説明

電極材料及び電極並びに電極材料の製造方法

【課題】表面に炭素質被膜が形成された電極活物質を電極材料として用いる場合に、炭素質被膜の担持量のムラが小さく、しかも電子導電性を改善することが可能な電極材料及び電極並びに電極材料の製造方法を提供する。
【解決手段】本発明の電極材料は、表面に炭素質被膜が形成された電極活物質粒子を凝集してなる凝集体からなり、この凝集体の平均粒子径は1.0μm以上かつ100μm以下、体積密度の割合は50体積%以上かつ80体積%以下、この凝集体に内在する細孔の細孔分布は単峰性であり、かつ、この細孔分布における平均細孔径は0.3μm以下である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電極材料及び電極並びに電極材料の製造方法に関し、特に、電池用の正極材料、さらにはリチウムイオン電池用の正極材料に用いて好適な電極材料、及び、この電極材料を含有してなる電極、並びに、この電極材料の製造方法に関するものである。
【背景技術】
【0002】
近年、小型化、軽量化、高容量化が期待される電池として、リチウムイオン電池等の非水電解液系の二次電池が提案され、実用に供されている。
このリチウムイオン電池は、リチウムイオンを可逆的に脱挿入可能な性質を有する正極及び負極と、非水系の電解質とにより構成されている。
リチウムイオン電池の負極材料としては、負極活物質として、一般に炭素系材料またはチタン酸リチウム(LiTi12)等の、リチウムイオンを可逆的に脱挿入可能な性質を有するLi含有金属酸化物が用いられている。
一方、リチウムイオン電池の正極材料としては、正極活物質として、鉄リン酸リチウム(LiFePO)等の、リチウムイオンを可逆的に脱挿入可能な性質を有するLi含有金属酸化物や、バインダー等を含む電極材料合剤が用いられている。そして、この電極材料合剤を集電体と称される金属箔の表面に塗布することにより、リチウムイオン電池の正極が形成されている。
【0003】
このようなリチウムイオン電池は、従来の鉛電池、ニッケルカドミウム電池、ニッケル水素電池等の二次電池と比べて、軽量かつ小型であるとともに、高エネルギーを有しているので、携帯用電話機、ノート型パーソナルコンピューター等の携帯用電子機器の電源として用いられている。また、近年、リチウムイオン電池は、電気自動車、ハイブリッド自動車、電動工具等の高出力電源としても検討されており、これらの高出力電源として用いられる電池には、高速の充放電特性が求められている。
しかしながら、電極活物質、例えば、リチウムイオンを可逆的に脱挿入可能な性質を有するLi含有金属酸化物を含む電極材料は、電子伝導性が低いという問題がある。そこで、電極材料の電子伝導性を高めるために、電極活物質の粒子表面を炭素源である有機分で覆い、その後に有機分を炭化することにより、電極活物質の表面に炭素質被膜を形成し、この炭素質被膜の炭素を電子伝導性物質として介在させた電極材料が提案されている(特許文献1)。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2001−15111号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
ところで、電極活物質をリチウムイオン電池の電池材料として利用するためには、電極活物質の電子導電性は不可欠であり、この電極活物質の電子導電性は高い程好ましい。
しかしながら、従来の有機化合物を担持してなる電極活物質または電極活物質の前駆体を非酸化性雰囲気中で焼成してなる電極材料においては、焼成時の有機化合物の熱分解により生成した芳香族系炭素化合物が縮合することにより、電極活物質の表面に炭素質被膜が形成され、一方、芳香族系炭素化合物は高温で揮発性があり、特に、500℃以上かつ1000℃以下の焼成温度においては、芳香族系炭素化合物中の気化物質の濃度が高い程、炭素質被膜の担持量が多く、また被膜の厚みも厚くなるが、気化物質の濃度が低い程、炭素質被膜の担持量が少なく、また被膜の厚みが薄くなる。
【0006】
したがって、電極活物質の一次粒子の集合体においては、電極活物質同士が凝集していない場合、および凝集体であっても空隙の多い凝集体である場合には、非酸化性雰囲気下にて焼成する際に、芳香族系炭素化合物の気化物質の濃度が低くなり、全体的あるいは部分的に炭素質被膜の担持量が少なくなり、炭素質被膜の厚みが薄くなり、かつ炭素質被膜の被覆率が低下するという問題点があった。
【0007】
本発明は、上記の課題を解決するためになされたものであって、表面に炭素質被膜が形成された電極活物質を電極材料として用いる場合に、炭素質被膜の担持量のムラが小さく、しかも電子導電性を改善することが可能な電極材料及び電極並びに電極材料の製造方法を提供することを目的とする。
【課題を解決するための手段】
【0008】
本発明者等は、上記課題を解決するために鋭意研究を行なった結果、電極材料を製造する際に、電極活物質または電極活物質の前駆体と、有機化合物と、前記電極活物質または前記電極活物質の前駆体を分散するための沸点の異なる2種類以上の溶媒からなる混合液とを含むスラリーを乾燥することにより、得られた凝集体の体積密度を、この凝集体を中実とした場合の体積密度の50体積%以上かつ80体積%以下とし、この凝集体に内在する細孔の細孔分布を単峰性とし、かつ該細孔分布における平均細孔径を0.3μm以下とすることができ、したがって、この凝集体の内部における芳香族系炭素化合物の気化物質の濃度を高めることができ、その結果、凝集体内の電極活物質の表面に担持される炭素質被膜の担持量のムラが小さいことを見出し、本発明を完成するに至った。
【0009】
すなわち、本発明の電極材料は、表面に炭素質被膜が形成された電極活物質粒子を凝集してなる凝集体からなり、前記凝集体の平均粒子径は1.0μm以上かつ100μm以下であり、前記凝集体の体積密度は、前記凝集体を中実とした場合の体積密度の50体積%以上かつ80体積%以下であり、前記凝集体に内在する細孔の細孔分布は単峰性であり、かつ該細孔分布における平均細孔径は0.3μm以下であることを特徴とする。
【0010】
本発明の電極材料では、前記電極活物質粒子の表面の80%以上を前記炭素質被膜にて被覆してなることが好ましい。
