説明

電子構成素子を作製する方法および電子構成素子

構成素子をカプセリングするバリア層を有する電子構成素子を作製する本発明の方法には殊に以下のステップが含まれる。すなわち、− 少なくとも1つの機能層(22)を有する基板(1)を準備するステップと、− プラズマレス原子堆積法(PLALD)を用いて上記の機能層(22)に少なくとも1つの第1バリア層(3)を被着するステップと、− プラズマ支援化学気相成長(PECVD)を用いて前記の機能層(22)に少なくとも1つの第2バリア層(4)を被着するステップとを有する。

【発明の詳細な説明】
【技術分野】
【0001】
この特許明細書は、ドイツ国特許明細書第10 2008 006 721.0号、ドイツ国特許明細書第10 2008 019 900.1号、ドイツ国特許明細書第10 2008 031 405.6号およびドイツ国特許明細書第10 2008 048 472.5号に優先権を主張するものであり、これらの明細書の開示内容は参照によってこの明細書に含まれるものとする。
【0002】
ここで示されているのは、電子構成素子を作製する方法および電子構成素子である。
【0003】
無機発光ダイオード(LED)または有機発光ダイオード(OLED)などの電子構成素子を持続的に動作させるためには、これらを湿気から保護しなければならないことが多い。殊に必要になり得るのは、上記の構成素子に十分な耐久テストを行って、これらの構成素子が日常的な使用において数年にわたってその機能を維持できることを保証することである。
【0004】
したがって少なくとも1つの実施形態の課題は、カプセリングを有する電子構成素子を作製する方法を提供することである。さらに少なくとも1つの実施形態の課題は、カプセリングを有する電子構成素子を提供することである。
【0005】
これらの課題は、独立請求項の方法および構成素子によって解決される。本発明の方法および構成素子の有利な実施形態および発展形態は、従属請求項に示されており、また以下の説明および図面から明らかになる。
【0006】
構成素子をカプセリングするバリア層を有する電子構成素子を作製する、1実施形態による方法は殊につぎのステップが含まれる。すなわち、
− 少なくとも1つの機能層を有する基板を準備するステップと、
− プラズマレス原子堆積法(PLALD)を用いて上記の機能層に少なくとも1つの第1バリア層を被着するステップと、
− プラズマ支援化学気相成長(PECVD)を用いて上記の機能層に少なくとも1つの第2バリア層を被着するステップとが含まれている。
【0007】
ここでの記載また以下の記載において、第1層または第1要素が第2層または第2要素「に」または「上」に配置または被着されている、または別の2つの層または要素の「間」に配置または被着されているとは、第1層または第1要素が、第2層または第2要素に直に機械的および/または電気的に接触接続して配置されていることないしは上記の別の2つの層または要素に配置されていることを意味する。さらに別の層および/または要素が、第1層または第1要素と、第2層または第2要素との間に配置されるないしは上記の別の2つの層または要素との間に配置される間接的な接触接続を表すこともある。
【0008】
ここで化学気相成長("chemical vapor deposition", CVD)は、少なくとも1つの機能層を有しかつ準備された基板の少なくとも1つの表面において少なくとも2つの気体の出発化合物が反応して固体の反応生成物になる方法を表し得る。ここで上記の少なくとも2つの気体の出発化合物は、上記の基板が準備される1つの容積体に同時に供給することが可能である。さらに前記の少なくとも1つの機能層を有する前記の準備した基板の少なくとも1つの表面を室温以上に加熱することが必要になることもある。
【0009】
プラズマ支援CVD("plasma enhanced chemical vapor deposition",PECVD)とは、容積体においてプラズマを形成し、これによってこの容積体に供給される少なくとも2つの気体の出発化合物を上記のプラズマにおいて励起することができるようにするCVD法のことを表し得る。これによって可能になり得るのは、上記の少なくとも1つの表面を加熱して到達しなければならない温度をプラズマレスCVD法に比べて低減できることである。これは殊に有利になることがある。それは、最高温度以上の温度において上記の少なくとも1つの機能層が非可逆的に損傷されてしまう可能性があるからである。この最高温度は例えば約120℃になり得るため、上記の第2バリア層を被着する温度は、120℃よりも低くなりまた有利には80℃以下になり得る。
【0010】
原子堆積法("atomic layer deposition",ALD)とは、CVD法とは異なり、まず上記の基板を準備した容積体に上記の少なくとも2つの気体の出発化合物のうちの第1出発化合物が供給され、上記の少なくとも1つの表面において吸着され得る方法のことを表し得る。上記の少なくとも1つの表面を第1出発化合物によって有利には完全に覆った後またはほぼ完全に覆った後、なお気体のままでありおよび/または上記の表面に吸着されずに残っている第1出発化合物の一部を元のように上記の容積体から取り除き、上記の少なくとも2つの出発化合物のうちの第2の化合物を供給することができる。この第2出発化合物は、上記の少なくとも1つの表面において吸着された第1出発化合物と固体の層を形成しながら反応することができる。CVD法の場合に同様に有利であり得るのは、上記の少なくとも1つの表面を室温以上の温度に加熱する場合である。これによって固体の層を形成するための上記の反応を温度的には開始することができる。ここで、例えば基板温度、すなわち基板の温度でもある上記の表面温度は、試薬、すなわち第1および第2出発化合物に依存し得る。
