説明

電気化学デバイスおよびその製造方法

【課題】電気化学素子を収容する外装フィルムにおけるリード端子引き出し部位のシール性の向上を図ることができる電気化学デバイスを提供する。
【解決手段】少なくとも最内層41が熱接着性合成樹脂からなる積層状の外装フィルム4に電気化学素子10を収容して該外装フィルム4のシール部4dをヒートシールする電気化学デバイスであって、前記電気化学素子10に接続されているリード端子5,6に、外装フィルム4のシール部4dに対応して積層状のリード端子用被覆フィルム7を設け、このリード端子用被覆フィルム7における最外層73の融点を前記外装フィルム4の最内層41の融点未満に設定する。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、例えば電気自動車や携帯電話等の電源に使用されるリチウムイオン2次電池ないしは電気二重層キャパシタ等に適用される電気化学デバイスおよびその製造方法に関する。
【背景技術】
【0002】
従来より、医薬品や食品分野等の包装材として広く用いられている包装用ラミネート材料は、その応用として、電極や電解液を封入することにより電池をはじめとする電気化学デバイスの外装フィルムとしても利用されており、それらの軽量化および薄層化に大きく貢献している。
【0003】
従来、例えば、電極や電解質を含む発電要素を外装フィルムに収容するとともに、リード端子を引き出した状態で外装フィルムの周縁部に対してヒートシールを施して融着することにより、前記発電要素を封入する構造が開示されている(例えば、特許文献1参照)。
【0004】
このような包装用ラミネート材料からなる外装フィルムは、複数層からなり、その最外層が例えばポリエチレンテレフタレート(PET)やナイロンで構成される一方、電解液等と接する最内層が熱溶着性の材料(例えば、高密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン、ポリエチレン系のアイオノマー、ポリプロピレンのようなポリオレフィン樹脂)で構成されている。
【0005】
また、外装フィルムには、電気化学デバイスに対する外部からの水分の浸入や内部からの電解液の蒸発を防止するために、中間層に位置してアルミニウム箔あるいはSUS箔等の金属箔を設けてある。なお、最外層は、機械的強度を保ち、中間層の金属箔を保護することを目的とし、突き刺しなどの外力から守る役割を果たしている。
【0006】
このような電気化学デバイスを作製するには、包装用ラミネート材料を、例えば方形状に切り出して外装フィルムとし、それで電極や電解液等を含む素子を収容した状態で該外装フィルムにおける周縁部等のシール部を熱圧着し、これにより、前記電極や電解液等の電気化学素子が外装フィルム内に封入されることになる。
【0007】
ところで、この電気化学デバイスにおける一対のリード端子は、各外端部が外装フィルムにおけるシール部から外部に引き出されるとともに、該シール部に対応する部位がヒートシールによって外装フィルムにおける最内層の熱溶着性合成樹脂に接着されているが、シール時にリード端子が外装フィルムにおける最内層を突き破り、中間層の金属箔に接触して、短絡してしまう場合がある。
【0008】
このような不具合を防止するため、従来、外装フィルムにおけるシール部に対応してリード端子に対して合成樹脂フィルムで被覆する技術が提案されている(例えば、特許文献2参照)。具体的には、例えば正極側リード端子あるいは負極リード端子における前記シール部に対応する部位を予め絶縁性の熱融着性合成樹脂のフィルムで被覆しておくものである。
【0009】
しかし、このようにリード端子に被覆フィルムを設ける技術を適用したものであっても、被覆フィルムの構成材である合成樹脂と該リード端子の構成材である金属との密着性不足によって十分なシール性が得られず、電池のサイクル寿命を延ばす障害となっていた。
【0010】
この問題を解決するため、既に、リード端子に対して、金属と密着性の良い接着性合成樹脂層を最内層として、その上に絶縁性合成樹脂層、最外層にオレフィン樹脂層を順次積層する技術が開示されている(例えば、特許文献3参照)。