前記凝集体は、内部に細孔を有する凝集体であり、この凝集体に内在する細孔の細孔径分布における累積体積百分率が90%の細孔径(D90)は1.0μm以下であり、前記凝集体の外周部における前記炭素質被膜の平均膜厚に対する該凝集体の中心部における前記炭素質被膜の平均膜厚の比(中心部炭素質被膜の厚み/外周部炭素質被膜の厚み)は0.7以上かつ1.3以下であることが好ましい。
前記炭素質被膜中の炭素量は、前記電極活物質粒子100質量部に対して0.6質量部以上かつ10質量部以下であることが好ましい。
前記凝集体のタップ密度は、1.0g/cm以上かつ1.5g/cm以下であることが好ましい。
【0011】
前記電極活物質は、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、チタン酸リチウム及びLiPO(但し、AはCo、Mn、Ni、Fe、Cu、Crの群から選択される1種または2種以上、DはMg、Ca、S、Sr、Ba、Ti、Zn、B、Al、Ga、In、Si、Ge、Sc、Y、希土類元素の群から選択される1種または2種以上、0<x<2、0<y<1.5、0≦z<1.5)の群から選択される1種を主成分とすることが好ましい。
【0012】
本発明の電極は、本発明の電極材料を含有してなることを特徴とする。
【0013】
本発明の電極材料の製造方法は、電極活物質または電極活物質の前駆体と、有機化合物と、前記電極活物質または前記電極活物質の前駆体を分散するための沸点の異なる2種類以上の溶媒からなる混合液とを含むスラリーを乾燥し、次いで、得られた乾燥物を500℃以上かつ1000℃以下の非酸化性雰囲気下にて焼成することを特徴とする。
【発明の効果】
【0014】
本発明の電極材料によれば、表面に炭素質被膜が形成された電極活物質粒子を凝集してなる凝集体の平均粒子径を1.0μm以上かつ100μm以下、この凝集体の体積密度を、この凝集体を中実とした場合の体積密度の50体積%以上かつ80体積%以下とし、さらに、凝集体に内在する細孔の細孔分布を単峰性とし、この細孔分布における平均細孔径を0.3μm以下としたので、電極活物質粒子の表面に形成された炭素質被膜の担持量のムラを小さくすることができ、よって、電極活物質の電子導電性のムラを小さくすることができる。したがって、リチウムイオン電池の電極材料として用いた場合に、内部抵抗を小さくすることができる。
【0015】
そして、この電子導電性のムラを小さくした電極活物質をリチウムイオン電池の電極材料として用いることにより、リチウムイオンの脱挿入に関わる反応が電極活物質の表面全体で均一に行われることが可能となり、よって、リチウムイオン電池の電極の内部抵抗を小さくすることができる。
【0016】
本発明の電極によれば、本発明の電極材料を含有したので、電極の内部抵抗を小さくすることができる。したがって、内部抵抗の小さな電極を、リチウムイオン電池用の正極として提供することができる。
【0017】
本発明の電極材料の製造方法によれば、電極活物質または電極活物質の前駆体と、有機化合物と、前記電極活物質または前記電極活物質の前駆体を分散するための沸点の異なる2種類以上の溶媒からなる混合液とを含むスラリーを乾燥し、次いで、得られた乾燥物を500℃以上かつ1000℃以下の非酸化性雰囲気下にて焼成するので、電極活物質粒子の表面に形成された炭素質被膜の担持量のムラを小さくすることができる。したがって、この電極活物質粒子の電子導電性のムラを小さくすることができる電極材料を、容易に製造することができる。
【図面の簡単な説明】
【0018】
【図1】本発明の実施例1及び比較例1各々の室温における充放電特性を示す図である。
【発明を実施するための形態】
【0019】
本発明の電極材料及びその製造方法を実施するための形態について説明する。
なお、この形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
【0020】
[電極材料]
本実施形態の電極材料は、表面に炭素質被膜が形成された電極活物質粒子を凝集してなる凝集体からなり、前記凝集体の平均粒子径は1.0μm以上かつ100μm以下であり、前記凝集体の体積密度は、前記凝集体を中実とした場合の体積密度の50体積%以上かつ80体積%以下であり、前記凝集体に内在する細孔の細孔分布は単峰性であり、かつ該細孔分布における平均細孔径は0.3μm以下である。
【0021】
ここで、表面に炭素質被膜が形成された電極活物質粒子を凝集してなる凝集体とは、表面に炭素質被膜が形成された電極活物質粒子同士が、点接触の状態で凝集することにより、電極活物質粒子同士の接触部分が断面積の小さい頸部状となって強固に接続された状態の凝集体のことである。このように、電極活物質粒子同士の接触部分が断面積の小さい頸部状となることで、凝集体内部にチャネル状(網目状)の空隙が三次元に広がった構造となる。
また、中実な凝集体とは、空隙が全く存在しない凝集体のことであり、この中実な凝集体の密度は電極活物質の理論密度に等しいものとする。
【0022】
この電極活物質としては、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、チタン酸リチウム及びLiPO(但し、AはCo、Mn、Ni、Fe、Cu、Crの群から選択される1種または2種以上、DはMg、Ca、S、Sr、Ba、Ti、Zn、B、Al、Ga、In、Si、Ge、Sc、Y、希土類元素の群から選択される1種または2種以上、0<x<2、0<y<1.5、0≦z<1.5)の群から選択される1種を主成分とすることが好ましい。
【0023】
ここで、Aについては、Co、Mn、Ni、Feが、Dについては、Mg、Ca、Sr、Ba、Ti、Zn、Alが、高い放電電位、豊富な資源量、安全性などの点から好ましい。
ここで、希土類元素とは、ランタン系列であるLa、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luの15元素のことである。
【0024】
この電極活物質では、リチウムイオン電池の電極材料として用いる際にリチウムイオンの脱挿入に関わる反応を電極活物質粒子の表面全体で均一に行うために、電極活物質粒子の表面の80%以上、好ましくは90%以上を炭素質被膜にて被覆されていることが好ましい。