【0011】
ここでプラズマレス原子層堆積法("plasma-less atomic layer deposition",PLALD)はつぎのようなALD法を表し得る。すなわち、この方法に対して以下に説明するようにプラズマを形成せず、ここでは上記のコーティングすべき表面が上記の温度以上の場合だけ上記の出発化合物の反応を開始して、固体の層すなわち例えば第1バリア層を形成するALD法を表し得る。
【0012】
上記の少なくとも1つの表面および/または基板の温度は、PLALD法では、例えば、60℃以上かつ120℃以下とすることが可能である。
【0013】
プラズマ支援原子堆積法層("plasma enhanced atomic layer deposition",PEALD)は、プラズマの形成と同時に第2出発化合物が供給され、これによってPECVD法の場合と同様に第2出発化合物を励起できるALD法ということができる。これによってプラズマレスのALD法に比べて、上記の少なくとも1つの表面を加熱する温度を低減することができ、それにもかかわらずプラズマを形成することによって出発化合物間の反応を開始することができる。ここでは上記の第1バリア層を、例えば120℃未満の温度でまた有利には80℃以下の温度で被着することができる。別の固体の層を形成するため、上記の第1出発化合物を供給するステップおよびこれに続いて第2出発化合物を供給するステップを繰り返すことができる。
【0014】
殊に出発化合物間の反応を開始することにより、例えば上記の少なくとも1つの機能層および/または基板が損傷され得る表面温度になることが不可避になる場合、PEALD法は有利になり得る。
【0015】
ここで説明する方法の枠内で作製可能なカプセリングは、すべてがCVD法で作製されるバリア層を有する公知のカプセリングに比べ、湿気および/または酸素に対する透過性が低い。すべてがCVD法で作製されるバリア層を有するカプセリングでは、チャネル、孔および/または粒界が生じ、これらは従来のカプセリングの漏れの結び付くことがある。このような漏れが殊に助長され得るのは、電子構成素子において、バリア層を被着することのできる最大温度が上記のように約120℃また有利には約80℃を上回ってはならないようにすることによってである。これによってCVDで被着されるバリア層を有する従来のカプセリングには、極めて複雑でありひいてはコストのかかる多層システムが必要になり、この多層システムにより、カプセリングを有する電子構成素子を経済的に作製できないことがあるのである。
【0016】
従来公知のカプセリングの上記の欠点は、ここで説明する方法によって回避することができる。第1バリア層を被着するためのPEALD法またはPLALD法により、この第1バリア層は、CVD法またはPECVD法によって被着されるバリア層に比べて高い気密性で作製することができ、チャネルおよび/または孔の形成および/またはその継続を低減または阻止することができる。したがってCVD法によって作製される、第1バリア層に対する層に比べ、湿気および/または酸素に対して比較的高い気密性を得ることも可能である。この際には、従来のCVD法によって作製されるカプセリングのバリア層に比べてバリア層の数および/またはその厚さを低減することが可能である。これにより、薄いと同時に内在的に気密性の高いカプセリングを小さな面積にまた大きな面積でも作製することができ、また粒界、チャネルおよび/または孔による湿気および/または酸素の拡散を低減または阻止することができる。さらにここで説明する第1および第2バリア層を有するカプセリングは、このカプセリングの縁部領域においても高い気密性を有するため、このカプセリングと、上記の少なくとも1つの機能層を有する準備した基板との間の境界面を通って湿気および/または酸素が拡散することを低減または阻止することができるのである。
【0017】
キャビティに付加的にゲッタ材料が入れられるカバーグラスを用いた別の公知のカプセリングと比べ、第1および第2バリア層を有するここで説明するカプセリングより、カプセリングをコスト的により有利に作製しまた厚さを低減することができる。さらにここで説明する方法によって可能となり得るのは、透明なカプセリングを有する電子構成素子を作製することであるが、これはカバーガラスおよびゲッタ材料によるカプセリングの場合は不可能である。
【0018】
PLALDを用いてまたはPEALDを用いて第1バリア層を被着する方法ステップおよびPECVDを用いて第2バリア層を被着する方法ステップは、すぐ続けて同じ容積体、例えば従来のコーティング装置において行うことできる。このために上記のコーティング装置は、例えばPLALD法またはPEALD法の出発化合物用のガスインレット部を有する真空室を有することができ、PLALD法の場合にはさらに上記の基板用に加熱部が設けられている。さらにPEALD法に対しておよび/またはPECVD法に対しても上記の基板に対する加熱部を設けることができる。
【0019】