【先行技術文献】
【特許文献】
【0011】
【特許文献1】特公昭59−38708号公報
【特許文献2】特開平10−302756号公報
【特許文献3】特開2001−57184号公報
【発明の概要】
【発明が解決しようとする課題】
【0012】
しかしながら、上記構成の電気化学デバイスにあっても、外装フィルムにおける最内層の合成樹脂とリード端子上に設けられた最外層のオレフィン樹脂層との間で十分なシール性が確保できないといった問題があった。
【0013】
これはヒートシールを施す際、金属材であるリード端子より放熱が起こり、外装フィルムの最内層の合成樹脂よりもリード端子側の最外層のオレフィン樹脂層の溶融が遅れる傾向にあることに起因しており、この現象はリード端子の厚みが大きくなる程、顕著に現れてしまう。
【0014】
この発明は、上記実情に鑑みてなされたものであり、リード端子用被覆フィルムと外装フィルムとの密着性を高めて、適正なシール性を確保でき、耐久性能の向上を図ることができる電気化学デバイスおよびその製造方法を提供することを課題とする。
【課題を解決するための手段】
【0015】
上記課題は、以下の手段によって解決される。
【0016】
[1]少なくとも最内層が熱接着性合成樹脂からなる積層状の外装フィルムと、
前記外装フィルムに収容された電気化学素子と、
内端部が前記電気化学素子に電気的に接続されて、外端部が外装フィルムから外部に引き出されたリード端子と、
最外層が前記外装フィルムの最内層と相溶性を有する熱接着性合成樹脂で構成されて、前記外装フィルムによるシール部に対応して設けられた積層状のリード端子用被覆フィルムとを備えており、
前記リード端子を前記被覆フィルムを介して挟んだ状態で前記外装フィルムによるシール部がヒートシールで融着され、
前記リード端子用被覆フィルムにおける最外層の融点が前記外装フィルムの最内層の融点未満に設定されていることを特徴とする電気化学デバイス。
【0017】
[2]前記外装フィルムにおける最内層の融点と前記リード端子用被覆フィルムにおける最外層の融点との差が9℃以上である前項1に記載の電気化学デバイス。
【0018】
[3]前記外装フィルムにおける最内層の融点が124℃以上である前項1または2に記載の電気化学デバイス。
【0019】
[4]前記リード端子用被覆フィルムの厚みが、0.08〜0.25mmである前項1ないしは3のいずれか一つの項に記載の電気化学デバイス。
【0020】
[5]リード端子用被覆フィルムにおける最外層の融点が168℃以下である前項1ないしは4のいずれか一つの項に記載の電気化学デバイス。
【0021】
[6]前記外装フィルムにおける最内層と前記リード端子用被覆フィルムにおける最外層とが同系統の合成樹脂で構成されている前項1ないしは5のいずれか一つの項に記載の電気化学デバイス。
【0022】
[7]前記外装フィルムにおける最内層と前記リード端子用被覆フィルムにおける最外層とは、オレフィン系の合成樹脂で構成されている前項6に記載の電気化学デバイス。
【0023】
[8]前記リード端子の厚みが0.2〜0.5mmである前項1ないしは7のいずれか一つの項に記載の電気化学デバイス。
【0024】
[9]前記電気化学素子は、少なくとも正極、負極、および正負両極間に介在される電解質を含む電池用発電要素を備えたものである前項1ないしは8のいずれか一つの項に記載の電気化学デバイス。
【0025】
[10]少なくとも最内層が熱接着性合成樹脂からなる積層状の外装フィルムと、電気化学素子と、リード端子と、最外層が前記外装フィルムの最内層と相溶性を有する熱接着性合成樹脂により構成され、かつその最外層の融点が前記外装フィルムの最内層の融点未満に設定された積層状のリード端子用被覆フィルムとを準備する工程と、
前記リード端子の一部を前記被覆フィルムにて被覆する工程と、
前記外装フィルムに、電気化学素子を収容する工程と、
リード端子をその外端部を前記外装フィルムから引き出した状態で内端部を前記電気化学素子に電気的に接続する工程と、