炭素質被膜の被覆率は、透過電子顕微鏡(TEM)、エネルギー分散型X線分光器(EDX)を用いて測定することができる。ここで、炭素質被膜の被覆率が80%未満では、炭素質被膜の被覆効果が不十分となり、リチウムイオンの脱挿入反応が電極活物質表面にて行なわれる際に、炭素質被膜が形成されていない箇所においてリチウムイオンの脱挿入に関わる反応抵抗が高くなり、放電末期の電圧降下が顕著になるので、好ましくない。
【0025】
この炭素質被膜中の炭素量は、電極活物質100質量部に対して0.6質量部以上かつ10質量部以下であることが好ましく、より好ましくは0.8質量部以上かつ2.5質量部以下である。
ここで、炭素質被膜中の炭素量を上記の範囲に限定した理由は、炭素量が0.6質量部未満では、炭素質被膜の被覆率が80%を下回ってしまい、電池を形成した場合に高速充放電レートにおける放電容量が低くなり、充分な充放電レート性能を実現することが困難となるからである。一方、炭素量が10質量部を超えると、電極活物質には導電性を得るために必要最低限となる炭素質被膜を形成するための炭素量を超える量の炭素が含まれることとなり、電極活物質の単位重量あたりのリチウムイオン電池の電池容量が必要以上に低下するからである。
【0026】
この凝集体の平均粒子径は、1.0μm以上かつ100μm以下が好ましく、より好ましくは1μm以上かつ20μm以下である。
ここで、凝集体の平均粒子径を上記の範囲とした理由は、平均粒子径が1.0μm未満では、凝集体が細かすぎるために舞い易くなり、電極塗工用ペーストを作製する際に取り扱いが困難になるからであり、一方、平均粒子径が100μmを超えると、電池用電極を作製した際に、乾燥後の電極の膜厚を超える大きさの凝集体が存在する可能性が高くなり、したがって、電極の膜厚の均一性を保持することができなくなるからである。
【0027】
この凝集体の体積密度とは、水銀ポロシメーターを用いて測定することができるものであり、この凝集体により構成される電極材料全体の質量と、凝集体を構成する粒子の間隙の体積とから算出されるものである。換言すれば、この凝集体を構成している粒子間隙の体積の総和から粒子間の間隙を除いた凝集体の粒子内部の粒子間隙と、この凝集体により構成される電極材料全体の質量から算出される凝集体の密度のことである。
【0028】
この凝集体の体積密度としては、この凝集体を中実とした場合の体積密度の50体積%以上かつ80体積%以下が好ましく、より好ましくは55体積%以上かつ75体積%以下、さらに好ましくは60体積%以上かつ75体積%以下である。
このように、この凝集体の体積密度を50体積%以上とすることで、凝集体が緻密化することにより凝集体の強度が増し、例えば、電極活物質をバインダー、導電助剤、溶媒と混合して電極スラリーを調製する際に凝集体が崩れ難くなり、その結果、電極スラリーの粘度の上昇が抑制され、かつ流動性が保たれることにより、塗工性が良くなると共に、電極スラリーの塗膜における電極活物質の充填性の向上をも図ることができる。
【0029】
ここで、凝集体の体積密度が上記の範囲外、例えば、凝集体を中実とした場合の体積密度の50体積%未満では、電極活物質の凝集体内部の細孔における芳香族炭素化合物の蒸気の濃度が低くなりすぎてしまい、凝集体の中心部における炭素質被膜の膜厚が薄くなり、電極活物質の内部抵抗が高くなるので好ましくなく、一方、凝集体の体積密度が、凝集体を中実とした場合の体積密度の80体積%を超えると、凝集体の内部の密度が高くなりすぎて、凝集体内部のチャネル状(網目状)の細孔が小さくなってしまい、その結果、凝集体内部に有機化合物の炭化の際に生成するタール状物質が閉じ込められてしまうので、好ましくない。
【0030】
なお、電極スラリー作製時に凝集体が崩れる場合には、電極活物質粒子同士を結着するバインダーの必要量が増えるので、電極スラリーの粘度上昇、電極スラリーの固形分濃度低下、正極膜重量に占める電極活物質比率の低下を招き、好ましくない。
【0031】
この凝集体のタップ密度は、1.0g/cm以上かつ1.5g/cm以下が好ましい。
ここで、凝集体のタップ密度が1.0g/cm未満では、電極スラリーを作製する際に凝集体内部の空隙および凝集体間隙へ保持される溶媒量が多くなるために電極スラリーの固形分濃度が低くなり、したがって、電極スラリーを塗布した塗膜の乾燥に要する時間が長くなるので好ましくない。一方、凝集体のタップ密度が1.5g/cmを超えると、電極スラリーを塗布した塗膜における凝集体の充填性が高くなり過ぎ、乾燥に際して溶媒が揮発しにくくなるので好ましくない。
【0032】
この凝集体に内在する細孔の細孔分布は、水銀ポロシメーターを用いて測定することができるものであり、この細孔分布としては、単峰性であることが好ましい。
ここで、細孔分布が単峰性であることが好ましい理由は、細孔分布が正規分布となることで、凝集体の内部における粗大な空隙の量が減少し、凝集体の体積密度が均一化することにより、この凝集体の内部から気化する芳香族系炭素化合物の量が均一化され、よって、凝集体内の電極活物質の表面に担持される炭素質被膜の担持量のムラが小さくなるからである。
【0033】
この細孔分布における累積体積百分率が50%の細孔径(D50)、すなわち平均細孔径は0.3μm以下であることが好ましく、より好ましくは0.1μm以上かつ0.25μm以下である。
ここで、細孔の平均細孔径が0.3μm以下であることが好ましい理由は、平均細孔径が0.3μmを超えると、凝集体の体積密度が50体積%を下回ることとなり、かつ電極スラリーを作製した際に結着剤が凝集体の内部に侵入し易くなり、その結果、凝集粒子間を繋ぐ結着剤の量が減少し、電極膜の強度が低下するからである。
【0034】
この凝集体に内在する細孔の細孔径分布における累積百分率が90%の細孔径(D90)は1.0μm以下が好ましく、より好ましくは0.5μm以下である。
