法である。この方法では、防油堤を破壊することなく、検査を実施できる。このような超音波を利用した配管の非破壊検査方法は、例えば下記の特許文献1に記載されている。
【0006】
なお、本発明の技術分野における先行技術文献として、下記の特許文献2、3および4がある。
【特許文献1】特開2004−301540号公報
【特許文献2】米国特許第6,429,650号
【特許文献3】米国特許第6,917,196号
【特許文献4】米国特許第6,968,727号
【発明の開示】
【発明が解決しようとする課題】
【0007】
しかし、第1の方法において掘削工事を行う場合、貫通部が防油堤内に埋設されているため、重機等の使用が難しく、手掘り作業となるため、手間と費用が多くなる。また、防油堤の内側にある石油タンクや配管には、原油や重油などの可燃性の液体が貯蔵され、もしくは、流れているため、掘削工事等は消防法などにより厳しく規制される。
【0008】
また、第2の方法では、圧電素子で超音波を発生させる装置と、配管を伝播した超音波を検出するセンサーアセンブリが大掛かりになる。例えば.センサーアセンブリは超音波探触子を配管の円周上に多数配置したものであるので、センサーアセンブリが大掛かりになる。そのため、第2の方法では、費用が高くなる。
しかも、検査する配管の直径に応じて各種のセンサーアセンブリを準備する必要があるので、第2の方法は柔軟性に欠ける。
また、圧電素子で発生させた超音波は、その周波数が比較的高いため(100kHz付近)、配管の内部および外部における配管への付着物や、配管の内部環境および外部環境などによって、検査用ガイド波が激しく減衰する可能性があり、数m以上の幅を有する防油堤の場合、超音波が配管の貫通部全長を十分な強度で伝播できない場合があった。即ち、貫通部を伝播した超音波を検出しても、その信号の高さが十分ではなく(信号対雑音比=S/N比が低い)、腐食の検出および評価を貫通部全長にわたって行うことが困難であった。
【0009】
そこで、本発明の目的は、安価で柔軟性に富み、配管が貫通する防油堤などの被貫通体を破壊することなく、配管の貫通部が数m以上であっても貫通部全長にわたって検査できる配管の検査方法を提供することにある。
【課題を解決するための手段】
【0010】
上記目的を達成するため、本発明によると、所定の被貫通体の一方側から他方側へ貫通する、防油堤(土盛堤等)貫通部等の埋設配管の検査方法であって、
前記配管の検査対象部分は、前記配管における前記被貫通体の内部に位置する貫通部であり、
(A)記被貫通体の外部において前記配管に強磁性体金属箔を巻き、その上にコイルを巻き、
(B)その後、前記コイルに交流電流を流すことで、磁歪効果による検査用ガイド波を前記配管に発生させてこの検査用ガイド波を前記配管の長手方向に伝播させ、
(C)前記検査用ガイド波が前記貫通部において反射する反射ガイド波を検出し、該反射ガイド波の強度に基づいて、前記貫通部の健全性を評価する、ことを特徴とする埋設配管の検査方法が提供される。
【0011】
上述した本発明の方法では、前記コイルに交流電流を流すことで、磁歪効果による検査用ガイド波を前記配管に発生させる。このように発生した検査用ガイド波は、配管を捩じるように配管の長手方向に伝播する。従って、配管の内部および外部における配管への付着物や、配管の内部環境および外部環境などによって、検査用ガイド波が減衰しにくい。また、配管の貫通部が数m以上であっても、この貫通部の全長にわたって検査用ガイド波が伝播し、かつ、検査用ガイド波の反射ガイド波うち貫通部におけるいずれの位置からの反射ガイド波でも被貫通体の外部おいて十分高いS/N比で検出できる。従って、貫通部の健全性をその全長にわたって確実に評価することができる。
また、上記方法では、配管に強磁性体金属箔およびコイルを巻いてガイド波を発生させるので、ガイド波を発生させる装置が安価でかつ柔軟性に富む。なお、ガイド波を検出するセンサも配管に巻いた強磁性体金属箔およびその上に巻きつけたコイルを使用できる。
