説明

静電潜像担持体及びその製造方法、並びに画像形成方法、画像形成装置及びプロセスカートリッジ

【課題】耐久性が向上し、長期にわたる繰り返し使用においても地汚れ、フィルミング等の異常画像が発生せず、安定な画像形成を行うことができる静電潜像担持体、及び環境負荷の低減を図れる静電潜像担持体の製造方法、並びに該静電潜像担持体を用いた画像形成方法、画像形成装置及びプロセスカートリッジの提供。
【解決手段】支持体と、該支持体上に少なくとも電荷発生層及び電荷輸送層をこの順に有する静電潜像担持体において、前記電荷輸送層が少なくとも電荷輸送物質及び結着樹脂を含有し、かつ該電荷輸送層の厚みが30〜50μmであり、赤外分光測定による前記電荷輸送物質と前記結着樹脂の吸光度比と、前記電荷輸送層の表面から厚み方向への距離との関係を表す分布が、該電荷輸送層の表面から厚み方向に20μm以内で、変曲点のない略直線状を示す静電潜像担持体である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、レーザービームプリンタ、ファクシミリ、デジタルコピー等に好適に用いられる静電潜像担持体(以下、「電子写真感光体」、「感光体」、「像担持体」と称することもある)及び該静電潜像担持体の製造方法、並びに該静電潜像担持体を用いた画像形成方法、画像形成装置及びプロセスカートリッジに関する。
【背景技術】
【0002】
従来より、電子写真感光体の光導電性素材として、Se、CdS、ZnO等の無機材料に比べて、感度、熱安定性、毒性等に優位性を有する有機光導電性材料を用いた電子写真感光体の開発が盛んに行われており、多くの複写機及びプリンターに搭載されている。
このような有機光導電性材料を用いた電子写真感光体の感光層としては、電荷発生層上に電荷輸送層を積層した機能分離型のものが感度、耐久性に優れるため広く用いられている。
【0003】
近年、電子写真方式の複写機の高速化及び高耐久化が進む中で、感光体に対しても長期繰り返し使用に際し、高画質を保つことができる信頼性が強く要求されるようになってきている。特に、超高速な複写機ではコピーボリュームが多いことから、感光体交換で停止する回数が多いことが生産性を大きく低下させる原因の一つとなっており、感光体の耐久性の向上が望まれている。
また、カラー複写機においては、シアン、マゼンタ、イエロー、及びブラックの4色に対応した4つの画像形成要素を並列に並べたタンデム方式が広く採用されている。このようなタンデム方式では、複写機全体の大型化を防ぐため、従来よりも小径の感光体が用いられており、画像形成装置の高速化に対して感光体の更なる高耐久化が求められている。
【0004】
感光体由来の異常画像の一つとして、ネガ・ポジ現像が主流である現在の作像システムでは地汚れの発生が挙げられる。このような地汚れの発生原因としては、支持体の汚れ、支持体の欠陥、感光層の電気的な絶縁破壊、支持体からのキャリア(電荷)注入、感光体の暗減衰増大、感光層における熱キャリア生成などが挙げられ、特に、積層型の感光層では電荷輸送層の厚みが減少して、電界強度が増加することにより、顕著な劣化が認められる。
このような点に鑑み、例えば、特許文献1及び特許文献2では、電荷輸送層の厚みを増加させて、耐久性を向上させる技術が提案されている。
【0005】
また、近年、環境負荷低減に関する取り組みが活発に行われており、例えば、特許文献3、特許文献4、及び特許文献5では、電子写真感光体の電荷輸送層の形成に用いる溶媒として、樹脂の溶解性や塗工性の点で優れているハロゲン溶媒を、非ハロゲン溶媒に代えることで環境負荷を低減することが提案されている。
このような非ハロゲン溶媒を用いて形成した電荷輸送層では、耐久性を向上させるため、電荷輸送層の厚みを30μm以上に厚く形成している。その結果、電界強度が低下し、繰り返し使用の際においても地汚れの発生に対する抑制効果が得られるものの、繰り返し使用の際にトナー中の樹脂やワックスが感光体に固着しやすくなり、異常画像が発生してしまうという問題がある。
【0006】
したがって耐久性が向上し、長期にわたる繰り返し使用によっても地汚れ、フィルミング等の異常画像が発生せず、安定な画像形成を行うことが可能な静電潜像担持体、及び環境負荷の低減を図ることができる静電潜像担持体の製造方法、並びに該静電潜像担持体を用いた画像形成方法、画像形成装置及びプロセスカートリッジは未だ提供されていないのが現状である。
【0007】
【特許文献1】特許第3125581号公報
【特許文献2】特開平6−266126号公報
【特許文献3】特開2001―222119号公報
【特許文献4】特開2003―66634号公報
【特許文献5】特開2004―326070号公報
【発明の開示】
【発明が解決しようとする課題】
【0008】
本発明は、従来における諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、耐久性が向上し、長期にわたる繰り返し使用によっても地汚れ、フィルミング等の異常画像が発生せず、安定な画像形成を行うことが可能な静電潜像担持体、及び環境負荷の低減を図ることができる静電潜像担持体の製造方法、並びに該静電潜像担持体を用いた画像形成方法、画像形成装置及びプロセスカートリッジを提供することを目的とする。
【0009】
前記課題を解決するための手段としては、以下の通りである。即ち、
<1> 支持体と、該支持体上に少なくとも電荷発生層及び電荷輸送層をこの順に有する静電潜像担持体において、
前記電荷輸送層が少なくとも電荷輸送物質及び結着樹脂を含有し、かつ該電荷輸送層の厚みが30〜50μmであり、
赤外分光測定による前記電荷輸送物質と前記結着樹脂の吸光度比と、前記電荷輸送層の表面から厚み方向への距離との関係を表す分布が、該電荷輸送層の表面から厚み方向に20μm以内で、変曲点のない略直線状を示すことを特徴とする静電潜像担持体である。
<2> 赤外分光測定による電荷輸送物質と結着樹脂の吸光度比と、電荷輸送層の表面から厚み方向への距離との相関係数の2乗が、該電荷輸送層の表面から厚み方向に20μm以内で、0.92以上である前記<1>に記載の静電潜像担持体である。
<3> 支持体と、該支持体上に少なくとも電荷発生層及び電荷輸送層をこの順に有する静電潜像担持体において、
前記電荷輸送層が少なくとも電荷輸送物質及び結着樹脂を含有し、かつ該電荷輸送層の厚みが30〜50μmであり、
赤外分光測定による前記電荷輸送層表面における前記電荷輸送物質と前記結着樹脂との吸光度比Aと、赤外分光測定による前記電荷輸送層表面から5μm内部における前記電荷輸送物質と前記結着樹脂との吸光度比Bとが、次式、B/A=1.0〜1.15を満たすことを特徴とする静電潜像担持体である。
<4> 電荷輸送層が、電荷発生層上に少なくとも電荷輸送物質、結着樹脂、及び非ハロゲン溶媒を含有する電荷輸送層塗布液を塗布して、乾燥させることにより形成される前記<1>から<3>のいずれかに記載の静電潜像担持体である。
<5> 支持体と電荷発生層との間に、電荷ブロッキング層、及びモアレ防止層をこの順に有する前記<1>から<4>のいずれかに記載の静電潜像担持体である。
<6> 電荷ブロッキング層が、少なくともN−アルコキシメチル化ナイロンを含有する前記<5>に記載の静電潜像担持体である。
<7> モアレ防止層が、純度が99.0%以上の酸化チタンと架橋性樹脂とを少なくとも含有する前記<5>から<6>のいずれかに記載の静電潜像担持体である。
<8> 電荷発生層が少なくとも電荷発生物質を含有し、かつ該電荷発生物質がチタニルフタロシアニン結晶である前記<1>から<7>のいずれかに記載の静電潜像担持体である。
<9> チタニルフタロシアニン結晶が、CuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有し、9.4゜、9.6゜、及び24.0゜に主要なピークを有し、かつ最も低角側の回折ピークとして7.3゜にピークを有し、該7.3゜のピークと前記9.4゜のピークの間にピークを有さず、更に26.3°にピークを有さず、かつ一次粒子の体積平均粒径が0.25μm以下である前記<8>に記載の静電潜像担持体である。
<10> 電荷発生層がチタニルフタロシアニン結晶含有分散液から形成され、該チタニルフタロシアニン結晶含有分散液が、チタニルフタロシアニン結晶の体積平均粒径が0.3μm以下であり、かつ該チタニルフタロシアニン結晶の標準偏差が0.2μm以下になるまで分散させた後、有効孔径が3μm以下のフィルターで濾過して調製される前記<8>から<9>のいずれかに記載の静電潜像担持体である。
<11> チタニルフタロシアニン結晶が、CuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも7.0〜7.5゜に最大回折ピークを有し、かつ該最大回折ピークの半値幅が1゜以上であり、かつ一次粒子の体積平均粒径が0.1μm以下である不定形乃至低結晶性チタニルフタロシアニン結晶を水の存在下で有機溶媒を使用して結晶変換を行い、結晶変換後の一次粒子の体積平均粒径が0.25μm以下の状態で、濾過して得られる前記<8>から<10>のいずれかに記載の静電潜像担持体である。
<12> チタニルフタロシアニン結晶の原材料が、非ハロゲン含有化合物である前記<8>から<11>のいずれかに記載の静電潜像担持体である。
<13> 不定形乃至低結晶性チタニルフタロシアニン結晶が、アシッドペースト法により調製され、かつ該不定形乃至低結晶性チタニルフタロシアニン結晶が、イオン交換水によりpHが6〜8になるまで洗浄される前記<11>から<12>のいずれかに記載の静電潜像担持体である。
<14> 不定形乃至低結晶性チタニルフタロシアニン結晶は、アシッドペースト法により調製され、かつ該不定形乃至低結晶性チタニルフタロシアニン結晶が、イオン交換水により比伝導度が8μS/cm以下になるまで洗浄される前記<11>から<12>のいずれかに記載の静電潜像担持体である。
<15> チタニルフタロシアニン結晶の結晶変換における有機溶媒の使用量が、質量比で、不定形乃至低結晶性チタニルフタロシアニン結晶の含有量の30倍以上である前記<11>から<14>のいずれかに記載の静電潜像担持体である。
<16> 電荷発生層上に、少なくとも電荷輸送物質、結着樹脂、及び非ハロゲン溶媒を含有する電荷輸送層塗布液を塗布し、乾燥させて電荷輸送層を形成する電荷輸送層形成工程と、
形成された電荷輸送層に熱処理、UV照射処理、電子線照射処理及びコロナ放電処理から選択される少なくともいずれかを行う表面処理工程とを少なくとも含むことを特徴とする静電潜像担持体の製造方法である。
<17> 静電潜像担持体上に静電潜像を形成する静電潜像形成工程と、該静電潜像をトナーを用いて現像して可視像を形成する現像工程と、該可視像を記録媒体に転写する転写工程と、前記静電潜像担持体表面に残留したトナーを除去するクリーニング工程とを少なくとも含む画像形成方法において、
前記静電潜像担持体が、前記<1>から<15>のいずれかに記載の静電潜像担持体であることを特徴とする画像形成方法である。
<18> 静電潜像担持体と、該静電潜像担持体上に静電潜像を形成する静電潜像形成手段と、該静電潜像をトナーを用いて現像して可視像を形成する現像手段と、該可視像を記録媒体に転写する転写手段と、前記静電潜像担持体表面に残留したトナーを除去するクリーニング手段とを少なくとも有する画像形成装置において、
前記静電潜像担持体が、前記<1>から<15>のいずれかに記載の静電潜像担持体であることを特徴とする画像形成装置である。
<19> クリーニング手段が少なくともブラシ回転体を有し、該ブラシ回転体と静電潜像担持体との接点において該ブラシ回転体が該静電潜像担持体と同一方向に回転する前記<18>に記載の画像形成装置である。
<20> 少なくとも静電潜像担持体、該静電潜像担持体表面を帯電させる帯電手段、現像手段、転写手段、及びクリーニング手段を含む画像形成要素を複数配列したタンデム型である前記<18>から<19>のいずれかに記載の画像形成装置である。
<21> 前記<1>から<15>のいずれかに記載の静電潜像担持体と、更に帯電手段、現像手段、転写手段、クリーニング手段及び除電手段から選択される少なくとも1つの手段を有し、画像形成装置本体に着脱可能であることを特徴とするプロセスカートリッジである。
【0010】
本発明の静電潜像担持体は、第1形態では、支持体と、該支持体上に少なくとも電荷発生層及び電荷輸送層をこの順に有し、
前記電荷輸送層が少なくとも電荷輸送物質及び結着樹脂を含有し、かつ該電荷輸送層の厚みが30〜50μmであり、
赤外分光測定による前記電荷輸送物質と前記結着樹脂の吸光度比と、前記電荷輸送層の表面から厚み方向への距離との関係を表す分布が、該電荷輸送層の表面から厚み方向に20μm以内で、変曲点のない略直線状を示す。
本発明の静電潜像担持体は、第2形態では、支持体と、該支持体上に少なくとも電荷発生層及び電荷輸送層をこの順に有し、
前記電荷輸送層が少なくとも電荷輸送物質及び結着樹脂を含有し、かつ該電荷輸送層の厚みが30〜50μmであり、
赤外分光測定による前記電荷輸送層表面における前記電荷輸送物質と前記結着樹脂との吸光度比Aと、赤外分光測定による該電荷輸送層表面から5μm内部における前記電荷輸送物質と前記結着樹脂との吸光度比Bとが、次式、B/A=1.0〜1.15を満たす。
前記第1及び第2形態に係る静電潜像担持体においては、上記構成を備えることにより、耐久性が向上し、長期にわたる繰り返し使用においても地汚れ、フィルミング等の異常画像が発生せず、安定な画像形成を行うことができる。
【0011】
本発明の静電潜像担持体の製造方法は、電荷発生層上に少なくとも電荷輸送物質、結着樹脂、及び非ハロゲン溶媒を含有する電荷輸送層塗布液を塗布し、乾燥させて電荷輸送層を形成する電荷輸送層形成工程と、
形成された電荷輸送層に熱処理、UV照射処理、電子線照射処理及びコロナ放電処理から選択される少なくともいずれかを行う表面処理工程とを少なくとも含む。本発明の静電潜像担持体の製造方法においては、電荷輸送層を非ハロゲン溶媒を用いて形成することができるので、環境負荷の低減を図りつつ、効率良く、静電潜像担持体を製造することができる。
【0012】
本発明の画像形成装置は、静電潜像担持体と、該静電潜像担持体上に静電潜像を形成する静電潜像形成手段と、該静電潜像をトナーを用いて現像して可視像を形成する現像手段と、該可視像を記録媒体に転写する転写手段と、前記静電潜像担持体表面に残留したトナーを除去するクリーニング手段とを少なくとも有してなり、前記静電潜像担持体が、前記本発明の静電潜像担持体である。本発明の画像形成装置においては、長期間に亘って高耐久な本発明の前記静電潜像担持体を用いているので、高画質な画像が形成できる。
【0013】
本発明の画像形成方法は、静電潜像担持体上に静電潜像を形成する静電潜像形成工程と、該静電潜像をトナーを用いて現像して可視像を形成する現像工程と、前記可視像を記録媒体に転写する転写工程と、記録媒体に転写された転写像を定着する定着工程と、前前記静電潜像担持体表面に残留したトナーを除去するクリーニング工程とを少なくとも含んでなり、前記静電潜像担持体が、前記本発明の静電潜像担持体である。本発明の画像形成方法においては、長期間に亘って高耐久な本発明の前記静電潜像担持体を用いるので、高画質な画像を形成できる。
【0014】
本発明のプロセスカートリッジは、本発明の前記静電潜像担持体と、更に帯電手段、現像手段、転写手段、クリーニング手段及び除電手段から選択される少なくとも1つの手段を有し、画像形成装置本体に着脱可能であり、前記静電潜像担持体として、本発明の前記静電潜像担持体を用いているので、高温環境下においても長期間にわたり高耐久及び高画質な画像が得られる。
【発明の効果】
【0015】
本発明によると、従来における問題を解決することができ、耐久性が向上し、長期にわたる繰り返し使用によっても地汚れ、フィルミング等の異常画像が発生せず、安定な画像形成を行うことが可能な静電潜像担持体、及び電荷輸送層が非ハロゲン溶媒を用いて形成されるので、環境負荷の低減を図ることができる静電潜像担持体の製造方法、並びに該静電潜像担持体を用いた画像形成方法、画像形成装置及びプロセスカートリッジを提供することができる。
【発明を実施するための最良の形態】
【0016】
(静電潜像担持体)
本発明の静電潜像担持体は、支持体と、該支持体上に少なくとも電荷発生層及び電荷輸送層をこの順に有してなり、電荷ブロッキング層、モアレ防止層、更に必要に応じてその他の層を有してなる。
【0017】
ここで、図1は、本発明の静電潜像担持体の構成例の一例を表す概略断面図である。この静電潜像担持体は、支持体上201に、モアレ防止層202、電荷発生層203、及び電荷輸送層204がこの順に積層された構成をとっている。なお、モアレ防止層202のない態様であっても構わない。
図2は、本発明の静電潜像担持体の別の構成例の一例を示す概略断面図である。この静電潜像担持体は、支持体201上に、電荷ブロッキング層205、モアレ防止層202、電荷発生層203、及び電荷輸送層204がこの順に積層された構成をとっている。
前記静電潜像担持体としては、図1及び図2のいずれの形態をとることも可能であるが、図2の形態が高耐久である点から特に好ましい。
【0018】
<電荷輸送層>
前記電荷輸送層は、少なくとも電荷輸送物質及び結着樹脂を含有してなり、更に必要に応じてその他の成分を含有してなる。
前記電荷輸送層の厚みは30〜50μmであり、35〜45μmが好ましい。前記電荷輸送層の厚みが30μm未満であると、耐久性が劣ることがあり、50μmを超えると、解像度が低下してしまうことがある。
【0019】
このように電荷輸送層の厚みを30μm以上に形成した場合、電荷輸送層の表面から約5μmにかけて結着樹脂が偏析し、赤外分光測定による電荷輸送物質の主ピークと結着樹脂の主ピークとの吸光度比と、前記電荷輸送層の厚み方向の距離との関係を表す分布が、図3に示すように変曲点を有していることが判明した。
電荷輸送物質と結着樹脂の吸光度比と、電荷輸送層の厚み方向の距離との関係を表す分布が変曲点を有する理由については定かでないが、非ハロゲン溶媒と結着樹脂の相溶性や溶媒の蒸発速度に由来するものと思われる。特に、電子写真感光体の結着樹脂が偏析している際には、電荷輸送層中の結着樹脂がトナーの結着樹脂やワックスとの類似物質として相溶しやすいことや、電荷輸送層中の結着樹脂比率が高いため、機械的な耐久性が高まり、繰返し使用の際に電荷輸送層の摩耗が少ないことなどに起因して、電荷輸送層中の結着樹脂とトナー中の結着樹脂やワックスが固着しやすい状態を形成し、フィルミングが発生して異常画像が発生すると考えられる。
【0020】
したがって、本発明においては、赤外分光測定による前記電荷輸送物質と前記結着樹脂との吸光度比と、前記電荷輸送層の表面から厚み方向への距離との関係を表す分布が、図4に示すように、前記電荷輸送層の表面から厚み方向に20μm以内で、変曲点のない略直線状を示す。
このことは、赤外分光測定による電荷輸送物質と結着樹脂の吸光度比と、電荷輸送層の表面から厚み方向への距離との相関係数rの2乗が、該電荷輸送層の表面から厚み方向に20μm以内で、0.92以上であることと同義である。前記相関係数の2乗は0.93以上であることが好ましい。前記相関係数rの2乗が0.92未満であると、電荷輸送層中の結着樹脂と、トナー中の結着樹脂やワックスが固着しやすい状態を形成し、フィルミングが発生して異常画像が生じることがある。
【0021】
ここで、前記相関係数rは、下記数式から求めることができる。
【数1】