上記の第1バリア層は、PLALD法を用いてまたはPEALD法を用い、例えば10nm以上かつ30nm以下の厚さで被着することができる。このことが意味し得るのは、PLALD法を用いてまたはPEALD法を用いて、10モノレイヤ以上かつ50モノレイヤ以下の第1バリア層を作製できることである。第1バリア層の気密性および品質が高いことにより、下にある少なくとも1つの機能層に対して湿気および/または酸素からの有効な保護を保証するだけ厚さで十分になる。PLALD法またはPEALD法はPECVD法に比べて成長速度が低くなることがあり得るが、第1バリア層の厚さが小さいことにより、短いプロセス時間を保証することができ、ひいてはここで説明した方法の高い経済性を保証することができるのである。
【0020】
第1バリア層の気密性が高いことにより、気密性についての第2バリア層に対する要求を、すべてがCVD法で被着されるバリア層を有する従来のカプセリングの場合よりも低く設定することができる。殊に第2バリア層は、第1バリア層よりも高い成長速度で被着することができ、また被着の後、1nm以上かつ1000nm以下の厚さを有することができる。例えば第1バリア層は、10nm以上、有利には20nm以上、殊に有利には100nm以上の厚さで被着することができる。
【0021】
上記の方法は、保護層が第1および第2バリア層に被着される別の方法ステップを有し得る。この際に上記の保護層は、第1または第2バリア層に直に被着することができ、これによって被着の後、第1または第2バリア層に直に接触接続することができる。殊に上記の保護層により、下にある第1および第2バリア層を機械的に保護することができる。このために上記の保護層は、1μm以上かつ100μm以下の厚さで被着することができる。殊にこの保護層は、5μm以上また有利には10μm以下の厚さで被着することができる。
【0022】
ここで上記の保護層は、例えばシロキサン、エポキシド、メチルメタクリレートなどのアクリレート、イミド、カーボネート、オレフィン、スチロール、ウレタン、またはモノマ、オリゴマまたはポリマの形態のそれらの誘導体、またさらにそれらとの混合物、コポリマまたは化合物を有することができる。例えば、上記の保護層は、エポキシ樹脂、ポリメチルメタクリレート(PMMA)、ポリスチロール、ポリカーボネート、ポリアクリレート、ポリウレタン、または例えばポリシロキサンなどのシリコーン樹脂またはそれらの混合物を含むかもしくはこのような混合物とすることが可能である。ここで保護層は、例えば透明とすることが可能である。
【0023】
さらに上記の保護層は、吹きつけ塗料(Spruehlack)を有するかないしは吹きつけ塗料として構成することが可能であり、この吹きつけ塗料には少なくとも上で挙げた材料が含まれており、またこの吹きつけ塗料は、連続吹きつけコーティング装置(Durchlauf-Spruehbelackungsanlage)によって被着することができる。さらに上記の吹きつけ塗料は、UV硬化可能な吹きつけ塗料および/または結合剤または溶剤を含有する吹きつけ塗料とすることが可能である。
【0024】
ここで説明している方法によって作製可能な電子構成素子は、ビーム放射および/またはビーム受信構成素子として構成することができ、またこの際に有機または無機電子構成素子と構成することができ、例えば、無機発光ダイオード(LED)、有機発光ダイオード(OLED)、無機フォトダイオード(PD)、有機フォトダイオード(OPD),無機太陽電池(SC)、有機太陽電池(OSC)、無機トランジスタ、殊に無機薄膜トランジスタ(TFT)、有機トランジスタ、殊に有機薄膜トランジスタ(OTFT)または集積回路(IC)として構成することが可能である。さらにここで説明する方法によって作製可能な電子構成素子は、上記の素子を複数個有するかそれらの組み合わせを有することができ、またはこのようものとして構成することができる。
【0025】
さらに上記の電子構成素子は、作製の後、少なくとも1つの第1および第2の電極を備える機能積層体を有することができ、これらの電極の間で上記の少なくとも1つの機能層は、1つまたは複数の無機および/または有機機能層を含んで配置される。殊に上記の機能積層体は基板に配置することができる。
【0026】
上記の構成素子が、例えばLED,OLED,PD,OPD,SCおよび/またはOSCを有する場合、上記の機能積層体は、この電子構成素子が動作する際に電磁ビームを形成するかまたはこれを検出するのに適した活性領域を有することができる。
【0027】
殊に有利な1実施形態では、ここで説明している方法において上記の電子構成素子は、有機電子構成素子として作製され、この有機電子構成素子には、ビーム放射積層体を有する有機ビーム放射構成素子が含まれている。このビーム放射積層体は、有機機能層として構成された機能層を含むことができる。殊に上記の電子構成素子は、有機ビーム放射ダイオード(OLED)を含むかまたは有機ビーム放射ダイオードとして実施することができる。この電子構成素子はこのために活性領域を有することができ、ここでこの活性領域は、電子構成素子の動作時に電子と正孔との再結合によって電磁ビームを放射するのに適した活性領域である。
【0028】
有機ビーム放射積層体ないしはOLEDは、例えば基板に第1電極を有し得る。この第1電極上には複数の有機材料からなる複数の機能層または少なくとも1つの有機機能層を被着することができる。上記の少なくとも1つの有機機能層または複数の機能層は、例えば、電子輸送層、エレクトロルミネッセント層および/また正孔輸送層を有するか、またはこのような層として実施することが可能である。上記の有機機能層または複数の有機機能層には第2電極を被着することができる。
【0029】