以上のように、上記本発明の方法では、配管が貫通する防油堤などの被貫通体を破壊することなく、安価で柔軟性に富み、配管の貫通部が数m以上であっても貫通部全長にわたって検査できる。
【0012】
本発明の好ましい実施形態によると、(a)前記(B)のステップを開始する前に、前記被貫通体の外部において、前記被貫通体の一方側において前記配管に強磁性体金属箔を巻き、その上にコイルを巻き、そのコイルに所定の周波数の交流電流を流すことで、透過強度確認用ガイド波を磁歪効果により発生させてこの透過強度確認用ガイド波を前記他方側へ前記配管の長手方向に伝播させ、
(b)次いで、該透過強度確認用ガイド波を前記被貫通体の前記他方側にて検出し、
(c)検出した前記透過強度確認用ガイド波の強度が所定値以上であるかを判断し、
(d)検出した前記透過強度確認用ガイド波の強度が所定値以上である場合には、前記(B)のステップを開始し、該所定値より小さい場合には、前記周波数を変更して、前記(a),(b)、(c)のステップを再び行う。
【0013】
上記方法では、前記被貫通体の一方側から透過強度確認用ガイド波を配管に沿って伝播させ、被貫通体の他方側にて透過強度確認用ガイド波を検出することで、検出した前記透過強度確認用ガイド波の強度が所定値以上であるかを判断する。所定値より小さい場合には、各種設定値を変更して、再び同じことを行う。これにより、検出するガイド波の感度・強度が十分高くなるように、交流電流の適正周波数を設定できる。
【0014】
本発明の好ましい実施形態によると、(e)前記配管に巻いた強磁性体金属箔上に巻いたコイルに交流電流を流すことで、磁歪効果によるガイド波を前記配管に発生させてこのガイド波を前記配管の長手方向に伝播させ、
(f)前記(e)で発生したガイド波が前記配管における既知の溶接部で反射する反射ガイド波を検出し、該反射ガイド波の強度と前記溶接部が前記配管の表面から突出している突出高さとの関係を求め、
前記(C)のステップでは、前記関係と前記検査用反射ガイド波の強度とに基づいて、前記貫通部の健全性を評価する。
【0015】
上記方法では、前記ガイド波が前記配管における既知の溶接部で反射する反射ガイド波を検出し、該反射ガイド波の強度と前記溶接部の突出高さとの関係を求める。この関係を評価基準にして、検査用反射ガイド波の強度から前記貫通部の健全性を評価することができる。例えば、前記評価基準と検査用反射ガイド波の強度とから、貫通部における腐食の大きさ・深さを得ることができる。
【0016】
本発明の別の実施形態によると、(e)前記配管の表面に該表面から突出する金属製突出物を取り付け、前記配管に強磁性体金属箔を巻き、その上にコイルを巻き、その巻いたコイルに交流電流を流すことで、磁歪効果によるガイド波を前記配管に発生させてこのガイド波を前記配管の長手方向に伝播させ、
(f)前記ガイド波が前記配管における前記金属製突出物から反射する反射ガイド波を検出し、該反射ガイド波の強度と前記金属製突出物が前記配管の表面から突出している突出高さとの関係を求め、
前記(C)のステップでは、前記関係と前記検査用反射ガイド波の強度とに基づいて、前記貫通部の健全性を評価する。
【0017】
上記方法では、例えば配管に適切な溶接部がない場合には、配管表面に金属製突出物を取り付け、前記ガイド波が金属製突出物で反射する反射ガイド波を検出し、該反射ガイド波の強度と前記金属製突出物の突出高さとの関係を求める。この関係を評価基準にして、検査用反射ガイド波の強度から前記貫通部の健全性を評価することができる。例えば、前記評価基準と検査用反射ガイド波の強度とから、貫通部における腐食の大きさ・深さを得ることができる。
【発明の効果】
【0018】
上述した本発明による配管の検査方法は、安価で柔軟性に富み、配管が貫通する防油堤などの被貫通体を破壊することなく、配管の貫通部が数m以上であっても貫通部全長にわたって検査できる。
【発明を実施するための最良の形態】
【0019】
本発明を実施するための最良の実施形態を図面に基づいて説明する。なお、各図において共通する部分には同一の符号を付し、重複した説明を省略する。
【0020】