【0022】
具体的には、(1)表計算ソフトExcel(Microsoft社製)を使用し、X軸として電荷輸送層表面から厚み方向への距離の値を入力し、Y軸として赤外分光測定による電荷輸送物質と結着樹脂との吸光度比の値を入力する。(2)Excelのグラフ機能を利用して散布図を作成する。(3)近似曲線を求め、線形近似を選択して、相関係数の2乗値を算出することができる。
【0023】
また、本発明においては、赤外分光測定による前記電荷輸送層表面における前記電荷輸送物質と前記結着樹脂との吸光度比Aと、赤外分光測定による前記電荷輸送層表面から5μm内部における前記電荷輸送物質と前記結着樹脂との吸光度比Bとが、次式、B/A=1.0〜1.15を満たし、1.0〜1.1が好ましい。なお、通常の作製条件下においては、前記B/Aが1.0未満を満たす感光体は得られにくいものの、1.0未満であると、表面にクラックが発生しやすくなることがあり、1.15を超えると、電荷輸送層中の結着樹脂と、トナー中の結着樹脂やワックスが固着しやすい状態を形成し、フィルミングが発生して異常画像が生じることがある。
このようなB/Aの値を示す理由については定かでないが、非ハロゲン溶媒と結着樹脂の相溶性や溶媒の蒸発速度に由来するものと思われる。
【0024】
図4に示すような、表面から厚み方向20μm以内で、変曲点のない略直線状(具体的には、相関係数の2乗が0.92以上)を示すこと、あるいは、電荷輸送層表面から5μm内部における前記電荷輸送物質と前記結着樹脂との吸光度比BとがB/A=1.0〜1.15を示す静電潜像担持体を得る方法としては、電荷輸送層が、電荷発生層上に少なくとも電荷輸送物質、結着樹脂、及び非ハロゲン溶媒を含有する電荷輸送層塗布液を塗布し、乾燥して形成した後、該電荷輸送層を熱処理、UV照射処理、電子線照射処理、コロナ放電処理等の表面処理を行うことにより達成することができる。これらの詳細については後述する。
【0025】
ここで、赤外分光測定による電荷輸送物質と結着樹脂の吸光度比は、電荷輸送層の吸収スペクトルを測定することで電荷輸送物質の主要ピークと結着樹脂の主要ピークとの吸光度比により求めることができる。なお、主要ピークは、電荷発生物質のピークと結着樹脂のピークが同一波数には存在せず、かつ吸光度の大きいピークを選択することがS/N比(信号対雑音比)が高い結果を得ることができるので好ましい。
前記吸収スペクトルの測定器としては、例えば、フーリエ変換型(FT−IR)赤外分光計、及びエネルギー分散型赤外分光計のいずれかが挙げられる。また、測定手法としては、透過法、減衰全反射法(ATR法)のいずれかの方法が用いられ、特に、ATR法は電荷輸送層の厚み方向に対する分解能が優れているため好ましい。
具体的には、上記吸光度比の深さ方向分布は画像形成装置や研磨装置等を使用して厚み減少量と吸光度比の関係を求めることができる。また、例えば、表面及び界面物性解析装置(SAICAS、DN−20、ダイプラ・ウィンテス社製)等を用いて表面から斜め方向に微小切削を行い、傾斜部分をμ−ATR法により吸光度比を求めることにより、深さ方向の分布を得ることができる。
【0026】
前記電荷輸送層は、電荷輸送物質及び結着樹脂を適当な溶剤に溶解乃至分散した電荷輸送層塗布液を前記電荷発生層上に塗布し、乾燥させて形成することができる。前記電荷輸送層塗布液には、更に必要に応じて可塑剤、レベリング剤、酸化防止剤等を添加することもできる。
【0027】
前記電荷輸送物質としては、正孔輸送物質と電子輸送物質とに大別される。これらの電荷輸送物質は、1種単独で使用してもよいし、2種以上を併用してもよい。
前記電子輸送物質としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、クロルアニル、ブロムアニル、テトラシアノエチレン、テトラシアノキノジメタン、2,4,7−トリニトロ−9−フルオレノン、2,4,5,7−テトラニトロ−9−フルオレノン、2,4,5,7−テトラニトロキサントン、2,4,8−トリニトロチオキサントン、2,6,8−トリニトロ−4H−インデノ〔1,2−b〕チオフェン−4−オン、1,3,7−トリニトロジベンゾチオフェン−5,5−ジオキサイド、ベンゾキノン誘導体などが挙げられる。
前記正孔輸送物質としては、特に制限はなく、目的に応じて適宜選択することができるが、例えばポリ−N−ビニルカルバゾール又はその誘導体、ポリ−γ−カルバゾリルエチルグルタメート又はその誘導体、ピレン−ホルムアルデヒド縮合物又はその誘導体、ポリビニルピレン、ポリビニルフェナントレン、ポリシラン、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、モノアリールアミン誘導体、ジアリールアミン誘導体、トリアリールアミン誘導体、スチルベン誘導体、α−フェニルスチルベン誘導体、ベンジジン誘導体、ジアリールメタン誘導体、トリアリールメタン誘導体、9−スチリルアントラセン誘導体、ピラゾリン誘導体、ジビニルベンゼン誘導体、ヒドラゾン誘導体、インデン誘導体、ブタジェン誘導体、ピレン誘導体等、ビススチルベン誘導体、エナミン誘導体などが挙げられる。
【0028】
前記結着樹脂としては、特に制限はなく、目的に応じて適宜選択することができるが、例えばポリスチレン樹脂、スチレン−アクリロニトリル共重合体、スチレン−ブタジエン共重合体、スチレン−無水マレイン酸共重合体、ポリエステル樹脂、ポリ塩化ビニル樹脂、塩化ビニル−酢酸ビニル共重合体、ポリ酢酸ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリアレート、フェノキシ樹脂、ポリカーボネート樹脂、酢酸セルロース、エチルセルロース、ポリビニルブチラール、ポリビニルホルマール、ポリビニルトルエン、ポリ−N−ビニルカルバゾール、アクリル樹脂、シリコーン樹脂、エポキシ樹脂、メラミン樹脂、ウレタン樹脂、フェノール樹脂、アルキッド樹脂、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
【0029】
前記電荷輸送物質の含有量は、特に制限はなく、目的に応じて適宜選択することができるが、前記結着樹脂100質量部に対し、20〜300質量部が好ましく、40〜150質量部がより好ましい。
【0030】
<支持体>
前記支持体としては、体積抵抗1010Ω・cm以下の導電性を示すものであれば特に制限はなく、目的に応じて適宜選択することができるが、例えば、(1)アルミニウム、ニッケル、クロム、ニクロム、銅、金、銀、白金等の金属;酸化スズ、酸化インジウム等の金属酸化物を蒸着又はスパッタリングにより、フィルム状もしくは円筒状のプラスチック、紙に被覆したもの、(2)アルミニウム、アルミニウム合金、ニッケル、ステンレス等の板、又はこれらを押し出し、引き抜き等の工法で素管化後、切削、超仕上げ、研摩などの表面処理を施した管、(3)特開昭52−36016号公報に開示されたエンドレスニッケルベルト、又はエンドレスステンレスベルト、(4)厚み50〜150μmのニッケル箔、又は厚み50〜150μmのポリエチレンテレフタレート(PET)フィルムの表面にアルミニウム蒸着等の導電加工を行ったもの、などが挙げられる。
【0031】
また、前記支持体上に導電性粉体及び結着樹脂を溶剤に分散させた液を塗工したものを用いることができる。
前記導電性粉体としては、特に制限はなく、目的に応じて適宜選択することができるが、例えばカーボンブラック、アセチレンブラック;アルミニウム、ニッケル、鉄、ニクロム、銅、亜鉛、銀等の金属粉;導電性酸化スズ、ITO等の金属酸化物粉体などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
前記結着樹脂としては、特に制限はなく、目的に応じて適宜選択することができるが、例えばポリスチレン樹脂、スチレン−アクリロニトリル共重合体、スチレン−ブタジエン共重合体、スチレン−無水マレイン酸共重合体、ポリエステル樹脂、ポリ塩化ビニル樹脂、塩化ビニル−酢酸ビニル共重合体、ポリ酢酸ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリアリレート樹脂、フェノキシ樹脂、ポリカーボネート樹脂、酢酸セルロース樹脂、エチルセルロース樹脂、ポリビニルブチラール樹脂、ポリビニルホルマール樹脂、ポリビニルトルエン樹脂、ポリ−N−ビニルカルバゾール樹脂、アクリル樹脂、シリコーン樹脂、エポキシ樹脂、メラミン樹脂、ウレタン樹脂、フェノール樹脂、アルキッド樹脂などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
前記溶剤としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、テトラヒドロフラン、ジクロロメタン、メチルエチルケトン、トルエンなどが挙げられる。
【0032】
また、円筒基体上にポリ塩化ビニル、ポリプロピレン、ポリエステル、ポリスチレン、ポリ塩化ビニリデン、ポリエチレン、塩化ゴム、テフロン(登録商標)などの素材に前記導電性粉体を含有させた熱収縮チューブからなる導電性層を有するものも、導電性支持体として良好に用いることができる。
【0033】
<電荷ブロッキング層>
前記電荷ブロッキング層は、絶縁性を示し、モアレ防止層塗布液や感光層塗布液に不溶であることが好ましく、ナイロン樹脂が好適に用いられる。これらの中でも、N−アルコキシメチル化ナイロンが塗工溶媒に対する溶解性や環境安定性の点で特に好ましい。
前記電荷ブロッキング層は、感光体を帯電時に電極(導電性支持体)に誘起される逆極性の電荷が、支持体から感光層に注入するのを防止する機能を有する層であり、負帯電の場合には正孔注入防止、正帯電の場合には電子注入防止の機能を有する。
また、整流性を有する導電性高分子、帯電極性に合わせてアクセプター(ドナー)性の樹脂や化合物などを加えて、支持体からの電荷注入を制抑するなどの機能を持たせてもよい。
【0034】
前記電荷ブロッキング層は、電荷ブロッキング層塗布液を塗布することにより形成することができる。該電荷ブロッキング層塗布液には、必要に応じて硬化(架橋)に必要な薬剤、溶剤、添加剤、硬化促進剤等を加えて、常法により、ブレード塗工、浸漬塗工法、スプレーコート、ビートコート、ノズルコート法などにより支持体上に形成される。塗布後は乾燥や加熱、光等の硬化処理により乾燥あるいは硬化させる。
前記溶媒としては、アルコール系溶媒が好ましい。該アルコール系溶媒としては、例えば、メタノール、エタノール、プロパノール、ブタノールなどが挙げられ、これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
【0035】
前記電荷ブロッキング層の厚みは、特に制限はなく、目的に応じて適宜選択することができるが、0.1〜3.0μmが好ましく、0.5〜2.0μmがより好ましい。前記電荷ブロッキング層が3.0μmを超えると、帯電と露光の繰返しによって、特に低温低湿で残留電位の上昇が著しくなることがあり、0.1μm未満であると、ブロッキング性の効果が小さくなることがある。
【0036】
<モアレ防止層>
前記モアレ防止層は、レーザー光のようなコヒーレント光による書き込みを行う際に、感光層内部での光干渉によるモアレ像の発生を防止する機能を有する層である。基本的には、前記書き込み光の光散乱を起こす機能を有する。このような機能を発現するために、モアレ防止層は屈折率の大きな材料を有することが有効である。
【0037】
前記モアレ防止層は、少なくとも無機顔料及びバインダー樹脂を含有し、更に必要に応じてその他の成分を含有してなる。
前記無機顔料としては、特に制限はなく、目的に応じて適宜選択することができるが、白色顔料が好適に挙げられる。該白色顔料としては、例えば、酸化チタン、フッ化カルシウム、酸化カルシウム、酸化珪素、酸化マグネシウム、酸化アルミニウムなどが挙げられる。前記無機顔料としての白色顔料の前記モアレ防止層中における含有量は30〜75体積%が好ましい。
【0038】
前記モアレ防止層は、少なくとも純度が99.0%以上である酸化チタン及び架橋性樹脂を含有することで、繰返し疲労に伴って発生する帯電低下が小さく、地汚れの発生のない画像を得ることが可能となる。
前記純度が99.0%以上の酸化チタンは、原料のチタンスラグを塩素により塩素化し四塩化チタンとし、これを分離し、凝縮し、精製後酸化し、生成した酸化チタンを粉砕し、分級した後、濾過し、洗浄して乾燥後、粉砕することで酸化チタンを製造する塩素法という方法により製造することができる。酸化チタン中の不純物としてはNaO、KO等の吸湿性物質及びイオン性物質が主であり、JIS K5116に示される測定法により、純度を求めることができる。
【0039】
前記架橋性樹脂としては、熱硬化型樹脂が良好に使用される。特に、アルキッド樹脂/メラミン樹脂の混合物が最も良好に使用される。この際、アルキッド樹脂/メラミン樹脂の混合比は、モアレ防止層の構造及び特性を決定する重要な因子である。両者の比(質量比)が5/5〜8/2の範囲が良好な混合比の範囲として挙げることができる。5/5よりもメラミン樹脂が多くなると、熱硬化の際に体積収縮が大きくなり塗膜欠陥を生じやすくなったり、感光体の残留電位を大きくする方向にあり望ましくない。また、8/2よりもアルキッド樹脂が多くなると、感光体の残留電位低減には効果があるものの、バルク抵抗が低くなりすぎて地汚れが悪くなることがある。
【0040】
前記モアレ防止層の形成方法としては、上述した湿式塗工法が採用されるが、下層に電荷ブロッキング層を有する場合には、電荷ブロッキング層を浸食しない溶媒を用いることが好ましい。
前記モアレ防止層の厚みは、特に制限はなく、目的に応じて適宜選択することができるが、1〜10μmが好ましく、2〜5μmがより好ましい。前記厚みが1μm未満であると、効果の発現性が小さくなることがあり、10μmを超えると、残留電位の蓄積を生じることがある。
【0041】
<電荷発生層>
前記電荷発生層は、少なくとも電荷発生物質を含有してなり、更に必要に応じてその他の成分を含有してなる。
【0042】
前記電荷発生物質としては、特に制限はなく、公知のものの中から目的に応じて適宜選択することができるが、例えば、チタニルフタロシアニン、クロロガリウムフタロシアニンなどの金属フタロシアニン、無金属フタロシアニン、アズレニウム塩顔料、スクエアリック酸メチン顔料、カルバゾール骨格を有する対称型若しくは非対称型のアゾ顔料、トリフェニルアミン骨格を有する対称型若しくは非対称型のアゾ顔料、ジフェニルアミン骨格を有する対称型若しくは非対称型のアゾ顔料、ジベンゾチオフェン骨格を有する対称型若しくは非対称型のアゾ顔料、フルオレノン骨格を有する対称型若しくは非対称型のアゾ顔料、オキサジアゾール骨格を有する対称型若しくは非対称型のアゾ顔料、ビススチルベン骨格を有する対称型若しくは非対称型のアゾ顔料、ジスチリルオキサジアゾール骨格を有する対称型若しくは非対称型のアゾ顔料、ジスチリルカルバゾール骨格を有する対称型若しくは非対称型のアゾ顔料、ペリレン系顔料、アントラキノン系顔料、多環キノン系顔料、キノンイミン系顔料、ジフェニルメタン系顔料、トリフェニルメタン系顔料、ベンゾキノン系顔料、ナフトキノン系顔料、シアニン系顔料、アゾメチン系顔料、インジゴイド系顔料、ビスベンズイミダゾール系顔料などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
【0043】
前記フタロシアニン顔料としては、無金属フタロシアニン又は金属フタロシアニンが挙げられる。前記フタロシアニン顔料は、モーザー及びトーマスの「フタロシアニン化合物」(ラインホールド社、1963)等に記載されている合成法、又は他の適当な方法によって合成することができる。
【0044】
前記金属フタロシアニンとしては、例えば、銅、銀、ベリリウム、マグネシウム、カルシウム、亜鉛、インジウム、ナトリウム、リチウム、チタン、錫、鉛、バナジウム、クロム、マンガン、鉄、コバルトなどを中心金属に持つものが挙げられる。また、フタロシアニンの中心核には前記金属原子の代わりに、三価以上の原子価を有するハロゲン化金属が存在していてもよい。なお、フタロシアニンは各種結晶形が知られているが、α型、β型、Y型、ε型、τ型、X型などの結晶形、及び非晶形などの公知のものが使用できる。これらの中でも、下記一般式で表される中心金属にチタンを有するチタニルフタロシアニン(以下、TiOPcと称することもある)が高感度であり、優れた特性を有するので特に好ましい。
【0045】
【化1】