例えば上記の基板は、ガラス、石英、プラスチックシート、金属、金属シート、シリコンウェハまたは別の適当な基板材料を含むことが可能である。OLEDがいわゆる「ボトムエミッション」形として実施される場合、すなわち活性領域において形成されたビームが基板を通って放射される場合、この基板を第1ビームの少なくとも一部分に対して透明にすることができる。
【0030】
このボトムエミッション方式において有利には第1電極は1次ビームの少なくとも一部分に対しても透明である。アノードとして実施可能でありかつひいては正孔注入材料として使用される透明な第1電極は、例えば、透明の導電性酸化物を有するか透明の導電性酸化物から構成することができる。透明導電性酸化物(transparent conductive oxides、略して「TCO」)は、透明な導電性材料であり、ふつうは、例えば酸化亜鉛、酸化錫、酸化カドミウム、酸化チタン、酸化インジウムまたはインジウム錫酸化物(ITO)などの金属酸化物である。例えばZnO,SnO2またはIn2O3などの2成分の金属酸素化合物のほか、例えばZn2SnO4,CdSnO3,ZnSnO3,MgIn2O4,GaInO3,Zn2In2O5またはIn4Sn3O12などの3成分の金属酸素化合物または種々異なる透明導電性酸化物の混合物もTCO群に含まれる。さらにこれらのTCOは必ずしも化学量論的な組成に相応する必要はなく、またp形ドーピングまたはn形ドーピングとすることもできる。
【0031】
上記の有機機能層または複数の機能層は、有機ポリマ、有機オリゴマ、有機モノマ、有機非ポリマ小分子("small molecules")またはこれらの組み合わせを有することが可能である。例えば上記の有機ビーム放射積層体がつぎのような機能層、すなわち正孔輸送層として実施されてエレクトロルミネッセント層またはエレクトロルミネッセント領域への効果的な正孔注入を可能にする機能層を有すると有利である。正孔輸送層用の材料として、例えば第3アミン、カルバゾール誘導体、導電性ポリアニリンまたはポリエチレンジオキシチオフェンが有利であることが判明している。さらに1つの機能層をエレクトロルミネッセント層として実施すると有利である。このための材料として、けい光またはりん光によるビーム放射を有する材料、例えばポリフルオレン、ポリチオフェンまたはポリフェニレンまたはこれらの誘導体、化合物、混合物またはコポリマが適している。上記の機能層の材料に応じ、形成される上記の第1ビームは、紫外スペクトル領域から赤外スペクトル領域までの個別の波長または領域またはそれらの組み合わせを有することが可能である。
【0032】
上記の第2電極はカソードとして実施し、ひいては電子注入材料として使用することができる。カソード材料として、例えばアルミニウム、バリウム、インジウム、銀、金、マグネシウム、カルシウムまたはリチウムならびにこれらの化合物、組み合わせおよび合金が有利であることが判明している。択一的または付加的に第2電極は上記のTCOのうちの1つを含むことも可能である。付加的または択一的に第2電極も透明に実施することでき、および/または第1電極をカソードとして、また第2電極をアノードとして実施することも可能である。このことは、殊に上記のOLEDを"トップエミッション"形としても実施できることを意味している。
【0033】
上記の第1および/または第2電極はそれぞれ大きな面積で実施することができる。これにより、OLEDの場合には上記の活性領域において形成される電磁ビームを大きな面積で放射することができる。ここで「大きな面積」とは、上記の電子構成素子が、数平方ミリメートル以上、有利には1平方センチメートル以上、殊に有利には1平方デシメートル以上の面積を有することを意味し得る。択一的または付加的に上記の第1および/または第2電極を少なくとも部分領域において構造化して構成することができる。これにより、上記の活性領域において形成される電磁ビームの構造化した放射が可能になり、例えばピクセルまたはピクトグラムの形状で構造化された放射が可能になる。
【0034】
択一的または付加的に上記の有機電子構成素子を構成して、有機機能層として構成された少なくとも1つの機能層を有する上記の基板が、光検出器および/またはトランジスタを含むか、またはこのような素子として構成されるようにすることができる。
【0035】
さらに上記の電子構成素子を、有機太陽電池またはフォトダイオードを含む有機電子構成素子として作製することができる。ここで上記の電子構成素子は、有機機能層として構成された機能層を有することができ、この機能層は、OLEDに関連して述べた機能層の特徴を有する。さらに太陽電池またはフォトダイオードを含む電子構成素子は、OLEDに関連して上で説明した電極の特徴を備えた電極を有し得る。
【0036】
さらに上記の電子構成素子は、無機電子構成素子として構成することができ、この電子構成素子には、例えばLED,PD,SCおよび/またはTFTが含まれる。ここで上記の少なくとも1つの機能層は、エピタキシ積層体、すなわちエピタキシャル成長させた半導体積層体を有するかまたはこのような積層体として実施することができる。殊にこの半導体積層体は、例えばInGaAlN,InGaAlPおよび/またはAlGAsベースのIII−IV化合物半導体および/または1つまたは複数の元素Be,Mg,CaおよびSrならびに1つまたは複数の元素O,SおよびSeを有するII−VI化合物半導体を有し得る。例えばII−VI化合物半導体材料にはZnO,ZnMgO,CdS,ZnCdSおよびMgBeOが属する。さらに上記の無機電子構成素子は、OLEDに関連して上で説明した電極の特徴を備えた電極を有し得る。