図1は、本発明の実施形態による配管の検査方法の対象となる防油堤を貫通する配管1を示している。図1のように、配管1は、防油堤3の一方側から他方側へ貫通している。配管1の検査対象部分は、配管1における防油堤3の内部に位置する貫通部1aである。また、配管1の検査対象部分は、配管1における防油堤3の前後近辺を含んでよい。なお、図1において、符号5は配管1のフランジを示す。
【0021】
図2は、本実施形態による配管の検査方法を示すフローチャートである。
ステップS1において、防油堤3の外部において金属製の配管1に強磁性体金属箔13を巻き付け、その上にコイル7を巻く。本実施形態では、図1に示すように、配管1を1周するように強磁性材料の金属箔13を配管1の外周面に巻き、この金属箔13の上から配管1を1周するように配管1にコイル7を巻く。
ステップS2において、コイル7に交流電流を流すことで、磁歪効果による検査用ガイド波を配管1に発生させてこの検査用ガイド波を配管1の長手方向に伝播させる。即ち、コイル7に流れる交流電流に連動して、強磁性体の金属箔13が振動(伸展、収縮)する磁歪効果により、検査用ガイド波が発生し、このガイド波がTモードガイド波と呼ばれる、捩じるように配管の長手方向に伝播する波として配管1を伝播する。
ステップS3において、前記検査用ガイド波が貫通部1aにおいて反射する反射ガイド波を検出し、該反射ガイド波の強度に基づいて、貫通部1aの健全性を評価する。なお、検査装置15が、コイル7を介して反射ガイド波を検出する。検査装置15は、コイル7に接続されている。
【0022】
図3は、図2の検査を実施する前に行うガイド波の透過強度確認試験を示すフローチャートである。この透過強度確認試験は、次のように、防油堤3の一方側から配管1を伝播するガイド波を発信し、このガイド波を防油堤3の他方側で受信する透過法あるいはピッチキャッチ法と称する方法で行われる。
ステップS11において、ステップS2を開始する前に、図4に示すように、防油堤3の外部において、防油堤3の一方側に強磁性体金属箔13を巻き付け、その上にコイル7を巻き、そのコイル7に所定の周波数の交流電流を流すことで、透過強度確認用ガイド波を磁歪効果により発生させてこの透過強度確認用ガイド波を前記他方側へ配管1の長手方向に伝播させる。ステップS11で使用するコイル7および強磁性体金属箔13は、前記ステップS2で使用するコイル7および強磁性体金属箔13と同じあるのが好ましいが、必ずしも前記ステップS2で使用するコイル7および強磁性体金属箔13と同じでなくてもよい。
次いで、ステップS12において、前記透過強度確認用ガイド波を防油堤3の他方側にて検出する。この検出を行うために、図4に示すように、防油堤3の他方側に別のコイル9を配管1の外周面に予め巻いておく。コイル9は、配管1に巻き付けた強磁性体金属箔13の上から配管1に巻かれる。このコイル9も検査装置15に接続されている。この構成により、検査装置15は、コイル7から発生して配管1を伝播し貫通部1aを通過してきた透過強度確認用ガイド波をコイル9を介してその強度を検出する。なお、図4のコイル9は、配管1の外周面に巻き付けられた強磁性材料の金属箔13の上から配管1に巻かれている。
ステップS13において、検査装置15が検出した前記透過強度確認用ガイド波の強度が所定値以上であるかを判断する。
ステップS14において、検出した前記透過強度確認用ガイド波の強度が所定値以上である場合には、前記ステップS2のステップを開始し、該所定値より小さい場合には、各種設定(例えば、前記周波数、交流電流等)を変更して、ステップS11、S12、S13、S14をこの順で再び行う。
【0023】
図5は、検査基準取得方法を示すフローチャートである。