ここで、D90が1.0μm以下であることが好ましい理由は、細孔径分布におけるD90が1.0μmを超えると、細孔径分布の単峰性が維持できなくなり、凝集体内部の粗大な空隙の量が増加することにより凝集体の体積密度が不均一となり、その結果、この凝集体の内部から気化する芳香族系炭素化合物の量が不均一となり、よって、凝集体内の電極活物質の表面に担持される炭素質被膜の担持量のムラが大きくなるからである。
【0035】
さらに、この凝集体の外周部における炭素質被膜の平均膜厚に対する、この凝集体の中心部における炭素質被膜の平均膜厚の比(中心部炭素質被膜の厚み/外周部炭素質被膜の厚み)は、0.7以上かつ1.3以下であることが好ましく、より好ましくは0.8以上かつ1.2以下である。
ここで、平均膜厚の比(中心部炭素質被膜の厚み/外周部炭素質被膜の厚み)が上記の範囲外であると、凝集体の外周部または中心部における炭素質被膜の厚みが薄くなり、電極活物質の内部抵抗が高くなるので、好ましくない。
【0036】
なお、ここでいう「内部抵抗」とは、電極活物質粒子の中でも、表面に炭素質被膜が形成されていないか、または炭素質被膜の厚みが薄い粒子におけるリチウムイオンの脱挿入に関わる反応抵抗が高い箇所をいい、具体的には、リチウムイオン電池の電極活物質として用いた際に、放電末期の電圧降下の大小として現れる。すなわち、電極活物質粒子の表面全体で均一にリチウムイオンの脱挿入反応が行われる電極活物質においては、放電末期の電圧降下が小さく、また、電極活物質粒子の表面の一部がリチウムイオンの脱挿入反応抵抗が高い電極活物質においては、放電末期の電圧降下が顕著に現れる。
【0037】
[電極材料の製造方法]
本実施形態の電極材料の製造方法は、電極活物質または電極活物質の前駆体と、有機化合物と、前記電極活物質または前記電極活物質の前駆体を分散するための沸点の異なる2種類以上の溶媒からなる混合液とを含むスラリーを乾燥し、次いで、得られた乾燥物を500℃以上かつ1000℃以下の非酸化性雰囲気下にて焼成する方法である。
【0038】
ここで、沸点の異なる2種類以上の溶媒からなる混合液とは、水(沸点:100℃/1気圧下)、メタノール(沸点:64.1℃/1気圧下)、エタノール(沸点:78.3℃/1気圧下)、2−プロパノール(沸点:82.4℃/1気圧下)等の1価アルコール、エチレングリコール(沸点:197℃/1気圧下)等の2価アルコール、グリセリン(沸点:290℃/1気圧下)等の3価アルコール、糖アルコール、フェノール類、シクロアルカン、シクロアルケン、シクロアルキン、ベンゼン系芳香族化合物、縮合環芳香族化合物、ベンゾ縮合環化合物、複素芳香族化合物、非ベンゼン系芳香族化合物の群から選択される2種以上の溶媒からなる混合物のことである。
【0039】
電極活物質としては、上記の電極材料にて記載したのと同様、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、チタン酸リチウム及びLiPO(但し、AはCo、Mn、Ni、Fe、Cu、Crの群から選択される1種または2種以上、DはMg、Ca、S、Sr、Ba、Ti、Zn、B、Al、Ga、In、Si、Ge、Sc、Y、希土類元素の群から選択される1種または2種以上、0<x<2、0<y<1.5、0≦z<1.5)の群から選択される1種を主成分とすることが好ましい。
【0040】
ここで、Aについては、Co、Mn、Ni、Feが、Dについては、Mg、Ca、Sr、Ba、Ti、Zn、Alが、高い放電電位、豊富な資源量、安全性などの点から好ましい。
ここで、希土類元素とは、ランタン系列であるLa、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luの15元素のことである。
【0041】
LiPOにて表される化合物(LiPO粉体)としては、固相法、液相法、気相法等の従来の方法により製造したものを用いることができる。
この化合物(LiPO粉体)としては、例えば、酢酸リチウム(LiCHCOO)、塩化リチウム(LiCl)等のリチウム塩、あるいは水酸化リチウム(LiOH)からなる群から選択されたLi源と、塩化鉄(II)(FeCl)、酢酸鉄(II)(Fe(CHCOO))、硫酸鉄(II)(FeSO)等の2価の鉄塩と、リン酸(HPO)、リン酸2水素アンモニウム(NHPO)、リン酸水素二アンモニウム((NHHPO)等のリン酸化合物と、水とを混合して得られるスラリー状の混合物を、耐圧密閉容器を用いて水熱合成し、得られた沈殿物を水洗してケーキ状の前駆体物質を生成し、このケーキ状の前駆体物質を焼成して得られた化合物(LiPO粉体)を好適に用いることができる。
【0042】
このLiPO粉体は、結晶性粒子であっても非晶質粒子であってもよく、結晶質粒子と非晶質粒子が共存した混晶粒子であってもよい。ここで、LiPO粉体が非晶質粒子でも良いとする理由は、この非晶質のLiPO粉体は、500℃以上かつ1000℃以下の非酸化性雰囲気下にて熱処理すると、結晶化するからである。
【0043】
この電極活物質の大きさは、特に限定されないが、1次粒子の平均粒径は0.01μm以上かつ20μm以下であることが好ましく、より好ましくは0.02μm以上かつ5μm以下である。
ここで、電極活物質の1次粒子の平均粒径を上記の範囲に限定した理由は、1次粒子の平均粒径が0.01μm未満では、1次粒子の表面を薄膜状の炭素で充分に被覆することが困難となり、高速充放電レートにおける放電容量が低くなり、充分な充放電レート性能を実現することが困難となるので、好ましくなく、一方、1次粒子の平均粒径が20μmを超えると、1次粒子の内部抵抗が大きくなり、したがって、高速充放電レートにおける放電容量が不充分となるので、好ましくない。
【0044】
この電極活物質の形状は、特に限定されないが、球状、特に真球状の2次粒子からなる電極材料が生成し易いことから、この電極活物質の形状も、球状、特に真球状のものが好適である。
ここで、電極活物質の形状が球状であることが好ましい理由は、電極活物質と、バインダー樹脂(結着剤)と、溶媒とを混合して正電極用ペーストを調製する際の溶媒量を低減させることができると共に、この正電極用ペーストの集電体への塗工も容易となるからである。
【0045】
また、電極活物質の形状が球状であれば、電極活物質の表面積が最小となり、電極材料合剤に添加するバインダー樹脂(結着剤)の配合量を最小限にすることができ、得られる正電極の内部抵抗を小さくすることができるので、好ましい。