前記リード端子を部分的に被覆した前記被覆フィルムに、前記外装フィルムによるシール部をヒートシールにて融着する工程と、を含むことを特徴とする電気化学デバイスの製造方法。
【0026】
[11]前記外装フィルムにおけるシール部に対して、前記外装フィルムにおける最内層の融点よりも20℃以上の温度でヒートシールを施すようにした前10に記載の電気化学デバイスの製造方法。
【0027】
[12]前記外装フィルムにおけるシール部に対するヒートシール時間が、3〜8secである前項10または11に記載の電気化学デバイスの製造方法。
【発明の効果】
【0028】
前項[1]に記載の発明によれば、リード端子用被覆フィルムの最外層の融点が外装フィルムの最内層の融点未満であるので、外装フィルムのシール部をヒートシールした際、該外装フィルムの最内層が溶融するに先立ってリード端子用被覆フィルムの最外層の溶融が開始され、前記シール部において外装フィルムの最内層が溶融する時点になれば、金属製のリード端子からの放熱が抑制された状態となっている。このため、シール部において前記リード端子用被覆フィルムの最外層と外装フィルムの最内層との双方が均一に溶融し合って固まることになり、シール部位における密封性が効果的に高められる。
【0029】
前項[2]に記載の発明によれば、リード端子用被覆フィルムの最外層と外装フィルムの最内層との融点差が9℃以上であるから、前記ヒートシールを行った際のリード端子用被覆フィルムの最外層と外装フィルムの最内層とがより均一に溶融し、シール状態が一層良好になる。
【0030】
前項[3]に記載の発明によれば、外装フィルムの最内層の融点が124℃以上であるので、電気化学素子としての耐熱性が確保される。
【0031】
前項[4]に記載の発明によれば、リード端子用被覆フィルムの厚みが所定の厚みに設定されているため、被覆フィルムをリード端子に隙間なく密着させて被覆することができ、密封性を一層向上させることができる。
【0032】
前項[5]に記載の発明によれば、リード端子用被覆フィルムの最外層の融点が168℃以下であるので、ヒートシール時における作業性が向上する。
【0033】
前項[6]に記載の発明によれば、前記外装フィルムにおける最内層と前記リード端子用被覆フィルムにおける最外層とが同系統の合成樹脂であるので、ヒートシール時の両層の相溶性が有効に発揮される。
【0034】
前項[7]に記載の発明によれば、前記外装フィルムにおける最内層と前記リード端子用被覆フィルムにおける最外層とは、オレフィン系の合成樹脂であるので、ヒートシール時の両者の相溶性が一層有効に発揮されるうえ、電解質等に対する耐薬品性が、より一層向上される。
【0035】
前項[8]に記載の発明によれば、リード端子の厚みが0.2〜0.5mmであるので、前記ヒートシール時のリード端子の放熱抑制が、大電流を流す電気化学デバイス等において効果的になされるうえ、加工時間の短縮化も図ることができる。
【0036】
前項[9]に記載の発明によれば、前記電気化学素子は、電池用発電要素を備えたものであるので、リード端子引き出し部位でのシール性の高い薄形電池を容易に提供可能となる。
【0037】
前項[10]に記載の発明によれば、本発明の電気化学デバイスを確実に製作することができる。
【0038】
前項[11]に記載の発明によれば、外装フィルムにおけるシール部に対して、前記外装フィルムにおける最内層の融点よりも20℃以上の温度でヒートシールを施すので、前記リード端子の放熱に左右されるこなく、的確なシール性を付与することができる。
【0039】
前項[12]に記載の発明によれば、前記外装フィルムにおけるシール部に対するヒートシール時間が、3〜8secであるので、シール部が確実に密閉された高品質の電気化学デバイスを効率良く製造することができる。
【図面の簡単な説明】
【0040】
【図1】図1はこの発明の実施形態に係る電気化学デバイスが適用された薄形電池を封止状態で示す断面図である。
【図2】図2は同じく薄形電池を封止前の状態で示す分解斜視図である。
【図3】図3は同じく薄形電池を封止状態で示す分解断面図である。