ステップS21では、図6において、配管1の外周面に巻かれた強磁性体金属箔13の上から配管1に巻かれたコイル7に交流電流を流すことで、磁歪効果によるガイド波を配管1に発生させてこのガイド波を配管1の長手方向に伝播させる。ステップS21で使用する強磁性体金属箔13も、配管1を1周するように配管1に巻き付けられる。ステップS21で使用するコイル7および強磁性体金属箔13は、前記ステップS2で使用するコイル7および強磁性体金属箔13と同じあるのが好ましいが、必ずしも前記ステップS2で使用するコイル7および強磁性体金属箔13と同じでなくてもよい。ステップS21で使用するコイル7および強磁性体金属箔13を図2の前記ステップS2で使用するコイル7および強磁性体金属箔13と同じにする場合には、ステップS21とステップS2とを同時に行える。即ち、ステップS21をステップS2として行える。なお、ステップS21をステップS2の前に行ってもよい。
ステップS22において、ステップS21で発生したガイド波が配管1における既知の溶接部17(図6参照)で反射する反射ガイド波が、コイル7を介して検査装置15により検出され、該反射ガイド波の強度と溶接部17が配管1の表面から突出している突出高さとの関係を求める。この突出高さは、配管1表面に垂直な方向の高さである。ステップS21を図2のステップS2として行う場合には、ステップS2で発生させた検査用ガイド波が配管1における既知の溶接部17で反射する反射ガイド波が、コイル7を介して検査装置15により検出され、該反射ガイド波の強度と溶接部17が配管1の表面から突出している突出高さとの関係を求める。そして、図2のステップS3において、前記関係と前記検査用反射ガイド波の強度とに基づいて、貫通部1aの健全性を評価する。即ち、貫通部1aのある位置に腐食が存在する場合、配管1表面から配管1内部への当該腐食の深さが大きいほど、この腐食の位置で反射する検査用反射ガイド波の強度は大きくなる。一方、溶接部17についても、溶接部17が配管1の表面から突出している突出高さが大きいほど、この溶接部17で反射する検査用反射ガイド波の強度は大きくなる。より詳しく説明する。配管1表面から配管1内部への腐食の深さと、この腐食の位置で反射する検査用反射ガイド波の強度との関係は、比例でありまたは比例で近似できる。一方、溶接部17が配管1の表面から突出している突出高さと、この溶接部17で反射する検査用反射ガイド波の強度との関係も、比例でありまたは比例で近似できる。しかも、次の比率1、2は同じまたはほぼ同じである。比率1は、配管1表面から配管1内部への腐食の深さとこの腐食の位置で反射する検査用反射ガイド波の強度との比率であり、比率2は、溶接部17が配管1の表面から突出している突出高さとこの溶接部17で反射する反射ガイド波の強度との比率である。従って、ステップS22において、溶接部17が配管1の表面から突出している突出高さとこの溶接部17で反射する検査用反射ガイド波の強度との関係(この例では、比率)を求めておくことで、この関係(比率)と、ステップS3で得た検査用反射ガイド波の強度とに基づいて、貫通部1aにおける腐食の深さを得ることができる。例えば、溶接部17の前記突出高さが5mmであり、この溶接部17で強度100%の前記ガイド波が反射した反射ガイド波の強度(ステップS22で検出)を50%とした場合に、同じ強度100%の検査用ガイド波が配管1の腐食位置で反射した検査用反射ガイド波の強度(ステップS3で検出)が30%であれば、当該腐食の深さを3mm程度と推定する。
なお、前記関係(前記比率)は、検査装置15の記憶部に記憶されてよく、検査装置15が、記憶されたこの関係(比率)とステップS3で得た検査用反射ガイド波の強度とに基づいて自動的に貫通部1aにおける腐食の深さを演算することができる。この場合、検査装置15は、当該演算を行うコンピュータを内蔵していてよい。
【0024】
図7は、別の検査基準取得方法を示すフローチャートである。この検査基準取得方法では、配管1に適切な溶接部17がない場合に、図5の検査基準取得方法で使用した溶接部17の代わりとなる金属製突出物19を配管1の表面に取り付ける。