さらに、電極活物質が最密充填し易いので、単位体積あたりの正極材料の充填量が多くなり、よって、電極密度を高くすることができ、その結果、リチウムイオン電池の高容量化を図ることができるので、好ましい。
【0046】
また、有機化合物としては、例えば、ポリビニルアルコール、ポリビニルピロリドン、ポリ酢酸ビニル等のビニル類、セルロース、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース等のセルロース類、グルコース、フルクトース、ガラクトース、マンノース、マルトース、スクロース、ラクトース等の糖類、デンプン、ゼラチン、ポリアクリル酸、ポリスチレンスルホン酸、ポリアクリルアミド、グリコーゲン、ペクチン、アルギン酸、グルコマンナン、キチン、ヒアルロン酸、コンドロイチン、アガロース、ポリエーテル、2価アルコール、3価アルコール等が挙げられる。
【0047】
電極活物質と有機化合物との配合比は、有機化合物の全量を炭素量に換算したとき、電極活物質100質量部に対して0.6質量部以上かつ10質量部以下であることが好ましく、より好ましくは0.8質量部以上かつ2.5質量部以下である。
ここで、有機化合物の炭素量換算の配合比が0.6質量部未満では、炭素質被膜の被覆率が80%を下回ることとなり、電池を形成した場合に高速充放電レートにおける放電容量が低くなり、充分な充放電レート性能を実現することが困難となる。一方、有機化合物の炭素量換算の配合比が10質量部を超えると、相対的に電極活物質の配合比が低くなり、電池を形成した場合に電池の容量が低くなるとともに、炭素質被膜の過剰な担持により電極活物質が嵩高くなり、したがって、電極密度が低くなり、単位体積あたりのリチウムイオン電池の電池容量の低下が無視できなくなる。
【0048】
これら電極活物質と有機化合物とを、沸点の異なる2種類以上の溶媒からなる混合液に溶解または分散させて、均一なスラリーを調製する。この溶解または分散の際には、必要に応じて分散剤を添加してもよい。
これら電極活物質と有機化合物とを沸点の異なる2種類以上の溶媒からなる混合液に溶解または分散させる方法としては、電極活物質が分散し、かつ有機化合物が溶解または分散する方法であれば、特に限定しないが、例えば、遊星ボールミル、振動ボールミル、ビーズミル、ペイントシェーカー、アトライタ等の媒体粒子を高速で攪拌する媒体攪拌型分散装置を用いる方法が好ましい。
【0049】
この溶解または分散の際には、電極活物質を1次粒子として分散させ、その後有機化合物を溶解するように攪拌することが好ましい。このようにすれば、電極活物質の1次粒子の表面が有機化合物で被覆され、その結果として、これらを非酸化性雰囲気下にて焼成した場合に、電極活物質の1次粒子の間に有機化合物由来の炭素が均一に介在するようになる。
また、スラリー中の電極活物質または電極活物質の前駆体の粒度分布においては、この粒度分布における累積体積百分率が90%の平均粒子径(D90)の、同粒度分布における累積体積百分率が10%の平均粒子径(D10)に対する比(D90/D10)が5以上かつ30以下となるように、スラリーの分散条件、例えば、スラリー中の電極活物質及び有機化合物の濃度、撹拌速度、撹拌時間等を適宜調整するとよい。これにより、このスラリーを噴霧・乾燥して得られる凝集体のタップ密度が1.0g/cm以上かつ1.5g/cm以下となる。
【0050】
次いで、このスラリーを高温雰囲気中、例えば70℃以上かつ250℃以下の大気中に噴霧し、乾燥させる。
この噴霧の際の液滴の平均粒径は、0.05μm以上かつ100μm以下であることが好ましく、より好ましくは1μm以上かつ20μm以下である。
噴霧の際の液滴の平均粒径を上記の範囲とすることで、平均粒子径が1.0μm以上かつ100μm以下、好ましくは1.0μm以上かつ20μm以下の乾燥物が得られる。
【0051】
次いで、この乾燥物を、非酸化性雰囲気下、500℃以上かつ1000℃以下、好ましくは600℃以上かつ900℃以下の範囲内の温度にて0.1時間以上かつ40時間以下、焼成する。
この非酸化性雰囲気としては、窒素(N)、アルゴン(Ar)等の不活性雰囲気が好ましく、より酸化を抑えたい場合には水素(H)等の還元性ガスを含む還元性雰囲気が好ましい。また、焼成時に非酸化性雰囲気中に蒸発した有機分を除去する目的で、酸素(O)等の支燃性及び可燃性ガスを不活性雰囲気中に導入することとしてもよい。
【0052】
また、焼成温度を500℃以上かつ1000℃以下とした理由は、焼成温度が500℃未満では、乾燥物に含まれる有機化合物の分解・反応が充分に進行しないために、有機化合物の炭化が不充分なものとなり、その結果、得られた凝集体中に高抵抗の有機物分解物が生成することとなるからであり、一方、焼成温度が1000℃を超えると、電極活物質中のLiが蒸発して電極活物質に組成のズレが生じるだけでなく、電極活物質の粒成長が促進され、その結果、高速充放電レートにおける放電容量が低くなり、充分な充放電レート性能を実現することが困難となるからである。
【0053】
ここで、乾燥物を焼成する際の条件、例えば、昇温速度、最高保持温度、保持時間等を適宜調整することにより、得られる凝集体の粒度分布を制御することが可能である。
以上により、乾燥物中の有機化合物が熱分解して生成した炭素により電極活物質の1次粒子の表面が被覆され、よって、この電極活物質の1次粒子の間に炭素が介在した2次粒子からなる凝集体が得られる。
この凝集体が、本実施形態における電極材料となる。
【0054】
[電極]
本実施形態の電極は、本実施形態の電極材料を含有してなる電極である。
本実施形態の電極を作製するには、上記の電極材料と、バインダー樹脂からなる結着剤と、溶媒とを混合して、電極形成用塗料または電極形成用ペーストを調整する。この際、必要に応じてカーボンブラック等の導電助剤を添加してもよい。
上記の結着剤、すなわちバインダー樹脂としては、例えば、ポリテトラフルオロエチレン(PTFE)樹脂、ポリフッ化ビニリデン(PVdF)樹脂、フッ素ゴム等が好適に用いられる。