ただし、前記一般式中、X、X、X、及びXは、各々独立に各種ハロゲン原子を表す。n、m、l、及びkは、各々独立に0〜4の数字を表す。
【0046】
また、前記チタニルフタロシアニンの中でも、CuKα線(波長1.542Å)に対するブラッグ角2θの回折ピークとして、少なくとも27.2゜に最大回折ピークを有し、更に9.4゜、9.6゜、24.0゜に主要なピークを有し、かつ最も低角側の回折ピークとして7.3゜にピークを有し、該7.3゜のピークと9.4゜のピークの間にピークを有さず、更に26.3にピークを有さないチタニルフタロシアニン結晶が好適に使用される。
【0047】
前記結晶型のチタニルフタロシアニンとしては、特開2001−19871号公報などに記載されている。このような結晶型のチタニルフタロシアニンを用いることで、高感度を失うことなく繰り返し使用によっても帯電性の低下を生じない安定な電子写真感光体を得ることができる。しかし、非常に長期間繰り返し使用される場合においては、地汚れの増加を引き起こし、感光体の寿命としては満足されるものではなかった。これは、電荷発生層に起因する地汚れは改善されても、支持体より注入される電荷によって引き起こされる地汚れ要因に対しては対処できていないことが原因であると考えられる。
また、一次粒子の平均粒子サイズが0.25μm以下の結晶型チタニルフタロシアニンものを用いた感光体では、光感度の増大、地汚れ特性が著しく改善される。従って、本発明の電子写真感光体に用いられる電荷発生物質としては、前記結晶型を有し、かつ一次粒子サイズをコントロールしたチタニルフタロシアニンが最も有用である。
【0048】
また、支持体と感光層の間に、複数の下引き層又は中間層を積層した構成は、特開平5−80572号公報等に記載されている技術であるが、高感度を有する感光層との組み合わせにおいては、感光層における熱キャリアの発生の影響が大きく、必ずしも地汚れを完全に防止できるものではなかった。この傾向は、本発明で用いるようなチタニルフタロシアニンに代表される長波長に吸収を有する電荷発生物質を用いた場合には顕著な問題となるものであった。
このように、電荷発生層又は下引き層において、各々地汚れを抑制させる方法は開示されているものの、地汚れの発生要因は複数存在しており、それらを同時に抑制させないと長期間繰り返し使用される状況下に耐えることは不可能である。それは、非常に小さな地汚れ要因であり、初期状態では問題にならなくても、繰り返し使用されることによって感光体が疲労したり、構成材料の劣化が進行するに伴って、地汚れ要因は成長するためである。従って、地汚れの発生要因は極力排除するとともに、繰り返し使用における感光体の疲労に対しても安定性を高めることが必要である。しかし、それらを同時に解決し、飛躍的な高耐久化を可能とする方法は開示されていなかった。
【0049】
次に、本発明で用いられる特定の結晶型を有するチタニルフタロシアニン結晶の合成方法について説明する。
まず、チタニルフタロシアニン結晶の粗品の合成法について説明する。フタロシアニン類の合成方法は古くから知られており、Moser等による「Phthalocyanine Compounds」(1963年)、「The Phthalocyanines」(1983年)、特開平6−293769号公報などに記載されている。
例えば、第1の方法としては、無水フタル酸類、金属あるいはハロゲン化金属及び尿素の混合物を高沸点溶媒の存在下あるいは不存在下において加熱する方法である。この方法では、必要に応じてモリブデン酸アンモニウム等の触媒が併用される。
第2の方法としては、フタロニトリル類とハロゲン化金属を高沸点溶媒の存在下あるいは不存在下において加熱する方法である。この方法は、前記第1の方法で製造できないフタロシアニン類、例えば、アルミニウムフタロシアニン類、インジウムフタロシアニン類、オキソバナジウムフタロシアニン類、オキソチタニウムフタロシアニン類、ジルコニウムフタロシアニン類等に用いられる。
第3の方法としては、無水フタル酸、又はフタロニトリル類とアンモニアをまず反応させて、例えば1,3−ジイミノイソインドリン類等の中間体を製造し、次いでハロゲン化金属と高沸点溶媒中で反応させる方法である。
第4の方法としては、尿素等存在下で、フタロニトリル類と金属アルコキシドを反応させる方法である。
これらの中でも、第4の方法はベンゼン環への塩素化(ハロゲン化)が起こらず、電子写真用材料の合成法としては、極めて有用な方法である。
【0050】
前記チタニルフタロシアニン結晶の合成方法としては、特開平6−293769号公報に記載されているように、ハロゲン化チタンを原料として用いない方法が好適である。この方法の最大のメリットは、合成されたチタニルフタロシアニン結晶がハロゲン化フリーであることである。チタニルフタロシアニン結晶は不純物としてのハロゲン化チタニルフタロシアニン結晶を含むと、これを用いた感光体の静電特性において光感度の低下や、帯電性の低下といった悪影響を及ぼす場合が多い(Japan Hardcopy ‘89論文集p.103、1989年)。そこで、本発明においても、特開2001−19871号公報に記載されているようなハロゲン化フリーチタニルフタロシアニン結晶をメインに対象にしているものであり、これらの材料が有効に使用される。ハロゲン化フリーのチタニルフタロシアニンを合成するためには、チタニルフタロシアニン合成の際の原材料として、ハロゲン化された材料を使用しないことである。具体的には、後述の方法が用いられる。
【0051】
次に、不定形チタニルフタロシアニン(低結晶性チタニルフタロシアニン)の合成法について述べる。この方法は、フタロシアニン類を硫酸に溶解した後、水で希釈し、再析出させる方法であり、アシッド・ペースト法、又はアシッド・スラリー法と呼ばれるものが使用できる。
具体的な方法としては、上記の合成粗品を10〜50倍量の濃硫酸に溶解し、必要に応じて不溶物を濾過等により除去し、これを硫酸の10〜50倍量の充分に冷却した水もしくは氷水にゆっくりと投入し、チタニルフタロシアニンを再析出させる。析出したチタニルフタロシアニンを濾過した後、イオン交換水で洗浄し、濾過を行い、濾液が中性になるまで充分にこの操作を繰り返す。最終的に、綺麗なイオン交換水で洗浄した後、濾過を行い、固形分濃度で5〜15質量%程度の水ペーストを得る。
この際、イオン交換水で十分に洗浄し、可能な限り濃硫酸を残さないことが重要である。具体的には、洗浄後のイオン交換水が以下のような物性値を示すことが好ましい。即ち、硫酸の残存量を定量的に表せば、洗浄後のイオン交換水のpHや比伝導度で表すことができる。pHで表す場合には、pHが6〜8の範囲であることが好ましい。この範囲であれば、感光体特性に影響を与えない硫酸残存量であると判断できる。このpH値は市販のpHメーターで簡便的に測定することができる。
一方、前記比伝導度は、8μS/cm以下が好ましく、5μS/cm以下がより好ましく、3μS/cm以下が更に好ましい。この範囲であれば、感光体特性に影響を与えない硫酸残存量であると判断できる。この比伝導度は市販の電気伝導率計で測定することが可能である。比伝導度の下限値は、洗浄に使用するイオン交換水の比伝導度ということになる。いずれの測定においても、上記範囲を逸脱する範囲では、硫酸の残存量が多く、感光体の帯電性が低下したり、光感度が悪化することがある。
【0052】
このようにして作製したものが本発明に用いる不定形チタニルフタロシアニン(低結晶性チタニルフタロシアニン)である。この際、この不定形チタニルフタロシアニン(低結晶性チタニルフタロシアニン)が、CuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(0.2゜)として、少なくとも7.0〜7.5゜に最大回折ピークを有するものであることが好ましく、その回折ピークの半値幅が1゜以上であることがより好ましい。更に、一次粒子の平均粒子サイズが0.1μm以下であることが好ましい。
【0053】
前記結晶変換は、前記不定形チタニルフタロシアニン(低結晶性チタニルフタロシアニン)を、CuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(0.2゜)として、少なくとも27.2゜に最大回折ピークを有し、更に9.4゜、9.6゜、24.0゜に主要なピークを有し、かつ最も低角側の回折ピークとして7.3゜にピークを有し、かつ、前記7.3ーのピークと9.4゜のピークの間にはピークを有さず、かつ26.3゜にピークを有さないチタニルフタロシアニン結晶に変換する工程である。
具体的な方法としては、前記不定形チタニルフタロシアニン(低結晶性チタニルフタロシアニン)を乾燥せずに、水の存在下の元で有機溶媒と共に混合し、撹拌することにより、前記結晶型が得られる。
この際、使用される有機溶媒は、所望の結晶型が得られるものであれば特に制限はなく、目的に応じて公知の有機溶媒の中から適宜選択することができるが、例えばテトラヒドロフラン、トルエン、塩化メチレン、二硫化炭素、オルトジクロロベンゼン、1,1,2−トリクロロエタン、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
前記結晶変換に使用される前記有機溶媒の量は、不定形チタニルフタロシアニンの質量の30倍以上の質量であることが好ましい。これは、結晶変換を素早く十分に起こさせると共に、不定形チタニルフタロシアニンに含まれる不純物を十分に取り除く効果が発現されるからである。なお、ここで使用する不定形チタニルフタロシアニンは、アシッドペースト法により作製するものであるが、上述のように硫酸を十分に洗浄したものを使用することが好ましい。硫酸が残存するような条件で結晶変換を行うと、結晶粒子中に硫酸イオンが残存し、でき上がった結晶を水洗処理のような操作をしても完全には取り除くことができない。硫酸イオンが残存した場合には、感光体の感度低下、帯電性低下を引き起こすなど、好ましい結果を得られない。例えば、特開平8−110649号公報(比較例)には、硫酸に溶解したチタニルフタロシアニンをイオン交換水と共に有機溶媒に投入し、結晶変換を行う方法が記載されている。この際、本発明で得られるチタニルフタロシアニン結晶のX線回折スペクトルに類似した結晶を得ることができるが、チタニルフタロシアニン中の硫酸イオン濃度が高く、光減衰特性(光感度)が悪いものであるため、本発明のチタニルフタロシアニンの製造方法としては良好なものではない。
【0054】
以上説明した結晶変換方法は、特開2001−19871号公報に準じた結晶変換方法である。本発明の静電潜像担持体に含有される電荷発生物質においては、チタニルフタロシアニン結晶の粒子サイズをより細かくすることにより、その効果がより一層発現されるものであり、以下にその作製方法を示す。
前記電荷発生層に含有されるチタニルフタロシアニン結晶の粒子サイズをコントロールする方法としては、大きく2つの方法が挙げられる。1つは、チタニルフタロシアン結晶粒子を合成する際に、0.25μmより大きい粒子を含まない結晶を合成する方法である。もう1つは、チタニルフタロシアニン結晶を分散した後、0.25μmより大きい粗大粒子を取り除いてしまう方法である。勿論、両者を併用して用いることも可能である。
【0055】
次に、微粒子チタニルフタロシアニン結晶の合成方法について説明する。まず、チタニルフタロシアニン結晶の粒子サイズをより細かくするためには、前記不定形チタニルフタロシアニン(低結晶性チタニルフタロシアニン)は、一次粒径が0.1μm以下(そのほとんどが0.01〜0.05μm程度)であるが(図5参照、スケールバーは0.2μmである)、結晶変換に際しては、結晶成長と共に結晶が変換されることが分かった。通常、この種の結晶変換においては、原料の残存がないように充分な結晶変換時間を確保し、結晶変換が十二分に行われた後に、濾過を行い、所望の結晶型を有するチタニルフタロシアニン結晶を得る。このため、原料としては充分に小さな一次粒子を有する原料を用いているにもかかわらず、結晶変換後のチタニルフタロシアニン結晶としては一次粒子の大きな結晶(概ね0.3〜0.5μm)が得られる(図6参照、スケールバーは0.2μmである)。
【0056】
このように作製されたチタニルフタロシアニン結晶を分散するにあたっては、分散後の粒子サイズを小さなもの(0.2μm以下程度)にするため、強いシェアを与えることで分散を行う。更に必要に応じて、一次粒子を粉砕する強いエネルギーを与えて分散を行っている。その結果、上述したように、粒子の一部が所望の結晶型でない結晶型へと転移してしまう。
これに対し、本発明においては、結晶変換に際して結晶成長がほとんど起こらない範囲(図5に観察される不定形チタニルフタロシアニン粒子のサイズが、結晶変換後において遜色ない小ささ、概ね0.2μm以下に保たれる範囲)で、結晶変換が完了した時点を見極めることで、可能な限り一次粒子サイズの小さなチタニルフタロシアニン結晶を得ようというものである。結晶変換後の粒子サイズは、結晶変換時間に比例して大きくなる。このため、上述したように、結晶変換の効率を高くし、短時間で完了させることが重要である。このためには、いくつかの重要なポイントがある。
1つは、結晶変換溶媒を前述のように適正なものを選択し、結晶変換効率を高めることがある。もう1つは、結晶変換を短時間に完了させるため、溶媒とチタニルフタロシアニン水ペースト(前記作製した原料:不定形チタニルフタロシアニン)を充分に接触させるために強い撹拌を用いるものである。具体的には、撹拌力の非常に強いプロペラを用いた撹拌、ホモジナイザー(ホモミキサー)のような強烈な撹拌(分散)手段を用いるなどの手法により、短時間での結晶変換を実現させるものである。これらの条件により、原料が残存することなく、結晶変換が充分に行われ、かつ結晶成長が起こらない状態のチタニルフタロシアニン結晶を得ることができる。この場合、結晶変換に使用する有機溶媒量の適正化が有効な手段である。具体的には、不定形チタニルフタロシアニンの固形分に対して、30倍以上の有機溶媒を使用することが好ましい。これにより、短時間での結晶変換を確実なものとすると共に、不定形チタニルフタロシアニン中に含まれる不純物を確実に取り除くことができる。
【0057】
また、上述のように結晶粒子サイズと結晶変換時間とは比例関係を示すため、所定の反応(結晶変換)が完了したら、反応を直ちに停止させる方法も有効な手段である。上述のように結晶変換を行った後、直ちに結晶変換の起こりにくい溶媒を大量に添加することが前記手段として挙げられる。結晶変換の起こりにくい溶媒としては、アルコール系、エステル系などの溶媒が挙げられる。これらの溶媒を結晶変換溶媒に対して、30倍程度加えることにより、結晶変換を停止することができる。
このようにして作製される一次粒子サイズは、細かいほど感光体の課題に対しては良好な結果を示すものであるが、顔料作製にかかる次工程(顔料の濾過工程)、分散液での分散安定性を考慮すると、あまり小さすぎても副作用がでる場合がある。即ち、一次粒子が非常に細かい場合には、これを濾過する工程において濾過時間が非常に長くなってしまうという問題が発生する。また、一次粒子が細かすぎる場合には、分散液中での顔料粒子の表面積が大きくなるため、粒子の再凝集の可能性が高くなる。したがって、適切な顔料粒子の粒子サイズは、0.05〜0.2μm程度の範囲である。
図7には、短時間で結晶変換を行った場合のチタニルフタロシアニン結晶のTEM像を示す(図7中のスケールバーは0.2μmである)。図6の場合とは異なり、粒子サイズが小さく、ほぼ均一であり、図6に観察されるような粗大粒子は全く認められない。
【0058】
図7に示すように、一次粒子が小さい状態で作製されたチタニルフタロシアニン結晶を分散するにあたっては、分散後の粒子サイズを小さなもの(0.25μm以下が好ましく、0.2μm以下がより好ましい)にするためには、一次粒子が凝集(集合)して形成される二次粒子をほぐすだけのシェアを与えることで分散が可能である。その結果、必要以上のエネルギーを与えないため、上述したように、粒子の一部が所望の結晶型でない結晶型へと転移し易い結果は生み出さずに、粒度分布の細かい分散液を容易に作製することが可能となる。
ここで、前記体積平均粒径は、超遠心式自動粒度分布測定装置(CAPA−700、堀場製作所製)により求めたものであり、累積分布の50%に相当する粒子径(Median系)として算出されたものである。しかし、この方法では微量の粗大粒子を検出できない場合があるため、より詳細に求めるには、チタニルフタロシアニン結晶粉末、あるいはその分散液を直接、電子顕微鏡で観察して、その大きさを求めることが重要である。
分散液の更なる観察により、微小欠陥に関して検討した結果、上記現象は次のように理解された。通常、平均粒子サイズを測定するような方法においては、極端に大きな粒子が数%以上も存在するような場合には、その存在が検出できるものであるが、全体の1%以下程度のような微量になってくると、その測定は検出限界以下になってしまうものである。その結果、平均粒子サイズの測定だけでは粗大粒子の存在が検出されずに、上述のような微小欠陥に関する解釈を困難にしていた。
【0059】
図8及び図9に、分散条件を固定して分散時間だけを変更した2種類の分散液の状態を観察した写真を示す。同一条件における分散時間の短い分散液の写真を図8に示すが、分散時間の長い図9と比較して、粗大粒子が残っている様子が観測される。図8中の黒い粒が粗大粒子である。
この2種類の分散液の平均粒径並びに粒度分布を、粒度分布測定装置(堀場製作所製、CAPA700)により測定した。結果を図10に示す。図10における「A」が図8に示す分散液に対応し、「B」が図9に示す分散液に対応する。両者を比較すると、粒度分布に関してはほとんど差が認められない。また、両者の体積平均粒径は、「A」が0.29μm、「B」が0.28μmと求められ、測定誤差を加味した上でも、両者には全くの差異が認められない。
従って、体積平均粒径(平均粒子サイズ)の規定だけでは、微量な粗大粒子の残存を検出できず、昨今の高解像度のネガ・ポジ現像には対応できていないことが理解される。この微量な粗大粒子の存在は、塗布液を顕微鏡レベルで観察することにより、初めて認識できるものである。
【0060】
このような事実に対して、結晶変換時に作製される一次粒子をできる限り小さいものとすることは有効な手段である。このため、結晶変換溶媒を前述のように適正なものを選択し、結晶変換効率を高めつつ、結晶変換を短時間に完了させるために、溶媒とチタニルフタロシアニン水ペースト(前述の如き作製した原料)を充分に接触させるために強い撹拌を用いるような手法が有効であることがわかる。
このような結晶変換方法を採用することにより、一次平均粒子サイズの小さな(0.25μm以下が好ましく、0.2μm以下がより好ましい)チタニルフタロシアニン結晶を得ることができる。特開2001−19871号公報に記載された技術に加えて、必要に応じて上述のような技術(微細なチタニルフタロシアニン結晶を得るための結晶変換方法)を併用することは、本発明の効果を高めるために有効な手段である。
【0061】
続いて、結晶変換されたチタニルフタロシアニン結晶は直ちに濾過されることにより、結晶変換溶媒と分別される。この濾過に際しては、適当なサイズのフィルターを用いることにより行われる。この際、減圧濾過を用いることが好ましい。
その後、分別されたチタニルフタロシアニン結晶は、必要に応じて加熱乾燥される。加熱乾燥に使用する乾燥機としては、特に制限はなく、公知のものがいずれも使用可能であるが、大気下で行う場合には送風型の乾燥機が好ましい。また、乾燥速度を早め、本発明の効果をより顕著に発現させるために減圧下の乾燥も非常に有効な手段である。更に、高温で分解する、あるいは結晶型が変化するような材料に対しては有効な手段であり、10mmHgよりも真空度が高い状態で乾燥することがより有効である。
得られる特定の結晶型を有するチタニルフタロシアニン結晶は、電荷発生物質として極めて有用であるが、上述したように結晶型が不安定であり、分散液を作製する際に結晶型が転移し易いという欠点を有している。そこで、本発明のように一次粒子を限りなく小さなものを合成することによって、分散液作製時に過剰なシェアを与えることなく、平均粒径の小さな分散液を作製することができ、結晶型も極めて安定に(合成した結晶型を変えることなく)作製することができる。
【0062】
次に、チタニルフタロシアニン結晶を分散した後に、粗大粒子を取り除く方法について説明する。
分散液の作製に関しては一般的な方法が用いられ、前記チタニルフタロシアニン結晶を必要に応じてバインダー樹脂とともに適当な溶剤中にボールミル、アトライター、サンドミル、ビーズミル、超音波などを用いて分散させることで得られるものである。この際、バインダー樹脂は感光体の静電特性などにより、また、溶媒は顔料へのぬれ性、顔料の分散性などにより適宜選択すればよい。
既に述べたように、CuKα線(波長1.542Å)に対するブラッグ角2θの回折ピーク(0.2゜)として、少なくとも27.2゜に最大回折ピークを有するチタニルフタロシアニン結晶は、熱エネルギー、機械的シェア等のストレスにより他の結晶型に容易に結晶転移をすることが知られている。前記チタニルフタロシアニン結晶もこの傾向は変わらない。微細な粒子を含む分散液を作製するためには、分散方法の工夫も必要であるが、結晶型の安定性と微粒子化はトレード・オフの関係になる。分散条件を最適化することによりこれを回避する方法はあるが、いずれも製造条件を極めて狭くしてしまうものであり、より簡便な方法が望まれている。
【0063】
この問題を解決するため、以下のような方法も有効な手段である。
結晶転移が起こらない範囲でできる限り粒子を微細にした分散液を作製した後、フィルターで濾過する方法である。この方法では、残存する目視では観察できない(あるいは粒径測定では検出できない)微量な粗大粒子をも取り除くことができる。また、粒度分布を揃えるという点からも非常に有効な手段である。具体的には、作製した分散液を有効孔径が3μm以下のフィルター、より好ましくは1μm以下のフィルターにて濾過する操作を行い、分散液を得る方法である。この方法によっても、粒子サイズの小さな(0.25μm以下が好ましく、0.2μm以下がより好ましい)チタニルフタロシアニン結晶のみを含む分散液を作製することができる。
【0064】
分散液を濾過するフィルターとしては、除去したい粗大粒子のサイズによって異なるものであるが、600dpi程度の解像度を必要とする画像形成装置で使用される静電潜像担持体(感光体)としては、最低でも3μm以上の粗大粒子の存在は画像に対して影響を及ぼす。したがって、有効孔径が3μm以下のフィルターを使用することが好ましく、1μm以下の有効孔径を有するフィルターを使用することがより好ましい。このようなフィルタリング処理を行うことにより、不必要な粗大粒子を取り除くことができ、粒度分布が狭く、かつ粗大粒子の含まない分散液を作製することが可能になる。
前記フィルターの有効孔径については、細かいほど粗大粒子の除去には効果があるが、あまり細かすぎると、必要な顔料粒子そのものも濾過されてしまうため、適切なサイズが存在する。また、細かすぎた場合には、濾過に時間がかかる、フィルターが目詰まりを起こす、ポンプ等を使用して送液する場合には負荷がかかりすぎる等の問題を生じる。なお、ここで使用されるフィルターの材質としては、濾過する分散液に使用される溶媒に対して耐性のあるものが好適に使用される。
【0065】
濾過に際しては、濾過される分散液中の粗大粒子量があまりにも多い場合、取り除かれる顔料が多くなり、濾過後の分散液の固形分濃度が変化するので好ましくない。従って、濾過を行う際には適切な粒度分布(粒子サイズ、標準偏差)が存在する。本発明のように、濾過による顔料のロス、フィルターの目詰まり等がなく、効率よく濾過を行うためには、濾過前の分散液の体積平均粒径が0.3μm以下であり、かつその標準偏差が0.2μm以下に分散させておくことが好ましい。
このような分散液の濾過操作を加えることによっても、粗大粒子を取り除くことが可能となる。その結果、分散液を使用した静電潜像担持体(感光体)で発生する地汚れを低減化することができる。上述のように、より細かいフィルターを使用するほど、その効果は大きなもの(確実なもの)になるが、顔料粒子そのものが濾過されてしまう場合がある。このような場合には、上述したチタニルフタロシアニンの一次粒子を微細化合成する技術と併用することは、非常に大きな効果を奏する。
即ち、(i)微細化チタニルフタロシアニンを合成し、これを使用することにより、分散時間の短縮化、分散ストレスの低減化が図れ、分散における結晶転移の可能性が小さくなる。(ii)分散によって残存する粗大粒子サイズが、微細化しない場合よりも小さいため、より小さなフィルターを使用することが可能になり、粗大粒子の除去効果がより確実なものとなる。また、除去されるチタニルフタロシアニン粒子量が低減し、濾過前後における分散液組成の変化が少なく、安定した製造が可能になる。(iii)その結果、製造される感光体は、地汚れ耐性の高いものである。
【0066】
前記電荷発生層は、前記電荷発生物質を必要に応じてバインダー樹脂とともに溶剤中にボールミル、アトライター、サンドミル、超音波などを用いて分散し、これを導電性支持体上に塗布し、乾燥することにより形成される。
【0067】
前記電荷発生層には、必要に応じて結着樹脂を添加することができる。該結着樹脂としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、ポリアミド樹脂、ポリウレタン樹脂、エポキシ樹脂、ポリケトン樹脂、ポリカーボネート樹脂、シリコーン樹脂、アクリル樹脂、ポリビニルブチラール樹脂、ポリビニルホルマール樹脂、ポリビニルケトン樹脂、ポリスチレン樹脂、ポリスルホン樹脂、ポリ−N−ビニルカルバゾール樹脂、ポリアクリルアミド樹脂、ポリビニルベンザール樹脂、ポリエステル樹脂、フェノキシ樹脂、塩化ビニル−酢酸ビニル共重合体、ポリ酢酸ビニル樹脂、ポリフェニレンオキシド樹脂、ポリビニルピリジン樹脂、セルロース系樹脂、カゼイン、ポリビニルアルコール樹脂、ポリビニルピロリドン樹脂などが挙げられる。
前記結着樹脂の含有量は、特に制限はなく、目的に応じて適宜選択することができるが、前記電荷発生物質100質量部に対し0〜500質量部が好ましく、10〜300質量部がより好ましい。
【0068】
前記溶剤としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、イソプロパノール、アセトン、メチルエチルケトン、シクロヘキサノン、テトラヒドロフラン、ジオキサン、エチルセルソルブ、酢酸エチル、酢酸メチル、ジクロロメタン、ジクロロエタン、モノクロロベンゼン、シクロヘキサン、トルエン、キシレン、リグロインなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
前記電荷発生層塗布液の塗工方法としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、浸漬塗工法、スプレーコート、ビートコート、ノズルコート、スピナーコート、リングコートなどが挙げられる。