ステップS31において、図6に示すように配管1の表面に該表面から突出する金属製突出物19を取り付け、配管1の外周面に巻き付けられた強磁性体金属箔13の上から配管1に巻かれたコイル7に交流電流を流すことで、磁歪効果によるガイド波を配管1に発生させてこのガイド波を配管1の長手方向に伝播させる。金属製突出物19は、この例では、金属製のホースバンドであり、配管1の外表面を1周するように配管1外表面に密着して巻き付けられる。配管1の長手方向におけるホースバンド19の幅は、例えば10mm〜20mm程度であってよい。また、ステップS31で使用する強磁性体金属箔13も、配管1を1周するように配管1に巻き付けられる。ステップS21と図2のステップS2とを同時に行ってもよいし、ステップS21をステップS2の前に行ってもよい。
ステップS32において、ステップS31で発生したガイド波が配管1における金属製突出物19から反射する反射ガイド波が、コイル7を介して検査装置15により検出され、該反射ガイド波の強度と金属製突出物19(金属製のホースバンド)が配管1の表面から突出している突出高さとの関係を求める。この突出高さは、配管1表面に垂直な方向の高さである。ステップS31と図2のステップS2とを同時に行う場合には、即ち、配管1に金属製突出物19を取り付けた上でステップS31をステップS2として行う場合には、ステップS2で発生させた検査用ガイド波が配管1における金属製突出物19で反射する反射ガイド波が、コイル7を介して検査装置15により検出され、該反射ガイド波の強度と金属製突出物19が配管1の表面から突出している突出高さとの関係(この例では、比率)を求める。そして、図2のステップS3では、前記関係と前記検査用反射ガイド波の強度とに基づいて、貫通部1aの健全性を評価する。この金属製突出物19(金属製のホースバンド)の機能は、図5の検査基準取得方法で使用した溶接部17の機能と同じである。即ち、例えば、金属製のホースバンド19の前記突出高さが5mmであり、この金属製のホースバンド19で強度100%のガイド波が反射した反射ガイド波の強度(ステップS32で検出)を50%とした場合に、同じ強度100%の検査用ガイド波が配管1の腐食位置で反射した検査用反射ガイド波の強度(ステップS3で検出)が30%であれば、当該腐食の深さを3mm程度と推定する。
なお、反射ガイド波の強度と金属製突出物19が配管1の表面から突出している突出高さとの関係(前記比率)は検査装置15の記憶部に記憶されてよく、検査装置15が、記憶されたこの関係(比率)とステップS3で得た検査用反射ガイド波の強度とに基づいて自動的に貫通部1aにおける腐食の深さを演算することができる。この場合、検査装置15は、当該演算を行うコンピュータを内蔵していてよい。
【0025】
図8は、上述した本発明の実施形態による配管の検査方法により、検査装置15が検出した検査用反射ガイド波を示している。図8において、横軸は、検査用ガイド波の発信位置(即ち、コイル7の位置)からの距離を示し、縦軸は検査用ガイド波が各位置で反射した反射ガイド波の強度(信号高さ)を示している。なお、図8の横軸の距離は、コイル7から検査用ガイド波が発信された時から、検査装置15がコイル7により検査用反射ガイド波を検出した時までの時間に相当する。なお、図8に示す反射ガイド波の波形は、検査装置15のディスプレイ装置に表示される。
図8に示すように、金属製ホースバンド19の位置では、ある程度の強度を持つ反射ガイド波が検出されている。一方、防油堤3の内部にある貫通部1aにおいても小さな反射ガイド波が検出されている。この反射ガイド波の強度は、ホースバンド19の位置での反射ガイド波の強度よりも小さいので、それだけ、貫通部1aの腐食深さはホースバンド19の突出高さよりも小さいことがわかる。
【0026】
なお、次のように防油堤3の両側から検査を行うのがよい。図9に示すように、防油堤3の一方側と他方側の両方においてそれぞれコイル7,11を配管1に巻く。そして、一方側のコイル7から発信した検査用ガイド波の反射ガイド波を一方側のコイル7を介して検査装置15が検出する。また、他方側のコイル11から発信した検査用ガイド波の反射ガイド波を他方側のコイル11を介して検査装置15が検出する。一方側のコイル7を介して検出した前記反射ガイド波の強度と、他方側のコイル11を介して検出した前記反射ガイド波の強度とを照合して、貫通部1aの腐食状況(腐食の位置や深さなど)を検査することができる。これにより、腐食状況の検査精度を向上させることができる。図9の例では、コイル7,11は、配管1の外周面に巻かれた強磁性材料の金属箔13の上から配管1に巻かれている。