上記の電極材料とバインダー樹脂との配合比は、特に限定されないが、例えば、電極材料100質量部に対してバインダー樹脂を1質量部以上かつ30質量部以下、好ましくは3質量部以上かつ20質量部以下とする。
【0055】
この電極形成用塗料または電極形成用ペーストに用いる溶媒としては、水、メタノール、エタノール、1−プロパノール、2−プロパノール(イソプロピルアルコール:IPA)、ブタノール、ペンタノール、ヘキサノール、オクタノール、ジアセトンアルコール等のアルコール類、酢酸エチル、酢酸ブチル、乳酸エチル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、γ−ブチロラクトン等のエステル類、ジエチルエーテル、エチレングルコールモノメチルエーテル(メチルセロソルブ)、エチレングルコールモノエチルエーテル(エチルセロソルブ)、エチレングルコールモノブチルエーテル(ブチルセロソルブ)、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル等のエーテル類、アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)、アセチルアセトン、シクロヘキサノン等のケトン類、ジメチルホルムアミド、N,N−ジメチルアセトアセトアミド、N−メチルピロリドン等のアミド類、エチレングリコール、ジエチレングリコール、プロピレングリコール等のグリコール類等を挙げることができる。これらは、1種のみを単独で用いてもよく、2種以上を混合して用いてもよい。
【0056】
次いで、この電極形成用塗料または電極形成用ペーストを、金属箔の一方の面に塗布し、その後、乾燥し、上記の電極材料とバインダー樹脂との混合物からなる塗膜が一方の面に形成された金属箔を得る。
次いで、この塗膜を加圧圧着し、乾燥して、金属箔の一方の面に電極材料層を有する集電体(電極)を作製する。
このようにして、本実施形態の電極を作製することができる。
【0057】
この集電体(電極)を正極とすることで、リチウムイオン電池を得ることができる。
このリチウムイオン電池は、本実施形態の電極材料を用いて集電体(電極)を作製することにより、集電体(電極)の内部抵抗を小さくすることができる。したがって、内部抵抗の小さな集電体(電極)を、リチウムイオン電池用の正極として提供することができる。
【0058】
本実施形態の電極材料によれば、表面に炭素質被膜が形成された電極活物質粒子を凝集してなる凝集体の平均粒子径を1.0μm以上かつ100μm以下、この凝集体の体積密度を、この凝集体を中実とした場合の体積密度の50体積%以上かつ80体積%以下とし、さらに、凝集体に内在する細孔の細孔分布を単峰性とし、この細孔分布における平均細孔径を0.3μm以下としたので、電極活物質粒子の表面に形成された炭素質被膜の担持量のムラを小さくすることができ、よって、電極活物質の電子導電性のムラを小さくすることができる。したがって、リチウムイオン電池の電極材料として用いた場合に、内部抵抗を小さくすることができる。
【0059】
本実施形態の電極材料の製造方法によれば、電極活物質または電極活物質の前駆体と、有機化合物と、この電極活物質または電極活物質の前駆体を分散するための沸点の異なる2種類以上の溶媒からなる混合液とを含むスラリーを乾燥することにより、スラリーに含まれる2種類以上の溶媒それぞれの蒸発速度が異なるために沸点の低い溶媒から選択的に蒸発し、それによって残存した沸点の高い溶媒からなるスラリーは流動性が著しく低下し、よって、このスラリーを乾燥して得られる顆粒形状の凝集体に内在する細孔の細孔分布を単峰性とすることができ、かつ、この凝集体の平均細孔径を0.3μm以下とすることができる。
【0060】
また、得られた乾燥物を500℃以上かつ1000℃以下の非酸化性雰囲気下にて焼成するので、電極活物質粒子の表面に形成された炭素質被膜の担持量のムラを小さくすることができ、この電極活物質の電子導電性のムラを小さくすることができる電極材料を、容易に製造することができる。
【0061】
本実施形態の電極によれば、本実施形態の電極材料を含有したので、電極の内部抵抗を小さくすることができる。したがって、この内部抵抗の小さな電極をリチウムイオン電池用の集電体(正極)とすることで、内部抵抗の小さな集電体(正極)を提供することができる。
【実施例】
【0062】
以下、実施例1〜6及び比較例1〜3により本発明を具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。
例えば、本実施例では、電極材料自体の挙動をデータに反映させるために負極に金属Liを用いたが、炭素材料、Li合金、LiTi12等の負極材料を用いてもかまわない。また電解液とセパレータの代わりに固体電解質を用いても良い。
【0063】
「実施例1」
(電極材料の作製)
水2L(リットル)に、4molの酢酸リチウム(LiCHCOO)、2molの硫酸鉄(II)(FeSO)、2molのリン酸(HPO)を、全体量が4Lになるように混合し、均一なスラリー状の混合物を調製した。
次いで、この混合物を容量8Lの耐圧密閉容器に収容し、120℃にて1時間、水熱合成を行った。
次いで、得られた沈殿物を水洗し、ケーキ状の電極活物質の前駆体を得た。
【0064】
次いで、この電極活物質の前駆体150g(固形分換算)と、有機化合物としてポリビニルアルコール(PVA)20gを水100gに溶解したポリビニルアルコール水溶液と、メタノール50gと、グリセリン50gと、媒体粒子として直径5mmのジルコニアボール500gをボールミルに投入し、スラリー中の電極活物質の前駆体粒子の粒度分布のD90/D10が7となるように、ボールミルの撹拌時間を調整し、分散処理を行った。
次いで、得られたスラリーを180℃の大気雰囲気中に噴霧し、乾燥して、平均粒子径が6μmの乾燥物を得た。
次いで、得られた乾燥物を700℃の窒素雰囲気下にて1時間、焼成し、平均粒子径が6μmの凝集体を得、この凝集体を実施例1の電極材料とした。
【0065】
(電極材料の評価)
この電極材料の細孔径分布(平均細孔径D50及び累積体積百分率が90%の細孔径D90)、炭素質被膜の平均膜厚の比(中心部炭素質被膜の厚み/外周部炭素質被膜の厚み)、凝集体の体積密度、炭素質被膜の被覆率、タップ密度及び平均一次粒子径それぞれの評価を行った。