前記電荷発生層の厚みは、特に制限はなく、目的に応じて適宜選択することができるが、0.01〜5μmが好ましく、0.1〜2μmがより好ましい。
【0069】
(静電潜像担持体の製造方法)
本発明の静電潜像担持体の製造方法は、電荷輸送層形成工程と、表面処理工程とを少なくとも含み、更に必要に応じてその他の工程を含んでなる。
【0070】
−電荷輸送層形成工程−
前記電荷輸送層形成工程は、電荷発生層上に少なくとも電荷輸送物質、結着樹脂、及び非ハロゲン溶媒を含有する電荷輸送層塗布液を塗布し、乾燥させて電荷輸送層を形成する工程である。
このように非ハロゲン溶媒を用いて、厚みが30μm以上の電荷輸送層を形成した場合であっても、繰り返し耐久性が向上する。
前記非ハロゲン溶媒を用いることによって、環境負荷の低減、及び帯電特性が優れた特性を示すことができる。前記非ハロゲン溶媒としては、例えば、テトラヒドロフラ、ジオキソラン、ジオキサン等の環状エーテル;トルエン、キシレン等の芳香族系炭化水素、又はそれらの誘導体が好適に用いられる。
前記電荷輸送物質、及び結着樹脂としては、上述したものを用いることができる。
前記電荷輸送層塗布液の塗工方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、浸漬塗工法、スプレーコート、ビートコート、ノズルコート、スピナーコート、リングコートなどが挙げられる。
【0071】
−表面処理工程−
前記表面処理工程は、形成された電荷輸送層に対し、熱処理、UV照射処理、電子線照射処理及びコロナ放電処理から選択される少なくともいずれかの表面処理を行う工程である。これらの表面処理の中でも、熱処理やコロナ放電処理は、感光体材料への劣化の影響が小さいので好ましい。前記熱処理における条件としては、変曲点を持たない条件であれば特に制限はなく、目的に応じて適宜選択することができるが、80〜150℃の温度環境下で1〜50時間放置することが好ましい。
また、前記コロナ放電処理としては、特に制限はなく、目的に応じて適宜選択することができるが、コロナ放電下、感光体を500〜2000(−V)以下の電圧で20〜200時間放置して処理することが好ましい。
前記UV照射処理としては、例えば、照射光源として高圧水銀灯やメタルハライドランプなどを用いることができ、照射光量は50mW/cm以上、2000mW/cm以下で行うことが好ましい。
前記電子線照射処理としては、例えば高エネルギー型、低エネルギー型等の電子線照射装置を用いることができるが、感光体材料への劣化への影響を防ぐため、特に低エネルギー型電子線照射装置が好ましく、照射線量は100kGy以下で用いることが好ましい。
【0072】
前記その他の工程としては、例えば、電荷発生層形成工程、電荷ブロッキング層形成工程、モアレ層形成工程、などが挙げられる。
【0073】
本発明の静電潜像担持体の製造方法によれば、図4に示すような表面から厚み方向20μm以内で、変曲点のない略直線状(相関係数の2乗が0.92以上)を示すこと、あるいは、電荷輸送層表面から5μm内部における前記電荷輸送物質と前記結着樹脂との吸光度比BとがB/A=1.0〜1.15を示すことによって、地汚れやフィルミングが発生しにくく、また、非ハロゲン溶媒を用いているので環境負荷が小さく、耐久性に優れた静電潜像担持体を得ることができ、公知の各種電子写真法による画像形成に好適に用いることができ、以下の本発明の画像形成装置及び画像形成方法に特に好適に用いることができる。
【0074】
(画像形成方法及び画像形成装置)
本発明の画像形成方法は、静電潜像形成工程と、現像工程と、転写工程と、定着工程とを少なくとも含み、好ましくはクリーニング工程を含み、更に必要に応じて適宜選択したその他の工程、例えば除電工程、リサイクル工程、制御工程等を含む。
本発明の画像形成装置は、静電潜像担持体と、静電潜像形成手段と、現像手段と、転写手段と、定着手段とを少なくとも有してなり、好ましくはクリーニング手段を有してなり、更に必要に応じて適宜選択したその他の手段、例えば、除電手段、リサイクル手段、制御手段等を有してなる。
前記画像形成装置は、少なくとも静電潜像担持体、該静電潜像担持体表面を帯電させる帯電手段、現像手段、転写手段、及びクリーニング手段を含む画像形成要素を複数配列したタンデム型であることが好ましい。
【0075】
本発明の画像形成方法は、本発明の画像形成装置により好適に実施することができ、前記静電潜像形成工程は前記静電潜像形成手段により行うことができ、前記現像工程は前記現像手段により行うことができ、前記転写工程は前記転写手段により行うことができ、前記定着工程は前記定着手段により行うことができ、前記その他の工程は前記その他の手段により行うことができる。
【0076】
<静電潜像形成工程及び静電潜像形成手段>
前記静電潜像形成工程は、静電潜像担持体上に静電潜像を形成する工程である。
前記静電潜像担持体としては、本発明の前記静電潜像担持体を好適に用いることができる。
【0077】
前記静電潜像の形成は、例えば、前記静電潜像担持体の表面を一様に帯電させた後、像様に露光することにより行うことができ、前記静電潜像形成手段により行うことができる。前記静電潜像形成手段は、例えば、前記静電潜像担持体の表面を一様に帯電させる帯電器と、前記静電潜像担持体の表面を像様に露光する露光器とを少なくとも備える。
【0078】
前記帯電は、例えば、前記帯電器を用いて前記静電潜像担持体の表面に電圧を印加することにより行うことができる。
前記帯電器としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、導電性又は半導電性のロール、ブラシ、フィルム、ゴムブレード等を備えたそれ自体公知の接触帯電器、コロトロン、スコロトロン等のコロナ放電を利用した非接触帯電器、等が挙げられる。
【0079】
前記露光は、例えば、前記露光器を用いて前記静電潜像担持体の表面を像様に露光することにより行うことができる。
前記露光器としては、前記帯電器により帯電された前記静電潜像担持体の表面に、形成すべき像様に露光を行うことができる限り特に制限はなく、目的に応じて適宜選択することができるが、例えば、複写光学系、ロッドレンズアレイ系、レーザー光学系、液晶シャッタ光学系、等の各種露光器が挙げられる。
なお、本発明においては、前記静電潜像担持体の裏面側から像様に露光を行う光背面方式を採用してもよい。
【0080】
<現像工程及び現像手段>
前記現像工程は、前記静電潜像を、トナー乃至現像剤を用いて現像して可視像を形成する工程である。
前記可視像の形成は、例えば、前記静電潜像をトナー乃至現像剤を用いて現像することにより行うことができ、前記現像手段により行うことができる。
前記現像手段は、例えば、トナー乃至現像剤を用いて現像することができる限り、特に制限はなく、公知のものの中から適宜選択することができ、例えば、トナー乃至現像剤を収容し、前記静電潜像に該トナー乃至該現像剤を接触又は非接触的に付与可能な現像器を少なくとも有するものが好適に挙げられ、前記トナー入り容器を備えた現像器等がより好ましい。
【0081】
前記現像器は、乾式現像方式のものであってもよいし、湿式現像方式のものであってもよく、また、単色用現像器であってもよいし、多色用現像器であってもよく、例えば、前記トナー乃至前記現像剤を摩擦攪拌させて帯電させる攪拌器と、回転可能なマグネットローラとを有してなるもの、等が好適に挙げられる。
【0082】
前記現像器内では、例えば、前記トナーと前記キャリアとが混合攪拌され、その際の摩擦により該トナーが帯電し、回転するマグネットローラの表面に穂立ち状態で保持され、磁気ブラシが形成される。該マグネットローラは、前記静電潜像担持体(感光体)近傍に配置されているため、該マグネットローラの表面に形成された前記磁気ブラシを構成する前記トナーの一部は、電気的な吸引力によって該静電潜像担持体(感光体)の表面に移動する。その結果、前記静電潜像が該トナーにより現像されて該静電潜像担持体(感光体)の表面に該トナーによる可視像が形成される。
【0083】
前記現像器に収容させる現像剤は、トナーを含む現像剤であるが、該現像剤としては一成分現像剤であってもよいし、二成分現像剤であってもよい。
【0084】
<転写工程及び転写手段>
前記転写工程は、前記可視像を記録媒体に転写する工程であるが、中間転写体を用い、該中間転写体上に可視像を一次転写した後、該可視像を前記記録媒体上に二次転写する態様が好ましく、前記トナーとして二色以上、好ましくはフルカラートナーを用い、可視像を中間転写体上に転写して複合転写像を形成する第一次転写工程と、該複合転写像を記録媒体上に転写する第二次転写工程とを含む態様がより好ましい。
前記転写は、例えば、前記可視像を転写帯電器を用いて前記静電潜像担持体(感光体)を帯電することにより行うことができ、前記転写手段により行うことができる。前記転写手段としては、可視像を中間転写体上に転写して複合転写像を形成する第一次転写手段と、該複合転写像を記録媒体上に転写する第二次転写手段とを有する態様が好ましい。
なお、前記中間転写体としては、特に制限はなく、目的に応じて公知の転写体の中から適宜選択することができ、例えば、転写ベルト等が好適に挙げられる。
【0085】
前記転写手段(前記第一次転写手段、前記第二次転写手段)は、前記静電潜像担持体(感光体)上に形成された前記可視像を前記記録媒体側へ剥離帯電させる転写器を少なくとも有するのが好ましい。前記転写手段は、1つであってもよいし、2つ以上であってもよい。
前記転写器としては、コロナ放電によるコロナ転写器、転写ベルト、転写ローラ、圧力転写ローラ、粘着転写器、等が挙げられる。
なお、前記記録媒体としては、特に制限はなく、公知の記録媒体(記録紙)の中から適宜選択することができる。
【0086】
<定着工程及び定着手段>
前記定着工程は、記録媒体に転写された可視像を前記定着手段を用いて定着させる工程であり、各色のトナーに対し前記記録媒体に転写する毎に行ってもよいし、各色のトナーに対しこれを積層した状態で一度に同時に行ってもよい。
前記定着手段としては、特に制限はなく、目的に応じて適宜選択することができるが、公知の加熱加圧手段が好適である。前記加熱加圧手段としては、加熱ローラと加圧ローラとの組合せ、加熱ローラと加圧ローラと無端ベルトとの組合せ、等が挙げられる。
前記加熱加圧手段における加熱は、通常、80℃〜200℃が好ましい。
なお、本発明においては、目的に応じて、前記定着工程及び定着手段と共にあるいはこれらに代えて、例えば、公知の光定着器を用いてもよい。
【0087】
前記除電工程は、前記静電潜像担持体に対し除電バイアスを印加して除電を行う工程であり、除電手段により好適に行うことができる。
前記除電手段としては、特に制限はなく、前記静電潜像担持体に対し除電バイアスを印加することができればよく、公知の除電器の中から適宜選択することができ、例えば、除電ランプ等が好適に挙げられる。
【0088】
前記クリーニング工程は、前記静電潜像担持体上に残留する前記トナーを除去する工程であり、クリーニング手段により好適に行うことができる。
前記クリーニング手段としては、特に制限はなく、前記静電潜像担持体上に残留する前記電子写真トナーを除去することができればよく、公知のクリーナの中から適宜選択することができ、例えば、磁気ブラシクリーナ、静電ブラシクリーナ、磁気ローラクリーナ、ブレードクリーナ、ブラシクリーナ、ウエブクリーナ等が好適に挙げられる。
本発明においては、前記クリーニング手段として、少なくともブラシ回転体を有し、該ブラシ回転体と静電潜像担持体との接点において該ブラシ回転体が該静電潜像担持体と同一方向に回転するものを用いることが好ましい。
【0089】
前記リサイクル工程は、前記クリーニング工程により除去した前記トナーを前記現像手段にリサイクルさせる工程であり、リサイクル手段により好適に行うことができる。
前記リサイクル手段としては、特に制限はなく、公知の搬送手段等が挙げられる。
【0090】
前記制御手段は、前記各工程を制御する工程であり、制御手段により好適に行うことができる。
前記制御手段としては、前記各手段の動きを制御することができる限り特に制限はなく、目的に応じて適宜選択することができ、例えば、シークエンサー、コンピュータ等の機器が挙げられる。
【0091】
本発明の画像形成装置により本発明の画像形成方法を実施する一の態様について、図面を参照して説明する。
図11は、本発明の画像形成方法(電子写真プロセス)及び画像形成装置を説明するための概略図である。この図11において、静電潜像担持体(感光体)31はドラム状の形状を示しているが、シート状、エンドレスベルト状のものであってもよい。帯電チャージャ33、転写前チャージャ37、転写チャージャ40、分離チャージャ41、クリーニング前チャージャ43としては、コロトロン、スコロトロン、固体帯電器(ソリッド・ステート・チャージャー)、帯電ローラ、転写ローラを始めとする公知の手段が用いられる。
これらの帯電方式のうち、接触帯電方式、あるいは非接触の近接配置方式が特に好ましく、帯電効率が高くオゾン発生量が少ない、装置の小型化が可能である等のメリットを有する。
また、画像露光部による露光35、除電ランプ32等の光源には、蛍光灯、タングステンランプ、ハロゲンランプ、水銀灯、ナトリウム灯、発光ダイオード(LED)、半導体レーザー(LD)、エレクトロルミネッセンス(EL)等の発光物全般を用いることができる。
また、所望の波長域の光のみを照射するために、シャープカットフィルター、バンドパスフィルター、近赤外カットフィルター、ダイクロイックフィルター、干渉フィルター、色温度変換フィルターなどの各種フィルターを用いることもできる。
これらの光源のうち、発光ダイオード、及び半導体レーザーは照射エネルギーが高く、また600〜800nmの長波長光を有するため、前記電荷発生物質であるフタロシアニン顔料が高感度を示すことから良好に使用される。
前記光源等は、図11に示される工程の他に光照射を併用した転写工程、除電工程、クリーニング工程、あるいは前露光などの工程を設けることにより、感光体に光が照射される。そして、現像手段36により感光体31上に現像されたトナーは、転写紙39に転写されるが、全部が転写されるわけではなく、感光体31上に残存するトナーも生ずる。このようなトナーは、ファーブラシ44及びクリーニングブレード45により、感光体31より除去される。クリーニングは、クリーニングブラシだけで行われることもあり、クリーニングブラシにはファーブラシ、マグファーブラシを始めとする公知のものが用いられる。
本発明においては、ブラシ回転体を有し、静電潜像担持体(感光体)との接点における回転方向が感光体と同一方向に回転する(図11においては、感光体が反時計回りの回転に対し、クリーニングブラシは時計回りの回転する)ことがより好ましい。このように、クリーニングブラシとの接点部分における回転方向を感光体とクリーニングブラシで同一方向にする場合、感光体にキズがつきにくく、またトナーのかきとり能力の不足によって生じる感光体上へのトナー成分の固着もおこりにくいことから、より耐久性に優れた画像形成装置を得ることが可能となる。
【0092】
電子写真感光体31に正(負)帯電を施し、画像露光を行うと、感光体表面上には正(負)の静電潜像が形成される。これを負(正)極性のトナー(検電微粒子)で現像すれば、ポジ画像が得られ、また正(負)極性のトナーで現像すれば、ネガ画像が得られる。
このような現像手段36としては、公知の方法が適用される。また、除電手段としては公知の方法が用いられる。
【0093】
次に、本発明の静電潜像担持体(電子写真感光体)が搭載された画像形成要素について、説明する。
画像形成要素は、静電潜像担持体と、その周りに少なくとも帯電部材、現像部材及びクリーニング部材が配置されたユニットとして構成され、複数色のトナーが用いられるカラー電子写真画像形成装置の場合には、その色の数に応じた数の画像形成要素が搭載され、また各画像形成要素は画像形成装置に固定しても、また、個別に差し替え使用可能とすることもできる。
図12は、画像形成要素を複数具備してなる画像形成装置(一般的には、タンデム方式のフルカラー像形成装置と呼ばれる)を説明するための概略図である。
図12において、参照符号1C,1M,1Y,1Kはドラム状の感光体であり、この感光体1C,1M,1Y,1Kは図12中の矢印方向に回転し、その周りに少なくとも回転順に帯電部材2C,2M,2Y,2K、現像部材4C,4M,4Y,4K、クリーニング部材5C,5M,5Y,5Kが配置されている。帯電部材2C,2M,2Y,2Kは、感光体表面を均一に帯電するための帯電装置である。
【0094】
この帯電部材2C,2M,2Y,2Kと、現像部材4C,4M,4Y,4Kとの間の感光体裏面側より、図示を省略している露光部材からのレーザー光3C,3M,3Y,3Kが照射され、感光体1C,1M,1Y,1Kに静電潜像が形成されるようになっている。そして、このような感光体1C,1M,1Y,1Kを中心とした4つの画像形成要素6C,6M,6Y,6Kが、転写材搬送手段である転写搬送ベルト10に沿って並置されている。転写搬送ベルト10は各画像形成ユニット6C,6M,6Y,6Kの現像部材4C,4M,4Y,4Kとクリーニング部材5C,5M,5Y,5Kの間で感光体1C,1M,1Y,1Kに当接しており、転写搬送ベルト10の感光体側の裏側に当たる面(裏面)には転写バイアスを印加するための転写ブラシ11C,11M,11Y,11Kが配置されている。各画像形成要素6C,6M,6Y,6Kは現像装置内部のトナーの色が異なるものであり、その他は全て同様の構成となっている。
【0095】
図12に示す構成のカラー電子写真方式の画像形成装置において、画像形成動作は次のようにして行われる。まず、各画像形成要素6C,6M,6Y,6Kにおいて、感光体1C,1M,1Y,1Kが矢印方向(感光体と連れ周り方向)に回転する帯電部材2C,2M,2Y,2Kにより帯電される。次に、感光体の内側に配置された露光部(不図示)からのレーザー光3C,3M,3Y,3Kにより、作成する各色の画像に対応した静電潜像が形成される。
【0096】
次に、現像部材4C,4M,4Y,4Kにより潜像を現像して可視像(トナー像)が形成される。現像部材4C,4M,4Y,4Kは、それぞれC(シアン),M(マゼンタ),Y(イエロー),K(ブラック)のトナーで現像を行う現像装置であり、4つの感光体1C,1M,1Y,1K上で作られた各色の可視像(トナー像)は転写紙7上で重ねられる。
転写紙7は給紙コロ8によりトレイから送り出され、一対のレジストローラ9で一旦停止し、上記感光体上への画像形成とタイミングを合わせて転写搬送ベルト10に送られる。転写搬送ベルト10上に保持された転写紙7は搬送されて、各感光体1C,1M,1Y,1Kとの当接位置(転写部)で各色トナー像の転写が行われる。
感光体上のトナー像は、転写ブラシ11C,11M,11Y,11Kに印加された転写バイアスと感光体1C,1M,1Y,1Kとの電位差から形成される電界により、転写紙7上に転写される。そして、4つの転写部を通過して4色のトナー像が重ねられた記録紙7は定着装置12に搬送され、トナーが定着されて、排紙部(不図示)に排紙される。また、転写部で転写されずに各感光体1C,1M,1Y,1K上に残った残留トナーは、クリーニング装置5C,5M,5Y,5Kで回収される。なお、図12の例では画像形成要素は、転写紙搬送方向上流側から下流側に向けて、C(シアン),M(マゼンタ),Y(イエロー),K(ブラック)の色の順で並んでいるが、この順番に限るものではなく、色順は任意に設定されるものである。
また、黒色のみの原稿を作成する際には、黒色以外の画像形成要素6C,6M,6Yが停止するような機構を設けることは本発明に特に有効に利用できる。更に、図12において帯電部材は感光体と当接しているが、両者の間に適当なギャップ(10〜200μm程度)を設けることにより、両者の摩耗量が低減できると共に、帯電部材へのトナーフィルミングが少なくて済み良好に使用できる。
【0097】
以上説明した画像形成要素は、複写機、ファクシミリ、又はプリンター等の電子写真画像形成装置内に固定して組み込まれていてもよいが、プロセスカートリッジの形でそれら装置に脱着可能な構成にして組み込まれてもよい。
このようなプロセスカートリッジとしては、フルカラー電子写真方式の画像形成装置に用いられる前記の画像形成要素と言う意味でなく、1色のみの画像形成用のモノカラー画像形成装置に脱着可能な構成であって、本発明の前記静電潜像担持体(電子写真感光体)を内蔵し、更に帯電手段、現像手段、転写手段、クリーニング手段及び除電手段から選択される少なくとも1つを具備するものについても、本発明に包含される。なお、前記の各画像形成手段のうち、プロセスカートリッジに具備されないものは、画像形成装置側に具備される。
【0098】
ここで、前記プロセスカートリッジとしては、図13に示すように、感光体101を内蔵し、帯電手段102、現像手段104、転写手段108、クリーニング手段107、除電手段(不図示)の少なくとも一つを具備し、画像形成装置本体に着脱可能とした装置(部品)である。
図13に示すプロセスカートリッジによる画像形成プロセスについて示すと、感光体101は、図中矢印方向に回転しながら、帯電手段102による帯電、露光手段による露光103により、その表面に露光像に対応する静電潜像が形成される。この静電潜像は、現像手段104でトナーにより現像され、該トナー像は転写手段108により、記録媒体105に転写され、プリントアウトされる。次いで、像転写後の感光体表面は、クリーニング手段107によりクリーニングされ、更に除電手段(不図示)により除電されて、再び、以上の操作を繰り返すものである。
【0099】
本発明の画像形成装置としては、上述の静電潜像担持体と、現像器、クリーニング器等の構成要素をプロセスカートリッジとして一体に結合して構成し、このユニットを装置本体に対して着脱可能に構成してもよい。また、帯電器、露光器、現像器、転写又は分離器、及びクリーニング器の少なくとも1つを感光体とともに一体に支持してプロセスカートリッジを形成し、装置本体に着脱可能な単一ユニットとし、装置本体のレールなどの案内手段を用いて着脱可能の構成としてもよい。
【0100】
本発明の画像形成装置、画像形成方法及びプロセスカートリッジでは、耐摩耗性と画質安定性に優れ、高画質画像を長期に渡って安定に出力可能な本発明の静電潜像担持体を用いているので、地汚れ、フィルミング等の異常画像が発生せず、長期にわたって、高精細かつ高画質な画像を形成することができる。
【実施例】
【0101】
以下、実施例によって本発明を更に詳細に説明するが、本発明は以下の実施例に限定されるものではない。なお、下記例において「部」は「質量部」、「%」は「質量%」を表す。
【0102】
(合成例1)
−顔料1の合成−
特開2001−19871号公報に準じて、顔料を作製した。まず、1,3−ジイミノイソインドリン29.2g、及びスルホラン200mlを混合し、窒素気流下、チタニウムテトラブトキシド20.4gを滴下した。滴下終了後、徐々に180℃まで昇温し、反応温度を170〜180℃の間に保ちながら5時間撹拌して反応を行った。反応終了後、放冷した後析出物を濾過し、クロロホルムで粉体が青色になるまで洗浄した。次に、メタノールで数回洗浄し、80℃の熱水で数回洗浄した後乾燥し、粗チタニルフタロシアニンを得た。得られた粗チタニルフタロシアニンを20倍量の濃硫酸に溶解し、100倍量の氷水に撹拌しながら滴下し、析出した結晶をろ過し、次いで、洗浄液が中性になるまで水洗いを繰り返し(洗浄後のイオン交換水のpH値は6.8であった)、チタニルフタロシアニン顔料のウェットケーキ(水ペースト)を得た。得られたウェットケーキ(水ペースト)40gをテトラヒドロフラン200gに投入し、4時間攪拌を行った後、濾過を行い、乾燥して、チタニルフタロシアニン粉末を作製した。これを「顔料1」とする。
得られたウェットケーキの固形分濃度は、15%であった。結晶変換に用いた溶媒のウェットケーキに対する質量比は33倍であった。なお、合成例1の原材料には、ハロゲン化物を使用していない。
得られたチタニルフタロシアニン粉末を、下記の条件によりX線回折スペクトル測定したところ、Cu−Kαの特性X線(波長1.542Å)に対するブラッグ角2θが27.2±0.2°に最大ピークと最低角7.3±0.2°にピークを有し、かつ7.3°のピークと9.4°のピークの間にピークを有さず、かつ26.3°にピークを有さないチタニルフタロシアニン粉末が得られた。結果を図14に示す。
また、合成例1で得られた水ペーストの一部を80℃の減圧下(5mmHg)、2日間乾燥して、低結晶性チタニルフタロシアニン粉末を得た。水ペーストの乾燥粉末のX線回折スペクトルを図15に示す。
〔X線回折スペクトル測定条件〕
・X線管球:Cu
・電圧:50kV
・電流:30mA
・走査速度:2°/分
・走査範囲:3°〜40°
・時定数:2秒
【0103】
(合成例2)
−顔料2の合成−
合成例1の方法に従って、チタニルフタロシアニン顔料の水ペーストを合成し、以下のようにして結晶変換を行い、合成例1よりも一次粒子の小さなフタロシアニン結晶を作製した。
合成例1で得られた結晶変換前の水ペースト60部にテトラヒドロフラン400部を加え、室温下でホモミキサー(ケニス社製、MARKIIfモデル)により強烈に撹拌(2,000rpm)し、ペーストの濃紺色が淡い青色に変化したら(撹拌開始後20分間)、撹拌を停止し、直ちに減圧濾過を行った。濾過装置上で得られた結晶をテトラヒドロフランで洗浄し、顔料のウェットケーキを得た。これを減圧(5mmHg)下、70℃で2日間乾燥して、チタニルフタロシアニン結晶8.5部を作製した。これを「顔料2」とする。
得られた合成例2の顔料2は原材料としては、ハロゲン化物を使用していない。このウェットケーキの固形分濃度は15%であった。結晶変換溶媒のウェットケーキに対する質量比は44倍であった。
【0104】
次に、合成例1で作製された結晶変換前チタニルフタロシアニン(水ペースト)の一部をイオン交換水で1%になるように希釈し、表面を導電性処理した銅製のネットですくい取り、チタニルフタロシアニンの粒子サイズを透過型電子顕微鏡(TEM、日立製作所製、H−9000NAR)にて、75,000倍の倍率で観察を行い、以下のようにして、平均粒子サイズを測定したところ、0.06μmであった。
−平均粒子サイズの測定−
観察されたTEM像をTEM写真として撮影し、映し出されたチタニルフタロシアニン粒子(針状に近い形)を30個任意に選び出し、それぞれの長径の大きさを測定し、測定した30個の長径の算術平均を求めて、平均粒子サイズとした。
【0105】
また、合成例1及び合成例2における濾過直前の結晶変換後チタニルフタロシアニン結晶を、テトラヒドロフランで1%になるように希釈し、上記と同様な方法で観察を行った。結果を表1に示す。なお、合成例1及び合成例2で作製されたチタニルフタロシアニン結晶は、必ずしも全ての結晶の形が同一ではなかった(三角形に近い形、四角形に近い形など)ので、結晶の最も大きな対角線の長さを長径として、計算を行った。
【0106】
【表1】