【0037】
上記の第1バリア層は、第2バリア層の前に上記の少なくとも1つの機能層に被着することができる。このようにして第1バリア層により、上記の機能層を均一にカバーしかつ気密性の高い表面を得ることができ、つぎにこの表面に第2バリア層が被着される。上記の第1バリア層の卓越した表面特性により、拡散チャネル、粒界および/または孔が形成されやすいという第2バリア層の傾向を低減することができる。
【0038】
殊に第1バリア層は、上記の第2電極ないしはビームを放射するまたはビームを受光する上記の積層体に直に被着することができる。PLALD法を用いてまたはPEALD法を用いて上記のように被着することにより、上記の少なくとも1つの機能層ないしは機能積層体を有する基板を完全に覆うようにまた均一な厚さで第1バリア層を被着することができる。これによって上記の機能層ないしは機能積層体と上記のカプセリングとの間に平坦化層は不要である。
【0039】
択一的には第1バリア層を被着する前に第2バリア層を被着することができる。このことはまた殊に第2バリア層を被着する際に粒界、チャネルおよび/または孔が発生することがあるために有利になり得る。ここでこれらの粒界、チャネルおよび/または孔は、気密性の高い第2バリア層によって密封することができる。
【0040】
上記の第1バリア層および第2バリア層は、損傷を与える周囲の影響から、すなわち酸素および/または湿気などから上記の少なくとも1つの機能層を保護するのに適した1つずつの材料を有することができる。例えば第1バリア層としておよび/または第2バリア層として結晶状またはガラス状の酸化物、窒化物または酸窒化物を被着することができる。例えば上記の酸化物、窒化物または酸窒化物はさらにアルミニウム、ケイ素、スズ、亜鉛、チタン、ジルコニウム、タンタル、ニオブまたはハフニウムを含むことができる。ここで第1および/または第2バリア層は、誘電性または導電性の特性を有していてもよく、例えば、酸化ケイ素(SiOx)、例えばSiO2、窒化ケイ素(SixNy)、例えばSi2N3、酸窒化ケイ素(SiOxNy)、酸化アルミニウム、例えばAl2O3、窒化アルミニウム、酸化スズ、酸化インジウムスズ、酸化亜鉛または酸化アルミニウム亜鉛を有することができる。
【0041】
第1バリア層を作製するため、上で説明したPEALD法において第1出発化合物として、例えば金属有機化合物または半金属有機化合物を供給することができる。つぎにプラズマが形成される第2出発化合物として、酸素および/または窒素を含有する化合物を供給することができる。第1バリア層が純粋に例えばAl2O3を含む場合、第1出発化合物として、例えばトリメチルアルミニウムを、また第2出発化合物としてN2Oを供給することができる。
【0042】
さらに第1バリア層を作製するため、上で説明したPLALD法において第1出発化合物として、例えば金属有機化合物または半金属有機化合物を供給することができる。第2出発化合物として、例えば水を供給することができる。例えば第1出発化合物としてのトリメチルアルミニウムと組み合わせて、水を第2出発化合物として供給することが可能である。これにより、Al2O3を含む第1バリア層を作製可能である。これとは択一的には水を第1出発化合物とし、また金属有機化合物または半金属有機化合物、例えばトリメチルアルミニウムを第2出発化合物として供給することも可能である。それはPLALDではプラズマを形成する必要はないからである。
【0043】
さらに第2バリア層は、材料の異なる少なくとも2つの層からなる積層体を有することができる。このことが意味し得るのは、第2バリア層として、相異なる少なくとも2つの層を有する積層体が被着されることである。例えばこの積層体は、酸化物を備えた1つの層と、窒化物を備えた1つの層とを有し得る。この積層体は、第1材料、例えば窒化物を有する複数の第1層および/または第2材料、例えば酸化物を有する複数の第2層も有することができ、これらは交互に重なり合って被着される。窒化物を含有する第1層を「N」と記し、また酸化物を含有する第2層を「O」と記すと、上記の積層体は、例えばNONまたはNONONの順序で、またはONOまたはONONOの順序で構成することができる。
【0044】
さらに上記の少なくとも1つの第1バリア層および/または少なくとも1つの第2バリア層には、別の第1バリア層および/または別の第2層を被着することが可能である。これにより、例えば少なくとも1つの有機機能層を有する基板に複数の第1バリア層および/または複数の第2層を被着することができる。これらの第1バリア層および第2バリア層は有利には交互に重なり合わせて被着することができる。
【0045】
ここで上記の別の第1バリア層ないしは別の第2バリア層は、上記の少なくとも1つの第1バリア層ないしは少なくとも1つの第2バリア層に関連して説明した少なくとも1つまたは複数の特徴を有することできる。例えば別の第1バリア層はそれぞれPLALD法を用いてまたはPEALD法を用いて被着できるのに対して、別の第2バリア層はそれぞれPECVD法を用いて被着することができる。例えば種々異なる第1バリア層の作製すべき組み合わせに応じて、例えばPLALD法を用いて上記の第1バリア層を被着し、またPEALD法を用いて上記の別の第1バリア層を被着することができる。
【0046】