【図4】図4は図3のAの部分の拡大断面図である。
【図5】図5は薄形電池のリード端子におけるシール部付近を示す斜視図である。
【図6】図6は同じくリード端子におけるシール部付近を密封した状態で示す断面図である。
【図7】図7は袋状に加工された外装フィルムに電気化学素子を収容した状態を示す斜視図である。
【図8】図8は実施例および比較例における密封性評価の結果を示す表である。
【発明を実施するための形態】
【0041】
以下、この発明の実施形態を図面に基づいて説明する。
【0042】
図1は、この発明の実施形態に係る電気化学デバイスが適用された薄形電池を封止状態で示す断面図、図2は、同じく薄形電池を封止前の状態で示す分解斜視図、図3は、同じく薄形電池を封止状態で示す分解断面図である。
【0043】
図1〜図3において、この薄形電池は、正極1と負極2とがセパレータ3および/または固体電解質もしくはゲル電解質を介して積層されて電気化学素子10が構成される一方、正極1および負極2にそれぞれ各内端部5a,6aが電気的に接続された一対のリード端子5,6の各外端部5b,6bが外部に引き出されており、この状態で電気化学素子10が、例えば方形状に成形されている防湿性包装用ラミネート材料からなる外装フィルム4,4内に収容されている。
【0044】
具体的には、図7に示すように、外装フィルム4,4の3辺(周辺)4a〜4cをヒートシールして袋状にして、その内部に電気化学素子10を収容してから、この外装フィルム4,4におけるシール部4dをヒートシールして密封したものである。勿論、外装フィルム4,4の形状等は、任意に変更可能である。
【0045】
前記電気化学素子10における正極1および負極2は、金属箔、例えばアルミニウム箔ないしは銅箔等の表面にLiCoO2 やLiCoMn2 4 等の正極材料およびLiC6 Ti5 12等の負極材料が炭素導電助材やバインダとともに塗布された構成となっている。
【0046】
前記外装フィルム4は、積層状の構造、例えば図4に示すように3層構造であり、その最内層41は、熱接着性(熱可塑性)合成樹脂、例えば、高密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン、ポリエチレン系のアイオノマー、ポリプロピレンのようなポリオレフィン樹脂等から選択されたもので構成されており、その最外層43は、ポリエチレンテレフタレート(PET)ないしはナイロンから選択されたもので構成されている。
【0047】
外装フィルム4における中間層42は、金属箔、例えばアルミニウム箔ないしはSUS箔から選択されたもので構成されている。この中間層42により、外部からの水分の浸入や内部からの電解液の蒸発が有効に防止されている。また、最外層43は、機械的強度を確保し、中間層42を保護する役目をもっている。
【0048】
この例における外装フィルム4は、最内層41として、融点が例えば168℃であるポリプロピレン未延伸フィルムを使用してドライラミネートした包装用ラミネート材料を袋状に加工したものが使用されている。
【0049】
前記正極側および負極側リード端子5,6は、アルミニウム、銅、ニッケル、ステンレス等の金属箔から構成されており、その厚みは、0.2〜0.5mmに設定されている。
【0050】
つまり、このリード端子5,6には、大電流を流すために抵抗を下げる必要があり、その厚みは、0.2mm以上が好ましいが、最大でも0.5mm以下にするのがよい。厚みが0.5mmを超える場合、リード端子5,6の幅方向の両端縁に対して被覆フィルム7等の合成樹脂で埋めるのが困難となり、密着性の低下を招くおそれがあるからである。
【0051】
前記外装フィルム4でヒートシールされる部位4dに対応して、両リード端子5,6には、厚みが、0.08〜0.25mmの3層構造の被覆フィルム7,7でそれぞれあらかじめ被覆されている。この被覆フィルム7により、リード端子5,6が外装フィルム4の中間層42に接触して短絡事故を起こすことを防止してある。
【0052】