表1の結果から、合成例1で作製された顔料1は、平均粒子サイズが大きいだけでなく、粗大粒子を含んでいた。これに対し、合成例2で作製された顔料2は、平均粒子サイズが小さいだけでなく、個々の一次粒子の大きさもほぼ揃っていることが認められる。
【0107】
(合成例3)
−顔料3の合成−
特開平1−299874号公報(特許第2512081号公報)の実施例1に記載の方法に準じて、顔料を作製した。具体的には、合成例1で作製したウェットケーキを乾燥し、得られた乾燥物1gをポリエチレングリコール50gに加え、100gのガラスビーズと共に、サンドミルを行った。結晶転移後、希硫酸、水酸化アンモニウム水溶液で順次洗浄し、乾燥させて顔料を得た。これを「顔料3」とする。なお、合成例3の顔料3の原材料には、ハロゲン化物を使用していない。
【0108】
(合成例4)
−顔料4の合成−
特開平3−269064号公報(特許第2584682号公報)の製造例1に記載の方法に準じて、顔料を作製した。具体的には、合成例1で作製したウェットケーキを乾燥し、得られた乾燥物1gをイオン交換水10gとモノクロルベンゼン1gの混合溶媒中で1時間撹拌(50℃)した後、メタノールとイオン交換水で洗浄し、乾燥させて顔料を得た。これを「顔料4」とする。なお、合成例4の原材料には、ハロゲン化物を使用していない。
【0109】
(合成例5)
−顔料5の合成−
特開平2−8256号公報(特公平7−91486号公報)の製造例に記載の方法に準じて、顔料を作製した。具体的には、フタロジニトリル9.8gと1−クロロナフタレン75mlを撹拌混合し、窒素気流下で四塩化チタン2.2mlを滴下する。滴下終了後、徐々に200℃まで昇温し、反応温度を200〜220℃の間に保ちながら3時間撹拌して反応を行った。反応終了後、放冷し130℃になったところで熱時ろ過した。次いで、1−クロロナフタレンで粉体が青色になるまで洗浄し、メタノールで数回洗浄し、更に80℃の熱水で数回洗浄した後、乾燥させて顔料を得た。これを「顔料5」とする。なお、合成例5の原材料としては、ハロゲン化物を使用している。
【0110】
(合成例6)
−顔料6の合成−
特開昭64−17066号公報(特公平7―97221号公報)の合成例1に記載の方法に準じて、顔料を作製した。具体的には、5部のα型TiOPcを食塩10g及びアセトフェノン5gと共に、サンドグラインダーで100℃にて10時間結晶変換処理を行った。これをイオン交換水及びメタノールで洗浄し、希硫酸水溶液で精製し、イオン交換水で酸分がなくなるまで洗浄した後、乾燥させて顔料を得た。これを「顔料6」とする。なお、合成例6の原材料には、ハロゲン化物を使用している。
【0111】
(合成例7)
−顔料7の合成−
特開平11−5919号公報(特許第3003664号公報)の実施例1に記載の方法に準じて、顔料を作製した。具体的には、o−フタロジニトリル20.4部、四塩化チタン部7.6部をキノリン50部中で200℃にて2時間加熱反応後、水蒸気蒸留で溶媒を除き、2%塩化水溶液、続いて2%水酸化ナトリウム水溶液で精製し、メタノール、N,N−ジメチルホルムアミドで洗浄した後、乾燥させて、チタニルフタロシアニンを得た。このチタニルフタロシアニン2部を5℃の98%硫酸40部の中に少しずつ溶解し、その混合物を1時間、5℃以下の温度を保ちながら攪拌した。続いて、硫酸溶液を高速攪拌した400部の氷水中に、ゆっくりと注入し、析出した結晶を濾過した。結晶を酸が残量しなくなるまで蒸留水で洗浄し、ウェットケーキを得た。得られたウェットケーキを100部のTHF中で約5時間攪拌を行い、ろ過し、THFによる洗浄を行い乾燥後、顔料を得た。これを「顔料7」とする。なお、合成例7の原材料には、ハロゲン化物を使用している。
【0112】
(合成例8)
−顔料8の合成−
特開平3−255456号公報(特許第3005052号公報)の合成例2に記載の方法に準じて、顔料を作製した。具体的には、合成例1で作製したウェットケーキ10部を塩化ナトリウム15部とジエチレングリコール7部に混合し、80℃の加熱下で自動乳鉢により60時間ミリング処理を行った。次に、この処理品に含まれる塩化ナトリウムとジエチレングリコールを完全に除去するために充分な水洗を行った。これを減圧乾燥した後にシクロヘキサノン200部と直径1mmのガラスビーズを加えて、30分間サンドミルにより処理を行い、顔料を得た。これを「顔料8」とする。なお、合成例8の原材料には、ハロゲン化物を使用していない。
【0113】
(合成例9)
−顔料9の合成−
特開平8−110649号公報のチタニルフタロシアニン結晶体の製造方法に準じて、顔料を作製した。具体的には、1,3−ジイミノイソインドリン58g、テトラブトキシチタン51gをα−クロロナフタレン300mL中で210℃にて5時間反応後、α−クロロナフタレン、ジメチルホルムアミド(DMF)の順で洗浄した。その後、熱DMF、熱水、メタノールで洗浄し、乾燥して50gのチタニルフタロシアニンを得た。チタニルフタロシアニン4gを0℃に冷却した硫酸400g中に加え、引き続き、0℃、1時間撹拌した。フタロシアニンが完全に溶解したことを確認した後、0℃に冷却した水800mL/トルエン800mL混合液中に添加した。室温で2時間撹拌後、析出したフタロシアニン結晶体を混合液より濾別し、メタノール、水の順で洗浄した。洗浄水の中性を確認した後、洗浄水よりフタロシアニン結晶体を濾別し、乾燥して、2.9gのチタニルフタロシアニン結晶体を得た。これを「顔料9」とする。なお、合成例9の原材料には、ハロゲン化物を使用していない。
【0114】
以上の合成例3〜9で作製した「顔料3〜9」は、前述と同様の方法でX線回折スペクトルを測定し、それぞれの公報に記載のスペクトルと同様であることを確認した。また、合成例2で作製した顔料のX線回折スペクトルは、合成例1で作製した顔料のスペクトルと一致した。表2にそれぞれのX線回折スペクトルと合成例1で得られた顔料のX線回折スペクトルのピーク位置の特徴を示す。
【0115】
【表2】