評価方法は下記のとおりである。
【0066】
(1)凝集体内部の平均細孔径(D50)
水銀ポロシメーターを用いて測定した。
(2)凝集体内部の細孔径分布におけるD90
水銀ポロシメーターを用いて測定した。
(3)炭素質被膜の平均膜厚の比
凝集体の炭素質被膜を透過型電子顕微鏡(TEM)を用いて観察し、凝集体の中心部における異なる粒子の炭素質被膜厚み100点を測定して、その平均値を算出し、かつ、外周部における異なる粒子の炭素質被膜厚み100点を測定して、その平均値を算出し、これらの平均値を用いて炭素質被膜の平均膜厚の比(中心部炭素質被膜の厚み/外周部炭素質被膜の厚み)を算出した。
【0067】
(4)凝集体の体積密度
水銀ポロシメーターを用いて測定した。
(5)炭素質被膜の被覆率
凝集体の炭素質被膜を透過型電子顕微鏡(TEM)、エネルギー分散型X線分光器(EDX)を用いて観察し、凝集体の表面のうち炭素質被膜が覆っている部分の割合を算出し、被覆率とした。
(6)タップ密度
日本工業規格JIS R 1628「ファインセラミックス粉末のかさ密度測定方法」に準拠して測定した。
【0068】
(7)平均一次粒子径
凝集体の一次粒子を走査型電子顕微鏡(SEM:Scanning Electron Microscope)を用いて観察し、得られた画像から1000個の一次粒子の長径をそれぞれ測定し、これらの測定値の平均値を平均一次粒子径とした。
評価結果を表1及び表2に示す。
【0069】
(リチウムイオン電池の作製)
上記の電極材料と、バインダーとしてポリフッ化ビニリデン(PVdF)と、導電助剤としてアセチレンブラック(AB)とを、質量比が90:5:5となるように混合し、さらに溶媒としてN−メチル−2−ピロリジノン(NMP)を加えて流動性を付与し、スラリーを作製した。
次いで、このスラリーを厚み15μmのアルミニウム(Al)箔上に塗布し、乾燥した。その後、600kgf/cmの圧力にて加圧し、実施例1のリチウムイオン電池の正極を作製した。
【0070】
このリチウムイオン電池の正極に対し、負極としてリチウム金属を配置し、これら正極と負極の間に多孔質ポリプロピレンからなるセパレーターを配置し、電池用部材とした。
一方、炭酸エチレンと炭酸ジエチルとを1:1(質量比)にて混合し、さらに1MのLiPF溶液を加えて、リチウムイオン伝導性を有する電解質溶液を作製した。
次いで、上記の電池用部材を上記の電解質溶液に浸漬し、実施例1のリチウムイオン電池を作製した。
【0071】
(リチウムイオン電池の評価)
このリチウムイオン電池の内部抵抗、充放電特性それぞれの評価を行った。
評価方法は下記のとおりである。
【0072】
(1)充放電特性
上記のリチウムイオン電池の充放電試験を、室温(25℃)にて、カットオフ電圧2−4.5V、充放電レート1Cの定電流(1時間充電の後、1時間放電)下にて実施した。充放電特性を図1に、初期放電容量を表2に、それぞれ示す。
(2)内部抵抗
図1に示す放電曲線においては、放電末期に認められる電圧降下が、炭素質被膜によって被覆されていない電極活物質の存在を示している。そこで、電圧降下が顕著に認められる試料を、内部抵抗が高い試料と判断した。
ここでは、電圧降下が認められないか、電圧降下が小さい試料を「○」、電圧降下が顕著に認められる試料を「×」と評価した。
評価結果を表2に示す。
【0073】
「実施例2」
噴霧・乾燥するスラリーの原料として、電極活物質の前駆体150g(固形分換算)と、有機化合物としてポリビニルアルコール(PVA)20gを水100gに溶解したポリビニルアルコール水溶液と、メタノール20gとグリセリン80gとの混合液を用いた外は、実施例1と同様にして、電極材料及びリチウムイオン電池正電極を作製し、評価を行った。評価結果を表1及び表2に示す。
なお、実施例2においても、実施例1と同様の放電末期の電圧降下が認められた。
【0074】
「実施例3」
噴霧・乾燥するスラリーの原料として、電極活物質の前駆体150g(固形分換算)と、有機化合物としてポリビニルアルコール(PVA)20gを水100gに溶解したポリビニルアルコール水溶液と、メタノール80gとグリセリン20gとの混合液を用いた外は、実施例1と同様にして、電極材料及びリチウムイオン電池正電極を作製し、評価を行った。評価結果を表1及び表2に示す。
なお、実施例3においても、実施例1と同様の放電末期の電圧降下が認められた。
【0075】
「実施例4」
噴霧・乾燥するスラリーの原料として、電極活物質の前駆体150g(固形分換算)と、有機化合物としてポリビニルアルコール(PVA)20gを水180gに溶解したポリビニルアルコール水溶液と、メタノール10gとグリセリン10gとの混合液を用いた外は、実施例1と同様にして、電極材料及びリチウムイオン電池正電極を作製し、評価を行った。評価結果を表1及び表2に示す。
なお、実施例4においても、実施例1と同様の放電末期の電圧降下が認められた。
【0076】
「実施例5」
噴霧・乾燥するスラリーの原料として、電極活物質の前駆体150g(固形分換算)と、有機化合物としてメチルセルロース(MC)20gを水100gに溶解したメチルセルロース水溶液と、メタノール50gとグリセリン50gとの混合液を用いた外は、実施例1と同様にして、電極材料及びリチウムイオン電池正電極を作製し、評価を行った。評価結果を表1及び表2に示す。
なお、実施例5においても、実施例1と同様の放電末期の電圧降下が認められた。
【0077】
「実施例6」
噴霧・乾燥するスラリーの原料として、電極活物質の前駆体150g(固形分換算)と、有機化合物としてポリビニルアルコール(PVA)20gを水100gに溶解したポリビニルアルコール水溶液と、メタノール50gとエチレングリコール50gとの混合液を用いた外は、実施例1と同様にして、電極材料及びリチウムイオン電池正電極を作製し、評価を行った。評価結果を表1及び表2に示す。
なお、実施例6においても、実施例1と同様の放電末期の電圧降下が認められた。
【0078】
「比較例1」