この被覆フィルム7における最内層71は、例えば図6に示すように、リード端子構成材である金属に対して密着性の良い接着性の合成樹脂で構成されており、その最内層71を覆う中間層72は、絶縁性樹脂で構成されている。また、外装フィルム4の最内層41に接触する最外層73は、該外装フィルム4の最内層41と同系統で相溶性の合成樹脂、例えばオレフィン樹脂で構成されている。
【0053】
そして、この被覆フィルム7における最外層73の融点は、外装フィルム4の最内層41の融点未満に設定されており、この例では、融点差が9℃以上になるように、例えば外装フィルム4の最内層41の融点が168℃に対して、被覆フィルム7における最外層73の融点が、例えば134℃に設定されている。
【0054】
上記外装フィルム4,4に電気化学素子10を収容した後、外装フィルム4,4におけるシール部4dをヒートシールして密封するが、その場合、前記外装フィルム4,4における最内層41の融点(ここでは、168℃)よりも20℃以上の温度(188℃)でヒートシールを行う。
【0055】
このように、外装フィルム4におけるリード端子5,6に対応する部位をヒートシールするにあたって、前記リード端子5,6における被覆フィルム7の最外層73の融点を外装フィルム4の最内層41の融点未満に設定したから、前記ヒートシールを施した際、外装フィルム4の最内層41が溶融するに遅れることなくリード端子用被覆フィルム7の最外層73の溶融が開始され、前記シール部4dにおいて外装フィルム4の最内層41が溶融する時点になれば、金属製のリード端子5,6からの放熱が抑制された状態となっている。
【0056】
従って、シール部4dにおいて被覆フィルム7における最外層73が外装フィルム4の最内層41に対して均一的に溶融し、両層41,73が良好に溶融し合って固結することになり、外装フィルム4のシール部4aにおける密封性が有効に強化される。
【0057】
ところで、被覆フィルム7の最外層73の構成材と外装フィルム4の最内層41の構成材とは、熱接着性(熱可塑性)合成樹脂から任意に選択して設定可能であるが、この例のように、両層73,41を同系統の樹脂、例えばポリエチレン(PE)やポリプロピレン(PP)等のオレフィン系樹脂を採用してあると、両層73,41の相溶性が良好に発揮される。とくに、オレフィン系樹脂は耐薬品性に優れており、電解液との接触を考慮すると、積極的に使用できる。
【0058】
また、被覆フィルム7の最外層73の融点と外装フィルム4の最内層41の融点との差は任意に設定可能であるが、この例のように融点差が9℃以上に設定することにより、外装フィルム4の最内層41の溶融と被覆フィルム7の最外層73との溶融が効果的に行われて、シール性能が一層高められる。
【0059】
また、リード端子5,6に対する被覆フィルム7の最外層73の融点が124℃未満の場合には、電池の耐熱性能への影響が懸念されるが、この例のように、被覆フィルム7の最外層73の融点を124℃以上に設定してあれば、耐熱性の低下のおそれも解消される。
【0060】
外装フィルム4の最内層41の融点が168℃を超える場合には、ヒートシールにエネルギーと時間がかかり、生産性が低下することから、168℃以下であることが好ましい。
【0061】
またヒートシール時間は、3〜8sec、望ましくは4〜6secに設定するのが良い。すなわちヒートシール時間が短過ぎる場合には、加熱不足により、確実にシールすることが困難になるおそれがある。逆に、ヒートシール時間が長過ぎる場合には、生産性が低下するとともに、加熱過多による熱劣化により、良好なシール状態を得ることが困難になるおそれがある。
【実施例】
【0062】
つぎに、上記構成の薄形電池による実施例および比較例について説明する。
【0063】
なお、実施例と比較例は、包装用ラミネート材料からなる外装フィルム4の最外層43、中間層42の材質・厚み、リード端子5,6の厚みおよび幅は同じものとし、それぞれ次の通りである。
『外装フィルム4の最外層43と中間層42について』
ナイロン25μmからなる最外層43と、アルミニウム箔(AA規格8079、O材)からなる中間層42とをドライラミネートして使用する。