別の1実施形態によれば、ここで説明する方法を用いて電子構成素子が作製される。この電子構成素子は、殊に少なくとも1つの機能層を備えた基板と、その上の少なくとも1つの第1バリア層と、少なくとも1つの第2バリア層とを有し得る。ここでこの少なくとも1つの第1バリア層および少なくとも1つの第2バリア層は、上で説明した1つずつまたは複数の特徴を有し得る。この電子構成素子は、高い気密性のカプセリングと同時に厚さが薄いという点で優れており、またこの電子構成素子は、高い経済性で作製することが可能である。
【0047】
本発明のさらなる利点、有利な実施形態および発展形態は、図1A〜5に関連して以下で説明する実施例から明らかとなる。
【図面の簡単な説明】
【0048】
【図1】図1A〜1Cは、1実施例による方法の概略図である。
【図2】別の実施例による方法を用いて作製可能な有機電子構成素子の概略図の概略図である。
【図3】別の実施例による方法を用いて作製可能な電子構成素子の概略断面図である。
【図4】別の実施例による方法を用いて作製可能な電子構成素子の別の概略断面図である。
【図5】別の実施例による方法を用いて作製可能な電子構成素子のさらに別の概略断面図である。
【0049】
実施例および図面において、同じ構成部材または同じ機能の構成部材にはそれぞれ同じ参照符号が付されている。図示した要素およびこれらの要素の互いの大きさの関係は、基本的に縮尺通りと見なすべきではなく、むしろ個々の要素、例えば層、構成部分、構成素子および領域などは、見やすくおよび/または理解しやすくするため、誇張して厚くまたは大きく図示されていることがある。
【0050】
以下の図では、電子構成素子を作製するための実施例ならびに電子構成素子の実施例が純粋に例示的に示されており、ここでこれらの電子構成素子は、OLEDを含む有機電子構成素子として実施されている。ここではっきりと注意しておきたいのは、以下で説明する方法、構成素子およびその特徴は、一般的な個所で説明した別の電子構成素子にも当てはまることである。
【0051】
図1A〜1Cには、1実施例にしたがって有機電子構成素子を作製する方法が示されている。
【0052】
図1Aの第1方法ステップでは、少なくとも1つの有機機能層22を有する基板1が準備される。ここで有機機能層22は、有機積層体2の一部分であり、また第1電極21と第2電極23との間に埋め込まれている。ここで有機積層体2を有する基板1は、有機発光ダイオード(OLED)として構成されており、上の一般的な個所で説明した別の機能層を有することができる(図示せず)。第1電極21および第2電極23の電気的なコンタクトは、導体路を介して行われるが、これらの導体路は、分かり易くするため示されていない。
【0053】
有機積層体2を有する基板1は、図示の実施例においてボトムエミッション形に実施されており、またガラス製の透明な基板1と、ITO製の透明な第1電極21とを有し、この第1電極はアノードとして構成されている。第2電極23は、反射性であり、カソードとして構成されており、またアルミニウムを有する。
【0054】
図1Bによる別の方法ステップでは、PLALD法を用いてAl2O3製の第1バリア層3が有機機能層22および殊に積層体2に被着されている。このために有機積層体2を有する基板1は、コーティング装置において約80℃の温度に加熱され、第1部分ステップにおいて第1出発化合物としてのトリメチルアルミニウムに曝されて、このトリメチルアルミニウムは、積層体2および基板1によって形成される表面において吸着され得る。例えば後に有機電子構成素子を電気的に接触接続させるための基板1のコンタクト領域において第1出発化合物が吸着されないようにするため、例えばこのコンタクト領域を覆うマスク層を使用することができる。このマスク層は、第1バリア層を被着した後、元のように除去することが可能である。トリメチルアルミニウムの未吸着分を除去した後、PLALD法の第2部分ステップにおいて、積層体2を有する基板1は、第2出発化合物としての水(H2O)に曝される。この水は、基板1および積層体2において吸着されたトリメチルアルミニウムと反応することができ、1nm未満〜数ナノメートルの範囲の厚さを有するAl2O3層になる。しかしながらこの層は有利にはモノレイヤとして構成される。PLALD法の上記の第1および第2部分ステップは、厚さ10〜30nmの第1バリア層3が作製されるので繰り返される。
【0055】
択一的には水を第1出発化合物として供給することも可能であり、これによって水は、積層体2および基板1によって形成される表面において吸着される。この後、トリメチルアルミニウムを第2出発化合物として供給することができ、このトリメチルアルミニウムは、Al2O3層を形成しながら上記の吸着された水の層と反応することができる。
【0056】
さらに第2出発化合物を十分に供給して、反応によって構成されたAl2O3層において再び第2出発化合物の材料が吸着され、また後に供給される第1出発化合物と反応して別の単層または複層のAl2O3層にすることも可能である。
【0057】