【0116】
次に、合成した顔料(電荷発生物質)を用いた電荷発生層塗布液の調製方法について説明する。
【0117】
(調製例1)
−電荷発生層塗布液1の調製−
合成例1で作製した顔料1を用い、下記組成の処方を、市販のビーズミル分散機に直径0.5mmのPSZボールを用い、ポリビニルブチラールを溶解した2−ブタノン及び顔料を全て投入し、ローター回転数1,200rpmにて30分間分散を行い、電荷発生層塗布液1を調製した。
・チタニルフタロシアニン顔料(顔料1)・・・15部
・ポリビニルブチラール(積水化学工業株式会社製、BX−1)・・・10部
・2−ブタノン・・・280部
【0118】
(調製例2〜9)
−電荷発生層塗布液2〜9の調製−
調製例1において、顔料1を顔料2〜9にそれぞれ変えた以外は、調製例1と同様にして、調製例2〜9の各分散液を作製した。これらを顔料番号に対応させて、それぞれ電荷発生層塗布液2〜9とする。
【0119】
(調製例10)
−電荷発生層塗布液10の調製−
調製例1で作製した電荷発生層塗布液1を、コットンワインドカートリッジフィルター(アドバンテック社製、TCW−1−CS、有効孔径1μm)を用いて、濾過を行った。濾過に際しては、ポンプを使用し、加圧状態で濾過を行った。これを電荷発生層塗布液10とする。
【0120】
(調製例11)
−電荷発生層塗布液11の調製−
調製例10で使用したフィルターを、コットンワインドカートリッジフィルター(アドバンテック社製、TCW−3−CS、有効孔径3μm)に変えた以外は、分散液作製例10と同様に加圧濾過を行って分散液を調製した。これを電荷発生層塗布液11とする。
【0121】
(調製例12)
−電荷発生層塗布液12の調製−
調製例10で使用したフィルターを、コットンワインドカートリッジフィルター(アドバンテック社製、TCW−5−CS、有効孔径5μm)に変えた以外は、調製例10と同様に加圧濾過を行って分散液を調製した。これを電荷発生層塗布液12とする。
【0122】
(調製例13)
−電荷発生層塗布液13の調製−
調製例1において、分散条件がローター回転数を1,000rpmにて20分間に変更した以外は、調製例1と同様にして、分散液を調製した。これを電荷発生層塗布液13とする。
【0123】
(調製例14)
−電荷発生層塗布液14の調製−
調製例13で作製した分散液をコットンワインドカートリッジフィルター(アドバンテック社製、TCW−1−CS、有効孔径1μm)を用いて、濾過を行った。濾過に際しては、ポンプを使用し、加圧状態で濾過を行った。これを電荷発生層塗布液14とする。
【0124】
以上のようにして作製した各電荷発生層塗布液中の顔料粒子の粒度分布を、粒度分布測定器(堀場製作所製、CAPA−700)を用いて測定した。結果を表3に示す。
【0125】
【表3】