『リード端子について』
厚さ:0.2mm
幅:50mm
『ヒートシール条件について』
温度:外装フィルム4の最内層41の融点+30℃
圧力:0.2MPa
【0064】
〔実施例1〕
前記外装フィルム4における最内層41の構成材として、融点が168℃であるポリプロピレン未延伸フィルム30μmを選択し、これを最外層43となるナイロンと中間層42となるアルミニウム箔とにドライラミネートして包装用ラミネート材料を形成し、この包装用ラミネート材料を方形に成形するとともに、図7に示すように袋状に加工して外装フィルム4とした。
【0065】
この外装フィルム4の内容物として(EC:DEC=1:1+1moILiPF6)の組成の疑似電解液10gを投入した後、最外層73が融点134℃のポリプロピレンからなる被覆フィルム7によりリード端子5,6におけるシール対応部位を被覆した。その後、前記外装フィルム4におけるシール部4dに対して5secのヒートシールを施して密封状態とした。
【0066】
〔実施例2〕
前記外装フィルム4における最内層41の構成材として、融点が168℃であるポリプロピレン未延伸フィルム30μmを選択し、これを最外層43となるナイロンと中間層42となるアルミニウム箔とにドライラミネートして包装用ラミネート材料を形成し、この包装用ラミネート材料を方形に成形するとともに、袋状に加工して外装フィルム4とした。
【0067】
この外装フィルム4の内容物として(EC:DEC=1:1+1moILiPF6)の組成の疑似電解液10gを投入した後、最外層73が融点143℃のポリプロピレンからなる被覆フィルム7によりリード端子5,6におけるシール対応部位を被覆した。その後、前記外装フィルム4におけるシール部4dに対して5secのヒートシールを施して密封状態とした。
【0068】
〔実施例3〕
前記外装フィルム4における最内層41の構成材として、融点が143℃であるポリプロピレン未延伸フィルム30μmを選択し、これを最外層43となるナイロンと中間層42となるアルミニウム箔とにドライラミネートして包装用ラミネート材料を形成し、この包装用ラミネート材料を方形に成形するとともに、袋状に加工して外装フィルム4とした。
【0069】
この外装フィルム4の内容物として(EC:DEC=1:1+1moILiPF6)の組成の疑似電解液10gを投入した後、最外層73が融点134℃のポリプロピレンからなる被覆フィルム7によりリード端子5,6におけるシール対応部位を被覆した。その後、前記外装フィルム4におけるシール部4dに対して5secのヒートシールを施して密封状態とした。
【0070】
〔実施例4〕
前記外装フィルム4における最内層41の構成材として、融点が134℃であるポリプロピレン未延伸フィルム30μmを選択し、これを最外層43となるナイロンと中間層42となるアルミニウム箔とにドライラミネートして包装用ラミネート材料を形成し、この包装用ラミネート材料を方形に成形するとともに、袋状に加工して外装フィルム4とした。
【0071】
この外装フィルム4の内容物として(EC:DEC=1:1+1moILiPF6)の組成の疑似電解液10gを投入した後、最外層73が融点124℃のポリプロピレンからなる被覆フィルム7によりリード端子5,6におけるシール対応部位を被覆した。その後前記外装フィルム4におけるシール部4dに対して5secのヒートシールを施して密封状態とした。
【0072】
〔実施例5〕
前記外装フィルム4における最内層41の構成材として、融点が134℃であるポリプロピレン未延伸フィルム30μmを選択し、これを最外層43となるナイロンと中間層42となるアルミニウム箔とにドライラミネートして包装用ラミネート材料を形成し、この包装用ラミネート材料を方形に成形するとともに、袋状に加工して外装フィルム4とした。
【0073】
この外装フィルム4の内容物として(EC:DEC=1:1+1moILiPF6)の組成の疑似電解液10gを投入した後、最外層73が融点126℃のポリプロピレンからなる被覆フィルム7によりリード端子5,6におけるシール対応部位を被覆した。その後、前記外装フィルム4におけるシール部4dに対して5secのヒートシールを施して密封状態とした。