噴霧・乾燥するスラリーの原料として、電極活物質の前駆体150g(固形分換算)と、有機化合物としてポリビニルアルコール(PVA)20gを水200gに溶解したポリビニルアルコール水溶液を用いた外は、実施例1と同様にして、電極材料及びリチウムイオン電池正電極を作製し、評価を行った。評価結果を表1及び表2に、充放電特性を図1に、それぞれ示す。
【0079】
「比較例2」
噴霧・乾燥するスラリの原料として、電極活物質の前駆体150g(固形分換算)と、有機化合物としてポリビニルアルコール(PVA)20gを水190gに溶解したポリビニルアルコール水溶液と、メタノール5gとグリセリン5gとの混合液を用いた外は、実施例1と同様にして、電極材料及びリチウムイオン電池正電極を作製し、評価を行った。評価結果を表1及び表2に示す。
【0080】
「比較例3」
噴霧・乾燥するスラリーの原料として、電極活物質の前駆体150g(固形分換算)と、有機化合物としてポリビニルアルコール(PVA)20gを水190gに溶解したポリビニルアルコール水溶液と、メタノール2gとグリセリン8gとの混合液を用いた外は、実施例1と同様にして、電極材料及びリチウムイオン電池正電極を作製し、評価を行った。評価結果を表1及び表2に示す。
【0081】
「比較例4」
噴霧・乾燥するスラリーの原料として、電極活物質の前駆体150g(固形分換算)と、有機化合物としてポリビニルアルコール(PVA)20gを水190gに溶解したポリビニルアルコール水溶液と、メタノール8gとグリセリン2gとの混合液を用いた外は、実施例1と同様にして、電極材料及びリチウムイオン電池正電極を作製し、評価を行った。評価結果を表1及び表2に示す。
【0082】
【表1】

【0083】
【表2】

【0084】
以上の結果によれば、実施例1〜6の電極材料は、炭素質被膜の平均膜厚の比が0.7〜1.3の範囲であり、比較例1〜4の電極材料と比べて、タップ密度及び炭素質被膜の被覆率が高く、電極活物質の表面に形成された炭素質被膜の担持量のムラが小さいことが分かった。また、実施例1〜6の電極材料は、比較例1〜4の電極材料と比べて内部抵抗が低く、リチウムイオン電池の電極材料として用いた場合に、内部抵抗を低下させることができることが分かった。
また、図1によれば、実施例1の電極材料は、比較例1の電極材料と比べて放電容量が高く、放電特性に優れていることが分かった。
【産業上の利用可能性】
【0085】
本発明の電極材料は、表面に炭素質被膜が形成された電極活物質粒子を凝集してなる凝集体の平均粒子径を1.0μm以上かつ100μm以下、この凝集体の体積密度を、この凝集体を中実とした場合の体積密度の50体積%以上かつ80体積%以下とし、さらに、凝集体に内在する細孔の細孔分布を単峰性とし、この細孔分布における平均細孔径を0.3μm以下としたことにより、電極活物質粒子の表面に形成された炭素質被膜の担持量のムラを小さくすることができ、よって、電極活物質の電子導電性のムラを小さくすることができ、さらには、リチウムイオン電池の電極材料として用いた場合に、内部抵抗を小さくすることができるものであるから、リチウムイオン電池のさらなる放電特性の向上が可能なのはもちろんのこと、より小型化、軽量化、高容量化が期待される次世代の二次電池に対しても適用することが可能であり、次世代の二次電池の場合、その効果は非常に大きなものである。

【特許請求の範囲】
【請求項1】
表面に炭素質被膜が形成された電極活物質粒子を凝集してなる凝集体からなり、
前記凝集体の平均粒子径は1.0μm以上かつ100μm以下であり、
前記凝集体の体積密度は、前記凝集体を中実とした場合の体積密度の50体積%以上かつ80体積%以下であり、
前記凝集体に内在する細孔の細孔分布は単峰性であり、かつ該細孔分布における平均細孔径は0.3μm以下であることを特徴とする電極材料。
【請求項2】
前記電極活物質粒子の表面の80%以上を前記炭素質被膜にて被覆してなることを特徴とする請求項1記載の電極材料。
【請求項3】
前記凝集体は、内部に細孔を有する凝集体であり、この凝集体に内在する細孔の細孔径分布における累積体積百分率が90%の細孔径(D90)は1.0μm以下であり、前記凝集体の外周部における前記炭素質被膜の平均膜厚に対する該凝集体の中心部における前記炭素質被膜の平均膜厚の比(中心部炭素質被膜の厚み/外周部炭素質被膜の厚み)は0.7以上かつ1.3以下であることを特徴とする請求項1または2記載の電極材料。
【請求項4】
前記炭素質被膜中の炭素量は、前記電極活物質粒子100質量部に対して0.6質量部以上かつ10質量部以下であることを特徴とする請求項1ないし3のいずれか1項記載の電極材料。
【請求項5】
前記凝集体のタップ密度は、1.0g/cm以上かつ1.5g/cm以下であることを特徴とする請求項1ないし4のいずれか1項記載の電極材料。
【請求項6】
前記電極活物質は、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、チタン酸リチウム及びLiPO(但し、AはCo、Mn、Ni、Fe、Cu、Crの群から選択される1種または2種以上、DはMg、Ca、S、Sr、Ba、Ti、Zn、B、Al、Ga、In、Si、Ge、Sc、Y、希土類元素の群から選択される1種または2種以上、0<x<2、0<y<1.5、0≦z<1.5)の群から選択される1種を主成分とすることを特徴とする請求項1ないし5のいずれか1項記載の電極材料。
【請求項7】
請求項1ないし6のいずれか1項記載の電極材料を含有してなることを特徴とする電極。
【請求項8】
電極活物質または電極活物質の前駆体と、有機化合物と、前記電極活物質または前記電極活物質の前駆体を分散するための沸点の異なる2種類以上の溶媒からなる混合液とを含むスラリーを乾燥し、
次いで、得られた乾燥物を500℃以上かつ1000℃以下の非酸化性雰囲気下にて焼成することを特徴とする電極材料の製造方法。

【図1】
image rotate


【公開番号】特開2013−69564(P2013−69564A)
【公開日】平成25年4月18日(2013.4.18)
【国際特許分類】
【出願番号】特願2011−207832(P2011−207832)
【出願日】平成23年9月22日(2011.9.22)
【出願人】(000183266)住友大阪セメント株式会社 (1,342)
【Fターム(参考)】