図1Bによる別の方法ステップにおいてPLALD法とは択一的にPEALD法を用いてAl2O3製の第1バリア層3を有機機能層22および殊に積層体2に被着することができる。このために有機積層体2を有する基板1は、コーティング装置において100℃未満、有利には80℃未満の温度に加熱され、第1部分ステップにおいて第1出発化合物としてのトリメチルアルミニウムに曝されて、このトリメチルアルミニウムは、積層体2および基板1によって形成される表面において吸着され得る。例えば後に有機電子構成素子を電気的に接触接続させるための基板1のコンタクト領域において第1出発化合物が吸着されないようにするため、例えばこのコンタクト領域を覆うマスク層を使用することができる。このマスク層は、第1バリア層を被着した後、元のように除去することができる。トリメチルアルミニウムの未吸着分を除去した後、PEALD法の第2部分ステップにおいて、積層体2を有する基板1は、第2出発化合物としてのN2Oを有するプラズマに曝される。このN2Oは、基板1および積層体2において吸着されたトリメチルアルミニウムと反応することができ、1nm未満〜数ナノメートルの範囲の厚さを有するAl2O3層になる。しかしながらこの層は有利にはモノレイヤとして構成される。PEALD法の上記の第1および第2部分ステップは、厚さ10〜30nmの第1バリア層3が作製されるまで繰り返される。
【0058】
上記のPLALD法ないしはPEALD法により、気密性の高い第1バリア層3を作製することができ、この第1バリア層3は、卓越した結晶構造の点で優れており、またCVD法を用いて成長させた層に比べて孔および/またはチャネルをまったく有しないかまたは有したとしてもわずかである。さらにこのように作製した第1バリア層3により、上記のカプセリングの縁部領域においてバリア層3と、例えば基板1との間に気密性の高い境界面が実現され、これによってこの境界面に沿って生じ得る酸素および/または湿気に対する浸透路を回避することができる。
【0059】
図1Cによる別の方法ステップでは、PECVD法を用いてSiO2製の第2バリア層4が第1バリア層3に被着される。ここで第2バリア層4は、約100nm〜約1000nmの厚さで第1バリア層3と同じ温度で被着される。第1バリア層3の気密性が高いことにより、第2バリア層4は比較的高い成長速度で被着することができ、これによって有機積層体2の内在的に気密性の高いカプセリングが得られる。
【0060】
したがって全部を合わせて気密性の高いカプセリングが、経済的な方法において短いプロセス時間で得られるのである。
【0061】
上記のPLALD法ないしはPEALD法およびPECVD法は、同じコーティング装置において実行されるため、第1バリア層3および第2バリア層4を有するカプセリングを作製する際、PLALD法ないしはPEALD法からPECVD法への交換時にコーティング装置のローディングおよびアンローディングによる付加的なむだ時間は発生しない。
【0062】
ここで説明した材料とは択一的にまたは付加的にまた一般的な個所で説明したように第1バリア層3および/または第2バリア層4は、酸化物、窒化物および/または半金属を有する酸窒化物および/または金属を有することができる。図示した方法とは択一的に、第1バリア層3の前に、基板および有機機能装置22を有する有機層積層体2に第2バリア層4を被着することができる。
【0063】
択一的または付加的には第2電極23を透明に実施することができるため、上記の有機電子構成素子をトップエミッション形または透明OLEDとして作製することが可能である。択一的または付加的に積層体2は、例えば有機トランジスタおよび/または有機フォトダイオードを含むかまたは有機トランジスタまたは有機フォトダイオードとすることが可能である。
【0064】
図2には有機電子構成素子の1実施例が示されており、ここでこの構成素子は、上記の実施例による方法に比べて別の1方法ステップを有する方法によって作製される。
【0065】
ここでは第1バリア層3および第2バリア層4を上で説明したように被着した後、さらに保護層5を被着する。保護層5には吹きつけ塗料が含まれており、これは、例えば溶媒を含有する塗料とすることができ、この塗料は10〜100μmの厚さで連続吹きつけコーティング装置によって被着される。保護層5により、上記の有機電子構成素子および殊に第1バリア層3および第2バリア層4をすり傷およびその他の機械的な損傷から効果的に保護することができる。
【0066】
択一的または付加的には保護層5として、例えばポリマ、シリコーン樹脂またはエポキシ樹脂などを被着することができる。
【0067】
以下の図には別の実施例による有機電子構成素子の断面が示されており、これらの実施例には上記の実施例の変更および変化形態が示されている。以下の説明は、主に上記の実施例との違いについてのものである。
【0068】
図3には有機電子構成素子の断面が示されており、ここでも上記の実施例と同様に積層体2にAl2O3製の気密性の高い第1バリア層3が被着されている。その上には第2バリア層4がPECVD法を用いて被着されており、これらの層は、100〜100nmの全体厚さを有する3つの層41,42,43を有する。層41および43は窒化ケイ素層として実施されているのに対し、層42は酸化ケイ素層として実施されている。択一的には層41,43の材料と、層42の材料とを交換することも可能である。さらに第2バリア層4は、例えば5つの層を有する積層体を有することも可能であり、これらの層は交互に、複数の酸化ケイ素層および窒化ケイ素層として構成される。
【0069】
図示の実施例とは択一的に、層41,42,43を有する第2バリア層に第1バリア層3を被着することも可能である。
【0070】