【0074】
〔比較例1〕
前記外装フィルム4における最内層41の構成材として、融点が168℃であるポリプロピレン未延伸フィルム30μmを選択し、これを最外層43となるナイロンと中間層42となるアルミニウム箔とにドライラミネートして包装用ラミネート材料を形成し、この包装用ラミネート材料を方形に成形するとともに、袋状に加工して外装フィルム4とした。
【0075】
この外装フィルム4の内容物として(EC:DEC=1:1+1moILiPF6)の組成の疑似電解液10gを投入した後、最外層73が融点168℃のポリプロピレンからなる被覆フィルム7によりリード端子5,6におけるシール対応部位を被覆した。その後、前記外装フィルム4におけるシール部4dに対して5secのヒートシールを施して密封状態とした。
【0076】
〔比較例2〕
前記外装フィルム4における最内層41の構成材として、融点が143℃であるポリプロピレン未延伸フィルム30μmを選択し、これを最外層43となるナイロンと中間層42となるアルミニウム箔とにドライラミネートして包装用ラミネート材料を形成し、この包装用ラミネート材料を方形に成形するとともに、袋状に加工して外装フィルム4とした。
【0077】
この外装フィルム4の内容物として(EC:DEC=1:1+1moILiPF6)の組成の疑似電解液10gを投入した後、最外層73が融点143℃のポリプロピレンからなる被覆フィルム7によりリード端子5,6におけるシール対応部位を被覆した。その後、前記外装フィルム4におけるシール部4dに対して5secのヒートシールを施して密封状態とした。
【0078】
〔比較例3〕
前記外装フィルム4における最内層41の構成材として、融点が134℃であるポリプロピレン未延伸フィルム30μmを選択し、これを最外層43となるナイロンと中間層42となるアルミニウム箔とにドライラミネートして包装用ラミネート材料を形成し、この包装用ラミネート材料を方形に成形するとともに、袋状に加工して外装フィルム4とした。
【0079】
この外装フィルム4の内容物として(EC:DEC=1:1+1moILiPF6)の組成の疑似電解液10gを投入した後、最外層73が融点134℃のポリプロピレンからなる被覆フィルム7によりリード端子5,6におけるシール対応部位を被覆した。その後、前記外装フィルム4におけるシール部4dに対して5secのヒートシールを施して密封状態とした。
【0080】
〔比較例4〕
比較例2と同条件であるが、ヒートシール時間を20secにて行った。
【0081】
〈密封性評価〉
各検体にタブ部が下向きになるよう静置して85℃で1週間の保存テストを行い、その後各検体内部に注射針より圧力を計測しながら空気を送り込み、破裂するに至る圧力を測定した。その結果を図8に示す。
【0082】
図8の表からも明らかなように、実施例においては、いずれも空気圧入装置の最大圧力である02MPaに至っても破裂することはなかったが、比較例においては、破裂し、密封性が劣ることが確認された。また、破裂の起点を確認したところ、外装フィルム4における最内層41と、リード端子5,6の被覆フィルム7における最外層73との界面であることが判った。
【0083】
なお、この発明の実施形態においては、電気化学デバイスをとして、薄形電池に適用した例で説明したが、薄形電池に限らず、電気二重キャパシタ等の各種電気化学デバイスに適用可能である。
【産業上の利用可能性】
【0084】
この発明の電気化学デバイスは、電気自動車や携帯電話等の電源として利用可能である。
【符号の説明】
【0085】
1・・・正極
2・・・負極
3・・・電解質
4・・・外装フィルム
4d・・・外装フィルムのシール部
5・・・正極側リード端子
5a・・・正極側リード端子の内端部
5b・・・正極側リード端子の外端部
6・・・負極側リード端子
6a・・・負極側リード端子の内端部
6b・・・負極側リード端子の外端部
7・・・・リード端子用被覆フィルム
10・・・電気化学素子