【0027】
上述した本発明の実施形態による配管の検査方法では、以下の効果(1)〜(4)が得られる。
【0028】
(1)強磁性体金属箔13上に巻いたコイル7に交流電流を流すことで、磁歪効果による検査用ガイド波を配管1に発生させる。このように発生した検査用ガイド波は、配管1を捩じるように配管1の長手方向に伝播する。従って、配管1の内部および外部における配管1への付着物や、配管1の内部環境および外部環境などによって、検査用ガイド波が減衰しにくい。また、配管1の貫通部1aが数m以上であっても、この貫通部1aの全長にわたって検査用ガイド波が伝播し、かつ、検査用ガイド波の反射ガイド波のうち貫通部1aにおけるいずれの位置からの反射ガイド波でも防油堤3の外部おいて十分高いS/N比で検出できる。従って、貫通部1aの健全性をその全長にわたって確実に評価することができる。
また、上記方法では、配管1にコイル7を巻いてガイド波を発生させるので、ガイド波を発生させる装置が小型、安価でかつ柔軟性に富む。なお、ガイド波を検出するセンサも配管1に巻き付けた強磁性体金属箔13上に巻いたコイル7を使用できる。
コイル7を巻いたものを使用できる。
このように、本発明の実施形態による配管1の検査方法は、装置が小型、安価で柔軟性に富み、配管1が貫通する防油堤3などの防油堤3を破壊することなく、配管1の貫通部1aが数m以上であっても貫通部1a全長にわたって検査できる。
【0029】
(2)防油堤3の一方側から透過強度確認用ガイド波を配管1に沿って伝播させ、防油堤3の他方側にて透過強度確認用ガイド波を検出することで、検出した前記透過強度確認用ガイド波の強度が所定値以上であるかを判断する。所定値より小さい場合には、各種設定値を変更して、再び同じことを行う。これにより、検出するガイド波の感度・強度が十分高くなるように、交流電流の適正周波数を設定できる。
【0030】
(3)ガイド波が配管1における既知の溶接部17で反射する反射ガイド波を検出し、該反射ガイド波の強度と溶接部17の突出高さとの関係を求める。この関係を評価基準にして、検査用反射ガイド波の強度から貫通部1aの健全性を評価することができる。例えば、前記評価基準と検査用反射ガイド波の強度とから、貫通部1aにおける腐食の大きさ・深さを得ることができる。
【0031】
(4)配管1に適切な溶接部17がない場合には、配管1表面に金属製突出物19を取り付け、ガイド波が金属製突出物19で反射する反射ガイド波を検出し、該反射ガイド波の強度と金属製突出物19の突出高さとの関係を求める。この関係を評価基準にして、検査用反射ガイド波の強度から貫通部1aの健全性を評価することができる。例えば、前記評価基準と検査用反射ガイド波の強度とから、貫通部1aにおける腐食の大きさ・深さを得ることができる。
【0032】
本発明は上述した実施の形態に限定されず、本発明の要旨を逸脱しない範囲で種々変更を加え得ることは勿論である。
【0033】
例えば、上述の実施形態では、防油堤3を貫通する配管1を検査する場合を説明したが、本発明はこれに限定されない、即ち、防油堤3以外の被貫通体の一方側から他方側へ貫通する配管1に対しても本発明を適用できる。この場合に、配管1の検査対象部分を、配管1における前記被貫通体の内部に埋設されている貫通部1aとすることができる。
【0034】
上述の実施形態では、ガイド波が防油堤3を貫通している配管1の貫通部1a全長を伝播できるように、コイル7に流す交流電流の周波数を調節する方法として、ピッチキャッチ法を使用した。しかし、コイル7に流す交流電流の適正周波数を選定する他の適切な手段・方法があれば、その手段・方法を用いてもよい。
【0035】
上述の実施形態では、金属製突出物19として金属製のホースバンドを例に挙げたが、本発明はこれに限定されない。即ち、金属製突出物19として他の適切な手段を用いてもよい。