図4および5には有機電子構成素子の断面が示されており、これらの構成素子は、複数の第2バリア層3,3′,3″ないしは3,3′,3″,3″′および複数の第2バリア層4,4′,4″を有し、これらのバリア層はそれぞれ交互に重なり合わせてPLALD法またはPEALD法ないしはPECVD法によって被着されている。積層体2の第2電極および/または第2バリア層4,4′,4″が少なくとも部分的に、例えば円柱状の成長、チャネル、孔および/または粒界の形態の欠陥を有することを排除できないため、積層体2と第2バリア層4,4′,4″との間の第1バリア層3,3′,3″によって保証されるのは、このような欠陥の継続が効果的に中断できるようにすることである。例えば第2バリア層4,4′,4″に生じるチャネルおよび/または孔は、その上にある第1バリア層3′,3″ないしは3′,3″,3′″によって密封することができる。
【0071】
さらに第2バリア層4,4′および4″のうちの少なくとも1つは、図3の実施例に関連して示したように複数の層を有することができる。
【0072】
本発明は、実施例に基づく上記の説明によってこれらの実施例に限定されるものではない。むしろ本発明は、あらゆる新規の特徴ならびにそれらの特徴のあらゆる組み合わせを含むものであり、これには殊に特許請求の範囲に記載した特徴のあらゆる組み合わせが含まれている。このことはこのような特徴またはこのような組み合わせそのものが特許請求の範囲あるいは実施例に明示的には記載されていないにしてもあてはまるものである。
【図1A】

【図1B】

【図1C】


【特許請求の範囲】
【請求項1】
構成素子をカプセリングするバリア層を有する電子構成素子を作製する方法において、
該方法は、
− 少なくとも1つの機能層(22)を有する基板(1)を準備するステップと、
− プラズマレス原子堆積法(PLALD)を用いて前記の機能層(22)に少なくとも1つの第1バリア層(3)を被着するステップと、
− プラズマ支援化学気相成長(PECVD)を用いて前記の機能層(22)に少なくとも1つの第2バリア層(4)を被着するステップとを有することを特徴とする、
構成素子をカプセリングするバリア層を有する電子構成素子を作製する方法。
【請求項2】
さらに
− 前記の第1バリア層(3)および第2バリア層(4)に保護層(5)を被着するステップを有する、
請求項1に記載の方法。
【請求項3】
− 前記の保護層(5)は吹きつけ塗料を有する、
請求項1または2に記載の方法。
【請求項4】
− 前記の少なくとも1つの機能層(22)を有する基板(1)を準備する際、第1電極(21)を基板(1)に被着し、第2電極(23)を前記の少なくとも1つの機能層(22)に被着し、
− 前記の機能層(22)は、有機機能層を含んでおり、
− 前記の第1バリア層(3)を第2電極(23)に被着する、
請求項1から3までのいずれか1項に記載の方法。
【請求項5】
− 前記の第1バリア層(3)および/または第2バリア層(4)には酸化物、窒化物または酸窒化物が含まれる、
請求項1から4までのいずれか1項に記載の方法。
【請求項6】
− 第2バリア層(4)として、材料の異なる少なくとも2つの層(41,42)からなる積層体を被着する、
請求項1から5までのいずれか1項に記載の方法。
【請求項7】
− 前記の材料の異なる少なくとも2つの層(41,42)には、酸化物を有する1つの層と、窒化物を有する1つの層とが含まれている、
請求項6に記載の方法。
【請求項8】
− 少なくとも1つの別の第1バリア層(3′)および/または少なくとも1つの別の第2バリア層(4′)を被着する、
請求項1から7までのいずれか1項に記載の方法。
【請求項9】
− 前記の第1バリア層(3,3′)および第2バリア層(4,4′)を重ね合わせて交互に被着する、
請求項7または8に記載の方法。
【請求項10】
− 前記の第2バリア層(4)を第1バリア層(3)の前に被着する、
請求項1から9までのいずれか1項に記載の方法。
【請求項11】
− 前記の少なくとも1つの第1バリア層(3)および少なくとも1つの第2バリア層(4)を60℃以上かつ120℃以下の基板温度にて被着する、
請求項1から10までのいずれか1項に記載の方法。
【請求項12】
− 前記の少なくとも1つの第1バリア層(3)は、10nm以上かつ30nm以下の厚さを有する、
請求項1から11までのいずれか1項に記載の方法。
【請求項13】
− 前記の少なくとも1つの第2バリア層(4)は、100nm以上かつ1000nm以下の厚さを有する、
請求項1から12までのいずれか1項に記載の方法。
【請求項14】
− 前記の電子構成素子には、発光有機ダイオード(OLED)および/または太陽電池が含まれる、
請求項1から13までのいずれか1項に記載の方法。
【請求項15】
請求項1から14までのいずれか1項に方法を用いて作製可能なことを特徴とする、
有機オプトロニクス構成素子。

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公表番号】特表2011−511403(P2011−511403A)
【公表日】平成23年4月7日(2011.4.7)
【国際特許分類】
【出願番号】特願2010−544580(P2010−544580)
【出願日】平成21年1月29日(2009.1.29)
【国際出願番号】PCT/DE2009/000117
【国際公開番号】WO2009/094997
【国際公開日】平成21年8月6日(2009.8.6)
【出願人】(599133716)オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング (586)
【氏名又は名称原語表記】Osram Opto Semiconductors GmbH
【住所又は居所原語表記】Leibnizstrasse 4, D−93055 Regensburg, Germany
【Fターム(参考)】