41・・・外装フィルムの最内層
73・・・リード端子用被覆フィルムの最外層

【特許請求の範囲】
【請求項1】
少なくとも最内層が熱接着性合成樹脂からなる積層状の外装フィルムと、
前記外装フィルムに収容された電気化学素子と、
内端部が前記電気化学素子に電気的に接続されて、外端部が外装フィルムから外部に引き出されたリード端子と、
最外層が前記外装フィルムの最内層と相溶性を有する熱接着性合成樹脂で構成されて、前記外装フィルムによるシール部に対応して設けられた積層状のリード端子用被覆フィルムとを備えており、
前記リード端子を前記被覆フィルムを介して挟んだ状態で前記外装フィルムによるシール部がヒートシールで融着され、
前記リード端子用被覆フィルムにおける最外層の融点が前記外装フィルムの最内層の融点未満に設定されていることを特徴とする電気化学デバイス。
【請求項2】
前記外装フィルムにおける最内層の融点と前記リード端子用被覆フィルムにおける最外層の融点との差が9℃以上である請求項1に記載の電気化学デバイス。
【請求項3】
前記外装フィルムにおける最内層の融点が124℃以上である請求項1または2に記載の電気化学デバイス。
【請求項4】
前記リード端子用被覆フィルムの厚みが、0.08〜0.25mmである請求項1ないしは3のいずれか一つの項に記載の電気化学デバイス。
【請求項5】
リード端子用被覆フィルムにおける最外層の融点が168℃以下である請求項1ないしは4のいずれか一つの項に記載の電気化学デバイス。
【請求項6】
前記外装フィルムにおける最内層と前記リード端子用被覆フィルムにおける最外層とが同系統の合成樹脂で構成されている請求項1ないしは5のいずれか一つの項に記載の電気化学デバイス。
【請求項7】
前記外装フィルムにおける最内層と前記リード端子用被覆フィルムにおける最外層とは、オレフィン系の合成樹脂で構成されている請求項6に記載の電気化学デバイス。
【請求項8】
前記リード端子の厚みが0.2〜0.5mmである請求項1ないしは7のいずれか一つの項に記載の電気化学デバイス。
【請求項9】
前記電気化学素子は、少なくとも正極、負極、および正負両極間に介在される電解質を含む電池用発電要素を備えたものである請求項1ないしは8のいずれか一つの項に記載の電気化学デバイス。
【請求項10】
少なくとも最内層が熱接着性合成樹脂からなる積層状の外装フィルムと、電気化学素子と、リード端子と、最外層が前記外装フィルムの最内層と相溶性を有する熱接着性合成樹脂により構成され、かつその最外層の融点が前記外装フィルムの最内層の融点未満に設定された積層状のリード端子用被覆フィルムとを準備する工程と、
前記リード端子の一部を前記被覆フィルムにて被覆する工程と、
前記外装フィルムに、電気化学素子を収容する工程と、
リード端子をその外端部を前記外装フィルムから引き出した状態で内端部を前記電気化学素子に電気的に接続する工程と、
前記リード端子を部分的に被覆した前記被覆フィルムに、前記外装フィルムによるシール部をヒートシールにて融着する工程と、を含むことを特徴とする電気化学デバイスの製造方法。
【請求項11】
前記外装フィルムにおけるシール部に対して、前記外装フィルムにおける最内層の融点よりも20℃以上の温度でヒートシールを施すようにした請求項10に記載の電気化学デバイスの製造方法。
【請求項12】
前記外装フィルムにおけるシール部に対するヒートシール時間が、3〜8secである請求項10または11に記載の電気化学デバイスの製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate


【公開番号】特開2010−165481(P2010−165481A)
【公開日】平成22年7月29日(2010.7.29)
【国際特許分類】
【出願番号】特願2009−4913(P2009−4913)
【出願日】平成21年1月13日(2009.1.13)
【出願人】(000002004)昭和電工株式会社 (3,251)
【出願人】(501428187)昭和電工パッケージング株式会社 (110)
【Fターム(参考)】