なお、電荷発生層塗布液14については、濾過の途中でフィルターが目詰まりを起こして、全ての分散液を濾過することができなかったため、粒度分布の測定は実施できなかった。
【0126】
(調製例15)
−電荷発生層塗布液15の調製−
下記組成の分散液をボールミリングにより作製した。分散は72時間行い、分散液を調製した。これを電荷発生層塗布液15とする。
・ブチラール樹脂(エスレックBMS、積水化学工業株式会社製)・・・5部
・下記構造式で表されるトリスアゾ顔料・・・15部
【化2】

・シクロヘキサノン・・・700部
・2−ブタノン・・・300部
【0127】
(合成例10)
−電荷ブロッキング層用樹脂の合成−
6−ナイロン100部をメタノール160部に溶解し、これにホルムアルデヒド75部、及びリン酸2部を混合し、撹拌して、125℃まで1時間かけて昇温した。125℃で30分間持続させた後、室温まで45分間かけて冷却した。混合物は、半透明なゲル状であった。
リン酸を中和するために、過剰のアンモニアを含む95%エタノールに、前記ゲルを溶解した。この溶液を水中に注いで、ポリアミドを析出させた。
析出したポリアミドを濾過し、1Lの水道水にて洗浄を行い、更に乾燥を行って、N−メトキシメチル化ナイロンを合成した。
【0128】
−電荷ブロッキング層塗布液の調製−
下記の組成比で溶媒にN−メトキシメチル化ナイロンを溶解し、電荷ブロッキング層塗布液を調製した。
・合成例10のN−メトキシメチル化ナイロン・・・6.4部
・メタノール・・・70部
・n−ブタノール・・・30部
【0129】
−モアレ防止層塗布液の調製−
下記組成比からなる混合物をボールミルで72時間分散し、モアレ防止層塗布液を調製した。
・酸化チタン(純度:99.8%)・・・70部
・アルキッド樹脂・・・14部
[ベッコライトM6401−50−S(固形分50%)、大日本インキ化学工業株式会社製]
・メラミン樹脂・・・10部
[スーパーベッカミンG−821−60(固形分60%)、大日本インキ化学工業株式会社製]
・2−ブタノン・・・100部
【0130】
−電荷輸送層塗布液の調製−
・ポリカーボネート(TS2050、帝人化成株式会社製)・・・10部
・下記構造式で表される電荷輸送物質・・・7部
・テトラヒドロフラン・・・80部
【化3】

【0131】
(実施例1)
−静電潜像担持体の作製−
直径100mmのアルミニウムシリンダー(JIS1050)に、電荷ブロッキング層塗布液、モアレ防止層塗布液、電荷発生層塗布液2、及び電荷輸送層塗布液を、順次塗布し、乾燥させて、厚み1.0μmの電荷ブロッキング層、厚み3.5μmのモアレ防止層、厚み0.3μmの電荷発生層、及び厚み30μmの電荷輸送層をそれぞれ形成して、静電潜像担持体を作製した。次いで、得られた静電潜像担持体を100℃にて10時間熱処理を実施した。以上により、実施例1の静電潜像担持体を作製した。
【0132】
(実施例2)
−静電潜像担持体の作製−
実施例1において、電荷輸送層の厚みを40μmに変更した以外は、実施例1と同様にして、実施例2の静電潜像担持体を作製した。
【0133】
(実施例3)
−静電潜像担持体の作製−
実施例1において、電荷輸送層の厚みを50μmに変更した以外は、実施例1と同様にして、実施例3の静電潜像担持体を作製した。
【0134】
(実施例4)
−静電潜像担持体の作製−
実施例1において、電荷ブロッキング層を設けず、直径100mmのアルミニウムシリンダー(JIS1050)に、モアレ防止層塗布液、電荷発生層塗布液2、及び電荷輸送層塗布液を、順次塗布し、乾燥させて、厚み3.5μmのモアレ防止層、厚み0.3μmの電荷発生層、及び厚み30μmの電荷輸送層をそれぞれ形成し、静電潜像担持体を作製した。続いて、得られた静電潜像担持体を100℃で10時間熱処理を実施し、実施例4の静電潜像担持体を作製した。
【0135】
(実施例5)
−静電潜像担持体の作製−
実施例1において、モアレ防止層塗布液に用いる酸化チタンの純度を97.8%のものに変更した以外は、実施例1と同様にして、実施例5の静電潜像担持体を作製した。
【0136】
(実施例6〜10)
−静電潜像担持体の作製−
実施例1〜5において、熱処理を行わず、代わりに静電潜像担持体の帯電電位が1500(−V)一定の条件下で120時間のコロナ放電処理を行った以外は、実施例1〜5と同様にして、実施例6〜10の各静電潜像担持体をそれぞれ作製した。
【0137】
(比較例1〜5)
−静電潜像担持体の作製−
実施例1〜5において、熱処理を実施しない以外は、実施例1〜5と同様にして、比較例1〜5の各静電潜像担持体をそれぞれ作製した。
【0138】
(比較例6)
−静電潜像担持体の作製−
実施例1において、電荷輸送層の厚みを25μmに変えた以外は、実施例1と同様にして、比較例6の静電潜像担持体を作製した。
【0139】
(比較例7)
−静電潜像担持体の作製−
実施例1において、電荷輸送層の厚みを55μmに変えた以外は、実施例1と同様にして、比較例7の静電潜像担持体を作製した。
【0140】
(実施例11)
−静電潜像担持体の作製−
直径100mmのアルミニウムシリンダー(JIS1050)に、電荷ブロッキング層塗布液、モアレ防止層塗布液、電荷発生層塗布液2、及び下記組成の電荷輸送層塗布液2を、順次塗布し、乾燥させて、厚み1.0μmの電荷ブロッキング層、厚み3.5μmのモアレ防止層、厚み0.3μmの電荷発生層、及び厚み30μmの電荷輸送層をそれぞれ形成して、実施例11の静電潜像担持体を作製した。
−電荷輸送層塗布液2の調製−
・ポリカーボネート樹脂(TS2050、帝人化成株式会社製)・・・10部
・下記構造式で表される電荷輸送物質・・・7部
【化4】

・ジクロロメタン・・・80部
【0141】
以上のように作製した静電潜像担持体を2本ずつ用い、1本の静電潜像担持体については、表面及び界面物性解析装置(SAICAS、DN−20、ダイプラ・ウィンテス社製)を用いて表面から20μmまで斜め方向に下記条件で微小切削を行い、傾斜部分について下記条件のμ−ATR法により、電荷輸送物質と結着樹脂の吸光度比の厚み方向の分布を調べ、変曲点の有無を確認した。また、赤外分光測定による電荷輸送物質と結着樹脂の吸光度比と、電荷輸送層の表面から厚み方向への距離との相関係数rの2乗を以下のようにして求めた。結果を表4に示す。
【0142】
〔微小切削条件〕
切削角度として、深さ方向1μm/横方向20μmの傾きで、表面から20μmまで切削した。
【0143】
〔μ−ATR測定条件〕
・計測器:Spectrum Spotlight 2000 FT-IR Imaging System(Perkin Elmer社製)
・アパーチャサイズ:10μm×100μm
・分解能:4cm−1
【0144】
〔相関係数の求め方〕
(1)表計算ソフトExcel(Microsoft社製)を使用し、X軸として電荷輸送層表面から厚み方向への距離の値を入力し、Y軸として赤外分光測定による電荷輸送物質と結着樹脂との吸光度比の値を入力した。(2)Excelのグラフ機能を利用して散布図を作成した。(3)近似曲線を求め、線形近似を選択し、相関係数の2乗値を算出した。
【0145】
もう1本の静電潜像担持体については、画像形成装置(株式会社リコー製、Imagio Neo1050Pro)に取り付け、各100万枚の連続通紙試験(書き込み率6%のチャート)を行った後、白ベタ及びハーフトーン画像を出力し、フィルミング、及び地汚れ発生の有無を下記基準により評価した。結果を表4に示す。
〔評価基準〕
◎:極めて良好
○:良好
△:許容基準より少し良い
×:非常に悪い
【0146】
【表4】

表4の結果から、実施例1〜11の各静電潜像担持体は、比較例1〜7に比べて、フィルミングや地汚れなどの異常画像の発生が無い、安定した画像形成が可能となることが判る。
なお、実施例11は、ハロゲン溶媒を用いているので、フィルミングについては極めて良好であったが、環境に対する負荷が大きく、実施例1に比べてやや地汚れの結果が劣るものであった。
【0147】
(実施例12〜14)
実施例1〜3において、電荷輸送層を形成して静電潜像担持体を作製した後に100℃にて10時間熱処理を実施するかわりに、メタルハライドランプ:80W/cm、照射距離:120mmで紫外線を照射光量100m/cmで1分間照射し、実施例12〜14の静電潜像担持体をそれぞれ作製した。
【0148】
(実施例15〜17)
実施例1〜3において、電荷輸送層を形成して静電潜像担持体を作製した後に100℃にて10時間熱処理を実施する代わりに、120℃にて5時間の熱処理を実施し、実施例15〜17の静電潜像担持体をそれぞれ作製した。
【0149】
(比較例8〜10)
実施例1〜3において、電荷輸送層を形成して静電潜像担持体を作製した後の熱処理を実施しない以外は、実施例1〜3と同様にして、比較例8〜10の静電潜像担持体をそれぞれ作製した。
【0150】
(比較例11)
実施例1において、電荷輸送層の厚みを25μmに変えた以外は、実施例1と同様にして、比較例11の静電潜像担持体を作製した。
【0151】
(比較例12)
実施例1において、電荷輸送層の厚みを55μmに変えた以外は、実施例1と同様にして、比較例12の静電潜像担持体を作製した。
【0152】
以上のように作製した各静電潜像担持体を2本ずつ用い、1本の静電潜像担持体については、表面及び界面物性解析装置(SAICAS、DN−20、ダイプラ・ウィンテス社製)を用いて表面から5μmまで斜め方向に下記条件で微小切削を行い、傾斜部分について下記条件のμ−ATR法により、表面と表面から5μm内部における電荷輸送物質と結着樹脂の吸光度比を確認した。結果を表5に示す。
【0153】
〔微小切削条件〕
切削角度:深さ方向1μm/横方向20μmの傾きで、表面から5μmまで切削した。
【0154】
〔μ−ATR測定条件〕
・計測器:Spectrum Spotlight 2000 FT-IR Imaging System(Perkin Elmer社製)
・アパーチャサイズ:10μm×100μm
・分解能:4cm−1
【0155】
もう1本の静電潜像担持体については、画像形成装置(株式会社リコー製、Imagio Neo1050Pro)に取り付け、各100万枚の連続通紙試験(書き込み率6%のチャート)を行った後、白ベタ及びハーフトーン画像を出力し、フィルミング、及び地汚れ発生の有無を下記基準により評価した。結果を表5に示す。
〔評価基準〕
◎:極めて良好
○:良好
△:許容基準より少し良い
×:非常に悪い
【0156】
【表5】

【0157】
(実施例18)
−静電潜像担持体の作製−
実施例1において、電荷発生層塗布液2を電荷発生層塗布液1に変更した以外は、実施例1と同様にして、静電潜像担持体を作製した。
【0158】
(実施例19)
−静電潜像担持体の作製−
実施例1において、電荷発生層塗布液2を電荷発生層塗布液3に変更した以外は、実施例1と同様にして、静電潜像担持体を作製した。
【0159】
(実施例20)
−静電潜像担持体の作製−
実施例1において、電荷発生層塗布液2を電荷発生層塗布液4に変更した以外は、実施例1と同様にして、静電潜像担持体を作製した。
【0160】
(実施例21)
−静電潜像担持体の作製−
実施例1において、電荷発生層塗布液2を電荷発生層塗布液5に変更した以外は、実施例1と同様にして、静電潜像担持体を作製した。
【0161】
(実施例22)
−静電潜像担持体の作製−
実施例1において、電荷発生層塗布液2を電荷発生層塗布液6に変更した以外は、実施例1と同様にして、静電潜像担持体を作製した。
【0162】
(実施例23)
−静電潜像担持体の作製−
実施例1において、電荷発生層塗布液2を電荷発生層塗布液7に変更した以外は、実施例1と同様にして、静電潜像担持体を作製した。
【0163】
(実施例24)
−静電潜像担持体の作製−
実施例1において、電荷発生層塗布液2を電荷発生層塗布液8に変更した以外は、実施例1と同様にして、静電潜像担持体を作製した。
【0164】
(実施例25)
−静電潜像担持体の作製−
実施例1において、電荷発生層塗布液2を電荷発生層塗布液9に変更した以外は、実施例1と同様にして、感光体を作製した。
【0165】
(実施例26)
−静電潜像担持体の作製−
実施例1において、電荷発生層塗布液2を電荷発生層塗布液10に変更した以外は、実施例1と同様にして、静電潜像担持体を作製した。
【0166】
(実施例27)
−静電潜像担持体の作製−
実施例1において、電荷発生層塗布液2を電荷発生層塗布液11に変更した以外は、実施例1と同様にして、静電潜像担持体を作製した。
【0167】
(実施例28)
−静電潜像担持体の作製−
実施例1において、電荷発生層塗布液2を電荷発生層塗布液12に変更した以外は、実例1と同様にして、静電潜像担持体を作製した。
【0168】
(実施例29)
−静電潜像担持体の作製−
実施例1において、電荷発生層塗布液2を電荷発生層塗布液13に変更した以外は、実施例1と同様にして、静電潜像担持体を作製した。
【0169】
(実施例30)
−静電潜像担持体の作製−
実施例1において、電荷発生層塗布液2を電荷発生層塗布液15に変更した以外は、実施例1と同様にして、静電潜像担持体を作製した。
【0170】
<評価>
以上のように作製した実施例1、及び実施例18〜30の各静電潜像担持体を2本ずつ用い、1本の静電潜像担持体については、表面及び界面物性解析装置(SAICAS、DN−20、ダイプラ・ウィンテス社製)を用いて表面から20μmまで斜め方向に下記条件で微小切削を行い、傾斜部分について下記条件のμ−ATR法により、電荷輸送物質と結着樹脂の吸光度比の厚み方向の分布を調べ、変曲点の有無を確認した。また、赤外分光測定による電荷輸送物質と結着樹脂の吸光度比と、電荷輸送層の表面から厚み方向への距離との相関係数rの2乗を以下のようにして求めた。結果を表6に示す。
【0171】
〔微小切削条件〕
切削角度として深さ方向1μm/横方向20μmの傾きで、表面から20μmまで切削した。
【0172】
〔μ−ATR測定条件〕
・計測器:Spectrum Spotlight 2000 FT-IR Imaging System(Perkin Elmer社製)
・アパーチャサイズ:10μm×100μm
・分解能:4cm−1
【0173】
〔相関係数の求め方〕
(1)表計算ソフトExcel(Microsoft社製)を使用し、X軸として電荷輸送層表面から厚み方向への距離の値を入力し、Y軸として赤外分光測定による電荷輸送物質と結着樹脂との吸光度比の値を入力した。(2)Excelのグラフ機能を利用して散布図を作成した。(3)近似曲線を求め、線形近似を選択し、相関係数の2乗値を算出した。
【0174】
もう1本の静電潜像担持体については、図11に示す画像形成装置に改造を加え、画像露光光源を780nmの半導体レーザー(ポリゴン・ミラーによる画像書き込み)、帯電部材としてスコロトロン方式による帯電チャージャ(帯電条件:DCバイアス、−1300V)、除電ランプの3つ以外は全て取りはずした装置に取付け、書き込み率6%のチャートを用い、非通紙下での連続300時間の静電疲労耐久テストを行った。その後、静電潜像担持体を取り外し、改造を加えていない画像形成装置(株式会社リコー製、Imagio Neo1050Pro)に取り付けた後、白ベタ及びハーフトーン画像を出力し、画像濃度、及び地汚れの有無を下記基準により評価した。結果を表6に示す。
〔評価基準〕
◎:極めて良好
○:良好
△:許容基準より少し良い
×:非常に悪い
【0175】
【表6】

表6の結果から、本発明の静電潜像担持体においては、電荷発生層に用いられる材料に依らず、実使用に耐えられる静電潜像担持体を作製することができることが判った。
また、電荷発生物質としてアゾ顔料を用いた場合(実施例30)には、実施例1、及び実施例18〜29の静電潜像担持体(いずれも電荷発生物質としてチタニルフタロシアニンを使用)を用いた場合に比べて、繰り返し使用後において画像濃度低下が発生した。
また、電荷発生物質としてチタニルフタロシアニンを用いた場合でも、特定の結晶型(合成例1のチタニルフタロシアニンの結晶型)を有する場合には、良好な特性を示し、更に、合成例1の結晶型のチタニルフタロシアニンを用いた場合でも、一次粒子サイズを0.25μmにすることにより、繰り返し使用後の地汚れ特性が特に良好になることが判る(実施例1、実施例26、実施例27)。このことから、一次粒子を0.25μm以下に制御する方法として、合成時に粒子サイズを小さくする方法と、分散後に粗大粒子を取り除く方法の何れも有効であることが確認できた。
【0176】
(実施例31〜34及び比較例13〜16)
実施例1〜4及び比較例1〜4において、支持体を直径30mmのアルミニウムシリンダー(JIS1050)に変更した以外は、実施例1〜4及び比較例1〜4と同様にして、各静電潜像担持体をそれぞれ作製した。
【0177】
<評価>
以上のように作製した各静電潜像担持体を2本ずつ用い、1本の静電潜像担持体については、表面及び界面物性解析装置(SAICAS、DN−20、ダイプラ・ウィンテス社製)を用いて、表面から20μmまで斜め方向に下記条件で微小切削を行い、傾斜部分について下記条件のμ−ATR法により、電荷輸送物資と結着樹脂の吸光度比の深さ方向の分布を調べ、変曲点の有無を確認した。また、赤外分光測定による電荷輸送物質と結着樹脂の吸光度比と、電荷輸送層の表面から厚み方向への距離との相関係数rの2乗を以下のようにして求めた。結果を表7に示す。
【0178】
〔微小切削条件〕
切削角度:深さ方向1μm/横方向20μmの傾きで、表面から20μmまで切削した。
【0179】
〔μ−ATR測定条件〕
計測器:Spectrum Spotlight 2000 FT-IR Imaging System(Perkin Elmer社製)
アパーチャサイズ:10μm×100μm
分解能:4cm−1
【0180】
〔相関係数の求め方〕
(1)表計算ソフトExcel(Microsoft社製)を使用し、X軸として電荷輸送層表面から厚み方向への距離の値を入力し、Y軸として赤外分光測定による電荷輸送物質と結着樹脂との吸光度比の値を入力した。(2)Excelのグラフ機能を利用して散布図を作成した。(3)近似曲線を求め、線形近似を選択し、相関係数の2乗値を算出した。
【0181】
もう1本の静電潜像担持体については、図13に示すプロセスカートリッジに搭載し、このプロセスカートリッジを図12に示すタンデム方式のフルカラー画像形成装置に搭載した。画像露光光源を780nmの半導体レーザー(ポリゴン・ミラーによる画像書き込み)を用いた。帯電部材は帯電ローラの両端の非画像形成領域に厚み50μの絶縁テープを巻き付けることにより感光体に近接配置させた。その際、DCバイアスは900(−V)とし、ACバイアス〔Vpp(Peak to peak):1.9kV、周波数:1.0kHz〕を重畳させ、現像バイアスは650(−V)とした。各感光体サンプルを搭載したプロセスカートリッジは、それぞれ同じ現像剤を充填してシアンステーション、マゼンタステーション、シアンステーション、ブラックステーションにセットし、1万枚毎にステーションをローテーションさせながらトータル4万枚の画像出力を繰り返し行った後、白ベタ及びハーフトーン画像を出力し、フィルミング、及び地汚れ発生の有無を下記基準により評価した。結果を表7に示す。なお、試験環境は、28℃、75%RHで行った。
〔評価基準〕
◎:極めて良好
○:良好
△:許容基準より少し良い
×:非常に悪い
【0182】
【表7】

表7の結果から、本発明の静電潜像担持体を用いると、フルカラー画像形成装置で繰り返し使用した場合においても、フィルミングや地汚れなどの異常画像の発生が無い、安定した画像形成が可能となることが判る。
【産業上の利用可能性】
【0183】
本発明の静電潜像担持体を用いた画像形成方法、画像形成装置、及びプロセスカートリッジは、繰り返し使用した場合においても、フィルミングや地汚れなどの異常画像の発生が無い、安定した画像形成が可能であり、直接又は間接電子写真多色画像現像方式を用いたフルカラー複写機、フルカラーレーザープリンター、及びフルカラー普通紙ファックス等に幅広く使用できる。
【図面の簡単な説明】
【0184】
【図1】図1は、本発明の静電潜像担持体の一例を示す概略断面図である。
【図2】図2は、本発明の静電潜像担持体の他の一例を示す概略断面図である。
【図3】図3は、従来の静電潜像担持体の電荷輸送層における電荷輸送物質と前記結着樹脂との赤外分光測定による吸光度比と、前記電荷輸送層表面から厚み方向への距離との分布を示す図である。
【図4】図4は、本発明の静電潜像担持体の電荷輸送層における電荷輸送物質と前記結着樹脂との赤外分光測定による吸光度比と、前記電荷輸送層表面から厚み方向への距離との分布を示す図である。
【図5】図5は、不定形チタニルフタロシアニンのTEM像である。図中のスケールバーは、0.2μmである。
【図6】図6は、結晶変換後のチタニルフタロシアニンのTEM像である。図中のスケールバーは、0.2μmである。
【図7】図7は、短時間で結晶変換を行ったチタニルフタロシアニン結晶のTEM像である。図中のスケールバーは、0.2μmである。
【図8】図8は、分散時間が短い場合の分散液の状態を示す図である。
【図9】図9は、分散時間が長い場合の分散液の状態を示す図である。
【図10】図10は、図8及び図9の分散液について、平均粒径及び粒度分布を示す図である。
【図11】図11は、本発明の電子写真プロセス及び画像形成装置を説明するための概略図である。
【図12】図12は、本発明のタンデム方式のフルカラー画像形成装置を説明するための概略図である。
【図13】図13は、本発明のプロセスカートリッジの一例を示す概略図である。
【図14】図14は、合成例1で得られたチタニルフタロシアニンのXDスペクトルを表した図である。
【図15】図15は、合成例1で得られた低結晶性チタニルフタロシアニンのXDスペクトルを表した図である。
【符号の説明】
【0185】
1C、1M、1Y、1K 静電潜像担持体(感光体)
2C、2M、2Y、2K 帯電部材
3C、3M、3Y、3K レーザー光
4C、4M、4Y、4K 現像部材
5C、5M、5Y、5K クリーニング部材
6C、6M、6Y、6K 画像形成要素
7 転写紙
8 給紙コロ
9 レジストローラ
10 転写搬送ベルト
11C、11M、11Y、11K 転写ブラシ
12 定着装置
31 静電潜像担持体(感光体)
32 除電ランプ
33 帯電器
35 画像露光部
36 現像ユニット
38 レジストローラ
39 転写紙
40 転写チャージャ
41 分離チャージャ
42 分離爪
43 クリーニング前チャージャ
44 ファーブラシ
45 クリーニングブレード
101 静電潜像担持体(感光体)
102 帯電手段
103 露光手段
104 現像手段
105 記録媒体
107 クリーニング手段
108 転写手段
201 支持体
202 モアレ防止層
203 電荷発生層
204 電荷輸送層
205 電荷ブロッキング層

【特許請求の範囲】
【請求項1】
支持体と、該支持体上に少なくとも電荷発生層及び電荷輸送層をこの順に有する静電潜像担持体において、
前記電荷輸送層が少なくとも電荷輸送物質及び結着樹脂を含有し、かつ該電荷輸送層の厚みが30〜50μmであり、
赤外分光測定による前記電荷輸送物質と前記結着樹脂の吸光度比と、前記電荷輸送層の表面から厚み方向への距離との関係を表す分布が、該電荷輸送層の表面から厚み方向に20μm以内で、変曲点のない略直線状を示すことを特徴とする静電潜像担持体。
【請求項2】
赤外分光測定による電荷輸送物質と結着樹脂の吸光度比と、電荷輸送層の表面から厚み方向への距離との相関係数の2乗が、該電荷輸送層の表面から厚み方向に20μm以内で、0.92以上である請求項1に記載の静電潜像担持体。
【請求項3】
支持体と、該支持体上に少なくとも電荷発生層及び電荷輸送層をこの順に有する静電潜像担持体において、
前記電荷輸送層が少なくとも電荷輸送物質及び結着樹脂を含有し、かつ該電荷輸送層の厚みが30〜50μmであり、
赤外分光測定による前記電荷輸送層表面における前記電荷輸送物質と前記結着樹脂との吸光度比Aと、赤外分光測定による前記電荷輸送層表面から5μm内部における前記電荷輸送物質と前記結着樹脂との吸光度比Bとが、次式、B/A=1.0〜1.15を満たすことを特徴とする静電潜像担持体。
【請求項4】
電荷輸送層が、電荷発生層上に少なくとも電荷輸送物質、結着樹脂、及び非ハロゲン溶媒を含有する電荷輸送層塗布液を塗布して、乾燥させることにより形成される請求項1から3のいずれかに記載の静電潜像担持体。
【請求項5】
支持体と電荷発生層との間に、電荷ブロッキング層、及びモアレ防止層をこの順に有する請求項1から4のいずれかに記載の静電潜像担持体。
【請求項6】
電荷ブロッキング層が、少なくともN−アルコキシメチル化ナイロンを含有する請求項5に記載の静電潜像担持体。
【請求項7】
モアレ防止層が、純度が99.0%以上の酸化チタンと架橋性樹脂とを少なくとも含有する請求項5から6のいずれかに記載の静電潜像担持体。
【請求項8】
電荷発生層が少なくとも電荷発生物質を含有し、かつ該電荷発生物質がチタニルフタロシアニン結晶である請求項1から7のいずれかに記載の静電潜像担持体。
【請求項9】
チタニルフタロシアニン結晶が、CuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも27.2゜に最大回折ピークを有し、9.4゜、9.6゜、及び24.0゜に主要なピークを有し、かつ最も低角側の回折ピークとして7.3゜にピークを有し、該7.3゜のピークと前記9.4゜のピークの間にピークを有さず、更に26.3°にピークを有さず、かつ一次粒子の体積平均粒径が0.25μm以下である請求項8に記載の静電潜像担持体。
【請求項10】
電荷発生層がチタニルフタロシアニン結晶含有分散液から形成され、該チタニルフタロシアニン結晶含有分散液が、チタニルフタロシアニン結晶の体積平均粒径が0.3μm以下であり、かつ該チタニルフタロシアニン結晶の標準偏差が0.2μm以下になるまで分散させた後、有効孔径が3μm以下のフィルターで濾過して調製される請求項8から9のいずれかに記載の静電潜像担持体。
【請求項11】
チタニルフタロシアニン結晶が、CuKαの特性X線(波長1.542Å)に対するブラッグ角2θの回折ピーク(±0.2゜)として、少なくとも7.0〜7.5゜に最大回折ピークを有し、かつ該最大回折ピークの半値幅が1゜以上であり、かつ一次粒子の体積平均粒径が0.1μm以下である不定形乃至低結晶性チタニルフタロシアニン結晶を水の存在下で有機溶媒を使用して結晶変換を行い、結晶変換後の一次粒子の体積平均粒径が0.25μm以下の状態で、濾過して得られる請求項8から10のいずれかに記載の静電潜像担持体。
【請求項12】
チタニルフタロシアニン結晶の原材料が、非ハロゲン含有化合物である請求項8から11のいずれかに記載の静電潜像担持体。
【請求項13】
不定形乃至低結晶性チタニルフタロシアニン結晶が、アシッドペースト法により調製され、かつ該不定形乃至低結晶性チタニルフタロシアニン結晶が、イオン交換水によりpHが6〜8になるまで洗浄される請求項11から12のいずれかに記載の静電潜像担持体。
【請求項14】
不定形乃至低結晶性チタニルフタロシアニン結晶は、アシッドペースト法により調製され、かつ該不定形乃至低結晶性チタニルフタロシアニン結晶が、イオン交換水により比伝導度が8μS/cm以下になるまで洗浄される請求項11から12のいずれかに記載の静電潜像担持体。
【請求項15】
チタニルフタロシアニン結晶の結晶変換における有機溶媒の使用量が、質量比で、不定形乃至低結晶性チタニルフタロシアニン結晶の含有量の30倍以上である請求項11から14のいずれかに記載の静電潜像担持体。
【請求項16】
電荷発生層上に、少なくとも電荷輸送物質、結着樹脂、及び非ハロゲン溶媒を含有する電荷輸送層塗布液を塗布し、乾燥させて電荷輸送層を形成する電荷輸送層形成工程と、
形成された電荷輸送層に熱処理、UV照射処理、電子線照射処理及びコロナ放電処理から選択される少なくともいずれかを行う表面処理工程とを少なくとも含むことを特徴とする静電潜像担持体の製造方法。
【請求項17】
静電潜像担持体上に静電潜像を形成する静電潜像形成工程と、該静電潜像をトナーを用いて現像して可視像を形成する現像工程と、該可視像を記録媒体に転写する転写工程と、前記静電潜像担持体表面に残留したトナーを除去するクリーニング工程とを少なくとも含む画像形成方法において、
前記静電潜像担持体が、請求項1から15のいずれかに記載の静電潜像担持体であることを特徴とする画像形成方法。
【請求項18】
静電潜像担持体と、該静電潜像担持体上に静電潜像を形成する静電潜像形成手段と、該静電潜像をトナーを用いて現像して可視像を形成する現像手段と、該可視像を記録媒体に転写する転写手段と、前記静電潜像担持体表面に残留したトナーを除去するクリーニング手段とを少なくとも有する画像形成装置において、
前記静電潜像担持体が、請求項1から15のいずれかに記載の静電潜像担持体であることを特徴とする画像形成装置。
【請求項19】
クリーニング手段が少なくともブラシ回転体を有し、該ブラシ回転体と静電潜像担持体との接点において該ブラシ回転体が該静電潜像担持体と同一方向に回転する請求項18に記載の画像形成装置。
【請求項20】
少なくとも静電潜像担持体、該静電潜像担持体表面を帯電させる帯電手段、現像手段、転写手段、及びクリーニング手段を含む画像形成要素を複数配列したタンデム型である請求項18から19のいずれかに記載の画像形成装置。
【請求項21】
請求項1から15のいずれかに記載の静電潜像担持体と、更に帯電手段、現像手段、転写手段、クリーニング手段及び除電手段から選択される少なくとも1つの手段を有し、画像形成装置本体に着脱可能であることを特徴とするプロセスカートリッジ。

【図1】
image rotate

【図2】
image rotate

【図10】
image rotate

【図12】
image rotate

【図13】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図11】
image rotate

【図14】
image rotate

【図15】
image rotate


【公開番号】特開2007−102191(P2007−102191A)
【公開日】平成19年4月19日(2007.4.19)
【国際特許分類】
【出願番号】特願2006−215585(P2006−215585)
【出願日】平成18年8月8日(2006.8.8)
【出願人】(000006747)株式会社リコー (37,907)
【Fターム(参考)】