【図面の簡単な説明】
【0036】
【図1】本発明の実施形態による配管の検査方法の対象となる防油堤を貫通する配管を示す。
【図2】本発明の実施形態による配管の検査方法を示すフローチャートである。
【図3】ガイド波の透過強度確認試験を示すフローチャートである。
【図4】ガイド波の透過強度確認試験が行われる防油堤を貫通する配管を示す。
【図5】検査基準取得方法を示すフローチャートである。
【図6】検査基準取得方法が行われる防油堤を貫通する配管を示す。
【図7】別の検査基準取得方法を示すフローチャートである。
【図8】本発明の実施形態による配管の検査方法により検出した検査用反射ガイド波を示している。
【図9】防油堤の両側から検査を行う場合を示す。
【符号の説明】
【0037】
1・・・配管、1a・・・貫通部、3・・・防油堤(被貫通体)、5・・・フランジ、7,9,11・・・コイル、13・・・金属箔、15・・・検査装置、17・・・溶接部、19・・・ホースバンド(金属製突出物)、

【特許請求の範囲】
【請求項1】
所定の被貫通体の一方側から他方側へ貫通する、防油堤(土盛堤等)貫通部等の埋設配管の検査方法であって、
前記配管の検査対象部分は、前記配管における前記被貫通体の内部に位置する貫通部および前記被貫通体の前後近辺であり、
(A)記被貫通体の外部において前記配管に強磁性体金属箔を巻き、その上にコイルを巻き、
(B)その後、前記コイルに交流電流を流すことで、磁歪効果による検査用ガイド波を前記配管に発生させてこの検査用ガイド波を前記配管の長手方向に伝播させ、
(C)前記検査用ガイド波が前記貫通部において反射する反射ガイド波を検出し、該反射ガイド波の強度に基づいて、前記貫通部の健全性を評価する、ことを特徴とする埋設配管の検査方法。
【請求項2】
(a)前記(B)のステップを開始する前に、前記被貫通体の外部において、前記被貫通体の一方側において前記配管に強磁性体金属箔を巻き、その上にコイルを巻き、そのコイルに所定の周波数の交流電流を流すことで、透過強度確認用ガイド波を磁歪効果により発生させてこの透過強度確認用ガイド波を前記他方側へ前記配管の長手方向に伝播させ、
(b)次いで、該透過強度確認用ガイド波を前記被貫通体の前記他方側にて検出し、
(c)検出した前記透過強度確認用ガイド波の強度が所定値以上であるかを判断し、
(d)検出した前記透過強度確認用ガイド波の強度が所定値以上である場合には、前記(B)のステップを開始し、該所定値より小さい場合には、各種設定値を変更して、前記(a),(b)、(c)のステップを再び行う、ことを特徴とする請求項1に記載の埋設配管の検査方法。
【請求項3】
(e)前記配管に巻いた強磁性体金属箔上に巻いたコイルに交流電流を流すことで、磁歪効果によるガイド波を前記配管に発生させてこのガイド波を前記配管の長手方向に伝播させ、
(f)前記(e)で発生したガイド波が前記配管における既知の溶接部で反射する反射ガイド波を検出し、該反射ガイド波の強度と前記溶接部が前記配管の表面から突出している突出高さとの関係を求め、
前記(C)のステップでは、前記関係と前記検査用反射ガイド波の強度とに基づいて、前記貫通部の健全性を評価する、ことを特徴とする請求項1または2に記載の埋設配管の検査方法。
【請求項4】
(e)前記配管の表面に該表面から突出する金属製突出物を取り付け、前記配管に強磁性体金属箔を巻き、その上にコイルを巻き、その巻いたコイルに交流電流を流すことで、磁歪効果によるガイド波を前記配管に発生させてこのガイド波を前記配管の長手方向に伝播させ、
(f)前記ガイド波が前記配管における前記金属製突出物から反射する反射ガイド波を検出し、該反射ガイド波の強度と前記金属製突出物が前記配管の表面から突出している突出高さとの関係を求め、
前記(C)のステップでは、前記関係と前記検査用反射ガイド波の強度とに基づいて、前記貫通部の健全性を評価する、ことを特徴とする請求項1または2に記載の埋設配管の検査方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate