説明

非断熱の膜システムにおける芳香族炭化水素の分離方法および装置

原料ストリームから芳香族炭化水素を分離するための等温方法が提供される。本方法は、リブ部材を含む第1のウェーハアセンブリ内の第1のチャネルを経由して原料ストリームを流す工程を含む。次に、原料ストリームは第1の薄膜高分子膜に暴露される。ストリームは、第1の薄膜高分子膜を経由して透過物域の中に透過する。透過物域は、リブ部材内に含まれる加熱された流体によって加熱される。透過物は第1のウェーハアセンブリから生成される。本方法は、直列に配置される複数の直列接続ウェーハアセンブリを有する工程を含むことができる。原料ストリームから芳香族成分を分離する装置も開示される。好適な実施形態では、本装置は、輸送機関用燃料油を混合するのに特に適合した一連の直列接続ウェーハアセンブリを含む。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、原料ストリームから芳香族化合物を分離する装置および方法に関する。より詳しくは、限定されるものではないが、本発明は、等温システムにおける膜構成要素を介して生じる分離によって、ガソリン、ナフサ、ディーゼル燃料油等から芳香族化合物を分離する装置および方法に関する。
【背景技術】
【0002】
逆浸透、浸透気化、および膜抽出などの膜に基づく分離方法は慣用されている。浸透気化方法は、液体混合物の分離技術である。エネルギーの低い手法で液体材料の蒸発を提供するため、膜媒体の一方の側で低圧の真空が維持される。真空条件下でのこれら液体材料の蒸発温度は、昇圧時に必要となる温度より低い。分離されるべき液体混合物が膜の上流側面に導かれ、それは一部の液体成分に対して実質的に不浸透性であるが、他の成分は、制御された方法で、膜両面間のその下流側面に選択的に通過できるようになる。膜は薄く、その周縁部は、膜透過以外のなんらかの他の経路によって、上流側面から下流側面まで(またはその逆に)膜を通り抜ける流体を防ぐためにシールされる。膜の下流側面は、通常真空に暴露され、膜を経由して透過する原料ストリーム成分は、気相で取り除き、凝縮器で凝縮できる。
【0003】
浸透気化方法では、所望の原料成分、例えば混合液体原料のうちの芳香族成分は、膜フィルムの中に優先して溶解する。所望の成分に対して選択性のある膜の場合、所望の成分が優先的に膜に吸着する。膜は、一方の側で混合物のストリームに暴露され、反対側で膜に真空が加えられ、その結果、吸着した液体化合物が、周知の溶解−拡散機構によって膜を経由して移動する。したがって、所望の成分が膜を通過し、その下流側面から蒸気として取り除かれ、それによって膜の上流側面に所望成分の追加の吸着用の場所が提供される。このため、上流側面から下流側面まで膜を経由して所望の成分を選択的に通過させる濃度勾配の推進力が確立される。
【0004】
当技術分野では、様々な膜が使用されてきた。例えば、特許文献1および特許文献2には、例えば懸濁液被覆膜を使用する浸透気化法によって、例えばナフサ、重質接触ナフサ(HCN)等の非芳香族化合物から芳香族化合物を分離することが記載されている。この膜は、多孔質支持層に高分子を堆積することによって形成され、それは微細な分散または懸濁液であり、固体物質ではない。
【0005】
浸透気化技術を用いて使用される従来装置のうち、スパイラル巻きおよびプレートフレームを用いて使用される膜がある。例えば、特許文献3には、一対のエンドプレート間に基本単位体の積み重ねを含むセルを使用する膜分離の取扱いが開示されている。この半透膜は、スペーサおよび支持体によって保持される。熱媒体流体が、入口、管路システム、加熱区画、および伝熱シート両面間を介して導かれる。従来のスパイラル巻き構成要素システムでは、この熱負荷のため、構成要素両端間にかなりの温度勾配があるはずである。これは、流体の浸透気化を使用する分離プロセスの品質および経済的側面の両方に悪影響を及ぼすはずである。また、スパイラル巻き構成要素においては、巻付けの長さの関数として濃度勾配が確立される。これは、分離性能に不利な影響を与えるはずである。さらに、圧力損失問題および薄膜境界層問題があり、それは、スパイラル巻き構成要素における膜表面両面間の局所的圧力勾配に悪影響を及ぼす。
【0006】
従来技術の浸透気化方法では、所望の分離を達成するため、離散的な装置工程を使用してきた。高流速の用途の場合、これら装置デバイスの相互接続は高価になる。また、従来技術のスパイラル巻き構成要素は、高温度供用のものを製造するのが高価でかつ難しい。大部分の商用スパイラル巻き構成要素の設計は、100〜120度の温度範囲に限られている。ガソリン、ナフサ、ディーゼル燃料油、および高沸点炭化水素の分離を達成するには、通常120℃を超える高温度が必要である。
したがって、流体の浸透気化法を、炭化水素材料に、特に輸送機関用燃料油として使用されるものに適用して、経済的かつ効率のよいやり方で特定の分子種の分離を達成する装置および方法に対する要望がある。
【0007】
膜の透過率を増加させるために、高分子膜を含めて、膜を加熱することは慣用されている。従来技術の膜および膜アセンブリを加熱する際に関係するいくつかの問題点としては、従来技術のスパイラル巻き膜における接着破損が挙げられ、層割れ、および、従来のプレート−フレーム膜アセンブリを加熱するときに存在する温度勾配につながり、膜それ自体の非等温加熱という結果になる。
【0008】
【特許文献1】米国特許第4,861,628号明細書
【特許文献2】米国特許第5,030,355号明細書
【特許文献3】米国特許第3,398,091号明細書
【特許文献4】米国特許第4,944,880号明細書
【特許文献5】米国特許第4,946,594号明細書
【特許文献6】米国特許第5,093,003号明細書
【特許文献7】米国特許第5,550,199号明細書
【特許文献8】米国特許第4,990,275号明細書
【特許文献9】米国特許第5,098,570号明細書
【特許文献10】米国特許第5,109,666号明細書
【特許文献11】米国特許第4,828,773号明細書
【特許文献12】米国特許第4,837,054号明細書
【特許文献13】米国特許第4,879,044号明細書
【特許文献14】米国特許第4,914,064号明細書
【特許文献15】米国特許第4,921,611号明細書
【特許文献16】米国特許第4,929,357号明細書
【特許文献17】米国特許第4,983,338号明細書
【特許文献18】米国特許第5,039,417号明細書
【特許文献19】米国特許第5,039,418号明細書
【特許文献20】米国特許第5,039,422号明細書
【特許文献21】米国特許第5,049,281号明細書
【特許文献22】米国特許第5,055,632号明細書
【特許文献23】米国特許第5,063,186号明細書
【特許文献24】米国特許第5,075,006号明細書
【特許文献25】米国特許第5,096,592号明細書
【特許文献26】米国特許第5,130,017号明細書
【特許文献27】米国特許第5,221,481号明細書
【特許文献28】米国特許第5,290,452号明細書
【特許文献29】米国特許第5,028,685号明細書
【特許文献30】米国特許第5,128,439号明細書
【特許文献31】米国特許第5,138,023号明細書
【特許文献32】米国特許第5,241,039号明細書
【特許文献33】米国特許第5,012,035号明細書
【特許文献34】米国特許第5,012,036号明細書
【特許文献35】米国特許第5,177,296号明細書
【特許文献36】米国特許第5,180,496号明細書
【特許文献37】米国特許第5,107,058号明細書
【特許文献38】米国特許第5,107,059号明細書
【発明の開示】
【発明が解決しようとする課題】
【0009】
したがって、透過率を改善するための高分子膜の加熱に対応する高分子膜アセンブリおよび高分子膜分離法に対する要望がある。
【課題を解決するための手段】
【0010】
一実施形態では、本発明は、高分子膜ウェーハアセンブリおよび液体分離用のかかるアセンブリを使用する方法に関する。この高分子膜ウェーハアセンブリ(本明細書では「ウェーハアセンブリ」とも称される)は、「膜」と呼ばれる薄膜高分子膜、および、膜透過に実際上少ししか干渉しない膜を支持するための「ウェーハ」と呼ばれるフレーム、を含む。この薄膜高分子膜は、原料ストリーム中の所望の成分または化学種が、圧力勾配、濃度勾配等に応じて膜両面間を透過するのに選択性のある高分子を含む。かかる膜は、浸透気化および膜抽出分離に関して互換性を持つ。薄膜高分子膜の幾何形状は、従来型であり、第1の(または「上流側」)面および第2の(または「下流側」)面を含み、第1および第2の面は、それらの周縁部に沿って連続的に接合されて、薄い構成要素を形成する。ウェーハは、流体流れを防ぐため膜周縁部をシールする周縁部領域、および、薄膜高分子膜の面を膜周縁部から離して支持するための少なくとも1つのリブを含む。一実施形態では、薄膜高分子膜の近傍にある原料ストリームを分配するため、1つもしくは複数の分散堰が、ウェーハアセンブリ内に使用される。全体として膜の近傍に乱流を提供するため、メッシュスクリーンも使用可能である。ウェーハアセンブリは、好ましくは高分子膜の上流側面に配置される膜支持ファブリックを含むことができる。一実施形態では、リブ部材は、固体の場合があり、または、そこを通る内腔を有する。この方法は、流体がリブ部材の内腔に入るのを可能にする工程、および、原料ストリームがウェーハアセンブリを経由して導かれるとき、原料ストリームを加熱する工程を含む。複数のウェーハアセンブリが使用されるとき、すべてまたはすべてより少ないウェーハアセンブリが、かかる堰、スクリーン、支持ファブリック、およびリブ部材を、単独でおよび組合わせて含むことができる。
【0011】
好適な実施形態では、薄膜高分子膜は、例えばテフロン(登録商標)(Teflon)、ポリエステル、ナイロン、ノーメックス(登録商標)(Nomex)、ケブラー(登録商標)(Kevlar)等の、膜支持ファブリック上に載置され、(i)膜支持ファブリックに当接する多孔質金属および/または多孔質セラミックの支持材料、並びに、(ii)単独でまたは組合わせて使用できるメッシュスクリーンをさらに含む。セラミックの支持材料が好ましく、最も好ましい実施形態では、コーディエライト、酸化アルミニウム、酸化ジルコニウム、ムライト、磁器、ステアライト(Stealite)、および窒化ケイ素、並びにこれらの特別な組合せよりなる群から選択される。ファブリック、多孔質支持層材料、およびスクリーンが使用されるとき、リブが、薄膜高分子膜を直接支持できること、あるいは、代わりに、ファブリック、多孔質支持層材料、および/またはスクリーンを介して間接的に支持できることが理解されるべきである。
【0012】
好適な実施形態では、膜は、高分子材料、例えばテフロン(登録商標)の薄い支持体に対してキャストされる。膜/支持体の半アセンブリは、薄い金属性のスクリーン、例えばステンレス鋼スクリーンの第1の面と接触していることが好ましい。膜/支持体の周縁部は、膜の周縁部に向かって半径方向の引張力をかけ、次いで、例えば、周縁部を所定位置におよび膜をピンと張って保持するため、引張力を解放することなく、O−リングを用いて周縁部で圧縮力をかけることによって、スクリーンに対してピンと張られて保持される。任意選択のスクリーンおよび支持体が使用されるとき、膜の透過面は、一般に、任意選択のスクリーンおよび支持体と接触している。膜の残留物面は、等温で膜を加熱するために、膜アセンブリの加熱されたリブに支持されることが好ましい。
【0013】
別の実施形態では、液体原料ストリームから所望の成分を分離する方法、並びに、特に芳香族化合物および非芳香族炭化水素を含む液体原料ストリームから芳香族炭化水素を分離する方法が提供される。この方法は、原料ストリームを、残留物域および透過物域、並びにその間に位置する動的膜を含む第1のウェーハアセンブリ内の残留物域の中に導く工程を含む。残留物域の原料ストリームは、第1の薄膜高分子膜の上流側面と流体接触している。原料ストリーム成分の圧力および相対濃度などの処理条件は、原料ストリーム中に存在する所望の成分、例えば芳香族成分が、第1の薄膜高分子膜の上流側面から下流側面まで膜を経由して透過するように調節される。例えば、吸引を使用して、膜の透過面に大気圧より低い圧力を提供できる。残留物面がより高い圧力にあるとき、膜両面間に圧力差が確立され、上流側面から下流側面まで膜両面間を透過するようになる。原料ストリームの加圧および透過物の吸引を使用して、この単独または組合わせのいずれでも圧力勾配を提供できる。原料ストリームの加圧が使用されるとき、この原料ストリームが、原料ストリーム状態図の蒸気、液体、または液体−蒸気領域にある場合がある。吸引を使用して透過物域に低圧力を提供する場合、膜の下流側面では、透過物域に透過蒸気が発生し、それは液体透過物に凝縮させることができる。したがって、第1の薄膜高分子膜の下流側面は、透過物域と流体(ガス状を含む)接触している。透過物域の透過物は、蒸気状態とすることができ、その後液体に凝縮することができる。透過物は、透過物域から導き出すことができ、液体または蒸気状態で導き出すことができる。残留物ストリームは、所望の原料ストリーム成分が希薄のはずであるが、残留物域から導き出すことができる。
【0014】
複数のウェーハアセンブリは、それぞれが少なくとも1種の高分子膜を含み、これを組合わせて使用できる。ウェーハアセンブリは、例えば、並列、直列、および直並列流体流れ回路に構成できる。好適な実施形態では、残留物のすべてまたは一部が、第1のウェーハアセンブリから、第1のウェーハアセンブリと並列の流体流れ構成に配置される第2のウェーハアセンブリへ導き出される。原料ストリームは、第2のウェーハアセンブリの残留物域に導かれ、第2の所望の原料ストリーム成分が、それは第1の所望の原料ストリーム成分と同じ場合があるが、第2の薄膜高分子膜の上流側端部から、膜下流側面までおよび第2の透過物域の中に生ずるように、処理条件が調節される。第2の透過物は、第1の透過物と同じ場合があるが、第2の透過物域から導き出すことができる。第2の透過物域から導き出される第2の透過物のすべてまたは一部は、第1の透過物域から導き出される第1の透過物のすべてまたは一部と一緒にすることができる。第2の薄膜高分子膜を経由して透過し、その透過物域に入る透過ストリームが作り出される。
【0015】
原料ストリームの分離のために2つ以上のウェーハアセンブリが並列で使用されるとき、膜透過の駆動力を提供するため、ウェーハアセンブリ両端間に圧力差を確立できる。そのような場合、共通の中央出口管を経由する吸引推進力によって、複数のウェーハアセンブリからの透過ストリームを生成できる。透過物蒸気の真空排気、真空エジェクティング、および凝縮が、かかる圧力差を提供するのに適する。透過物は、透過物域から、出口管を経由し、共通の中央出口管を経由して吸引し、その後必要に応じて凝縮させることができる。
【0016】
別の実施形態では、ウェーハアセンブリの透過物域は、蒸気熱、熱ガス、高温油、または高温液体よりなる群から選択される高温媒体を用いて加熱される。複数のウェーハアセンブリが使用されるとき、すべてまたはすべてより少ないウェーハアセンブリが、透過物域加熱を使用することができる。
【0017】
別の実施形態では、原料ストリームから芳香族化合物を分離するための装置が提供される。この装置は、第1、第2、および第3のウェーハを含む第1のウェーハアセンブリを含む。第1のウェーハは、外側リムを有する第1および第2の面を有する。第2のウェーハは、第1のウェーハに運転可能に取り付けられ、第2のウェーハは、第1の面および第2の面、並びに外側リムを有する。第1のウェーハと第2のウェーハは、第1の空洞領域を形成する。第3のウェーハは、第2のウェーハに運転可能に取り付けられ、第3のウェーハは、第1の面および第2の面、並びに外側リムを有し、この場合、第2のウェーハと第3のウェーハは、第2の空洞領域を形成する。第1および第3のウェーハは、アンダーフロー分散堰を含むことができる。第2のウェーハは透過物域を含む。
【0018】
この装置は、第1および第2の膜構成要素をさらに含み、この場合、膜構成要素は、独立して選択される薄膜高分子膜を含み、薄膜高分子膜は、例えばテフロン(登録商標)、ポリエステル、ナイロン、ノーメックス(登録商標)、ケブラー(登録商標)等、場合により、(i)膜支持ファブリックに当接する多孔質金属および/または多孔質セラミックの支持材料、並びに、(ii)メッシュスクリーン、の膜支持ファブリックに載置される。セラミックの支持材料が好ましく、最も好ましい実施形態では、コーディエライト、酸化アルミニウム、酸化ジルコニウム、ムライト、磁器、ステアライト、および窒化ケイ素のうちの少なくとも1種である。最も好ましい実施形態では、吸着媒体の粉末化層が、活性炭、モレキュラーシーブ、ゼオライト、シリカゲル、アルミナ、または他の商業的に入手可能な吸着剤等よりなる群から選択される。第1の膜構成要素は、第1の残留物領域がその中に形成されるように第1の空洞内に配置され、第2の膜は、第2の残留物領域がその中に形成されるように第2の空洞内に配置される。
【0019】
ウェーハアセンブリをシールするためのシール手段も含まれる。シール手段は、第1と第2のウェーハ間に取り付けられるガスケットおよび第2のウェーハ上の溝内に配置されるO−リングを含むことができる。
【0020】
シール手段のその他の実施形態も使用可能である。例えば、シール手段は、第1のウェーハ上の溝内の外側リムのまわりに取り付けられる第1のO−リング、および、第2のウェーハ上の溝内の外側リムのまわりに取り付けられる、連携して働く第2のO−リングを含むことができる。別の実施形態では、シール手段は、第1のウェーハ上の一対の溝内の外側リムのまわりに取り付けられる二重O−リング、および、第2のウェーハ上の一対の溝内の外側リムのまわりに取り付けられる、連携して働く対になった二重O−リングを含む。さらに他の実施形態では、第2および第3のウェーハ用のシール手段は、第2のウェーハ上の溝内の外側リムのまわりに取り付けられる第1のO−リング、および、第3のウェーハ上の溝内の外側リムのまわりに取り付けられる、連携して働く第2のO−リングを含む。なおさらに別の実施形態では、シール手段は、第2のウェーハ上の一対の溝内の外側リムのまわりに取り付けられる二重O−リング、および、第3のウェーハ上の一対の溝内の外側リムのまわりに取り付けられる、連携して働く対になった二重O−リングを含む。
【0021】
この装置は、第1のウェーハアセンブリを貫通して配置される第1の原料管を含むことができ、第1の原料管は、原料ストリームをウェーハアセンブリに送出する。第1の透過物管が、第1のウェーハアセンブリを貫通して配置され、第1の透過物管は、第1のウェーハアセンブリの透過物域から、生成された透過物を送出する。
【0022】
別の実施形態では、この装置は、第4、第5、および第6のウェーハを含む直列接続の第2のウェーハアセンブリをさらに含む。第4のウェーハは、第1の面および第2の面を有する。第5のウェーハは、第4のウェーハに運転可能に取り付けられ、第5のウェーハは、第1の面および第2の面を有し、この場合、第4のウェーハと第5のウェーハは、第3の空洞領域を形成する。第6のウェーハは、第5のウェーハに運転可能に取り付けられ、第6のウェーハは、第1の面および第2の面を有し、この場合、第5のウェーハと第6のウェーハは、第4の空洞領域を形成する。第4および第6のウェーハは、アンダーフロー分散堰を含むことができる。
【0023】
このアセンブリは、残留物の少なくとも一部を、第1のウェーハアセンブリから第2のウェーハアセンブリへ導くために、第1および第2のウェーハアセンブリを貫通して配置される再分配管をさらに含む。第3および第4の膜構成要素は、それぞれ第3および第4の空洞内に載置される。
【0024】
加えて、好適な実施形態では、第1および第2のウェーハアセンブリは、直列接続で配置され、それによって円筒幾何形状のアセンブリが形成される。この幾何形状は、円形シリンダ幾何形状に限られない。半円形、三角形、矩形、並びに規則的および不規則な多角形断面に基づく円筒状の形態も使用できる。次いで、直列接続のウェーハアセンブリを、一連の直列接続のウェーハアセンブリに配置することができる。直列に配置される直列接続のウェーハアセンブリの数は、流量容量などの設計基準に依存する。
【0025】
どんな理論またはモデルによっても束縛されることを望まないが、流体の浸透気化が起きている膜表面に極めて接近させて、プロセス加熱および冷却域と緊密に結合できるモジュール式の「ワゴン車輪」の幾何形状にウェーハアセンブリを構成することが有利であると考えられる。かかる幾何形状が有利だろう。何故なら、(1)全アセンブリが単一の圧力容器内に含まれる、(2)アセンブリを、真空システム(例えば真空ポンプ)に緊密に結合させて、高度に一体化された小型の装置大きさを達成できる、および、(3)分離しながらのプロセス加熱/再加熱の組込みが、流体全体の浸透気化を増強する、からである。流体の浸透気化では、膜分離層両面間の熱負荷は、透過物材料および操作条件(体積、気化熱、蒸気圧対運転圧力等々)に依存する変数である。
【0026】
どんな理論またはモデルによっても束縛されることを望まないが、本ウェーハアセンブリにより、浸透気化が起きている膜表面に緊密に結合した域毎の系列において、例えばウェーハリブを加熱することによって、制御可能な再加熱適応性も提供されると考えられる。これが、より等温のシステムを作り出し、そこでは、有効な透過温度をより正確に制御できる。バルク相の分子濃度もより均一に制御され、それにより、全体の分離性能が増強される。この等温性能を達成する好適な実施形態は、加熱流体として水蒸気を使用することである。膜システム配列におけるそれぞれの域が熱を要求したとき、水蒸気が局所的に迅速に凝縮して、膜および透過物の迅速な加熱を提供できる。
【0027】
したがって、水蒸気などの高温ガス、または、価値の低い煙道ガスが、好ましい加熱媒体として使用される。一実施形態では、高温ガスが、リブを介しウェーハアセンブリを経由して流れ、必要な入熱をシステムに提供する。一実施形態では、代替のヒータアセンブリ、例えば、外部フィンを有するかまたは有しない蛇行コイル管式の構造が、膜ウェーハに取り付けられる。フィン付き管発熱体の構造は、追加の流体力学および伝熱の考慮すべき点に合うよう適合させることが可能であり、フィンの構造は、スタティックミキサ構成要素の構造に類似した追加の流体力学の考慮すべき点にも順応するだろう。本実施形態では、追加の流体混合および乱流が、膜表面の高圧側の薄いフィルム境界層に有利な影響を与え、流体力学上の静止域を回避することによって、流束および選択性が増強される。
【0028】
本明細書に示した円筒状の直列接続ウェーハアセンブリは、石油化学工業において一般に見出されるプラントモジュール式の装置規模と整合性がとれる。円筒状の直列接続ウェーハアセンブリは、「ワゴン車輪」幾何形状に似ているが、拡張性があり、大型または小型のいずれも製造できる。小型装置の例は、搭載型自動車燃料油分離装置であろう。
【0029】
一実施形態では、薄膜高分子膜は、膜の上流側面と接触している薄いフィルム吸着材料をさらに含み、それは、細かく分散された粉末の形態とすることができ、それに続く細かく分散されかつ架橋されている層または材料に結合されて、膜フィルム内に多孔質層が形成される。例えば薄膜の被覆、制御された熱分解、熱処理、プラズマ被覆等の技術を使用して、この機能を達成できる。吸着層により、標的分子の局所的濃度勾配が増強される。薄膜吸着剤および膜フィルムは両方とも標的分子に対して選択性があるものである。層状化された多孔質システムにより、標的分子の濃度勾配(圧力勾配等)を制御して、分離性能を増強するのが可能になる。好適な一実施形態では、薄膜吸着剤は、活性炭、モレキュラーシーブ、ゼオライト、シリカゲル、アルミナ、または他の商業的に入手可能な吸着剤等よりなる群から選択される。
【0030】
別の実施形態では、吸着媒体と関連して、圧力および温度揺動プロセス制御、並びにこれらの組合せが使用できる。圧力揺動モードでは、吸着媒体が、高圧と低圧(真空)の勾配に遭遇する。高圧の域では、標的分子が、バルク流体相から媒体に引きつけられる。これら標的分子が低圧の域に移動したとき、それらは、低圧側のバルク流体相の中に脱着する。
【発明を実施するための最良の形態】
【0031】
本発明は、液体原料ストリームから所望の化学種または成分を分離するための薄膜高分子膜ウェーハアセンブリおよびそのようなウェーハアセンブリの使用に関する。
【0032】
上記のように、膜ウェーハアセンブリは、薄膜高分子膜、および、膜透過に実際上少ししか干渉しない薄膜高分子膜を支持するための「ウェーハ」と呼ばれるフレームを含む。この薄膜高分子膜は、原料ストリーム中の所望の成分または化学種が、圧力勾配、濃度勾配等に応じて膜両面間を透過するのに選択性のある高分子を含む。
【0033】
ウェーハアセンブリ内の薄膜高分子膜に使用される高分子は、所望の原料ストリーム成分の透過に対して選択性がなければならない。1つもしくは複数のかかるアセンブリの構成において、異なる原料ストリーム成分を個々のウェーハアセンブリ両端間を透過させることが所望される場合であっても、ウェーハアセンブリは、それぞれに選択された高分子を含む膜を含むことができる。加えて、好適な一実施形態では、高分子膜は、独立して、芳香族化学種の選択的な透過に有用な高分子から選択される。第2の高分子膜が使用される場合、その高分子は、独立して選択することができる。高分子の混合物も膜に使用できる。用語「高分子」は、高分子の一般的な意味で使用されることになり、例えば、ホモポリマー、コポリマー、三元ポリマー、プレポリマー、およびオリゴマーが挙げられる。
【0034】
芳香族成分を含む原料ストリームから芳香族化合物を分離することが望ましい場合、芳香族化合物を選択的に透過できる高分子を使用できる。液体炭化水素の芳香族化合物/非芳香族化合物の分離に適する高分子の例は、以下の米国特許に見出すことができる:ポリイミド/脂肪族化合物のポリエステルコポリマーを扱った特許文献4、脂肪族化合物のポリエステルジオールと二無水物との架橋されたコポリマーを扱った特許文献5、ハロゲン化ポリウレタンを扱った特許文献6、ジエポキシド架橋化/エステル化ポリイミド−脂肪族化合物のポリエステルコポリマーを扱った特許文献7、ポリイミド脂肪族化合物のポリエステルコポリマーを扱った特許文献8、親和性のある第2のプレポリマーを用いて伸展した尿素プレポリマー鎖を含むマルチブロックポリマー、それから製造される膜、および分離におけるその使用を扱った特許文献9、飽和物からの芳香族化合物の分離用のポリカーボネート膜を扱った特許文献10、高度に芳香族異方性のポリ尿素/ウレタン膜、および、非芳香族化合物から芳香族化合物を分離するためのそれらの使用を扱った特許文献11、溶液からの堆積によって調製される薄膜複合膜を扱った特許文献12、懸濁液の堆積によって調製される薄膜複合膜を扱った特許文献1、高度に芳香族異方性のポリ尿素/ウレタン膜、および、非芳香族化合物から芳香族化合物を分離するためのそれらの使用を扱った特許文献13、高度に芳香族性のポリ尿素/ウレタン膜、および、非芳香族化合物から芳香族化合物を分離するためのそれらの使用を扱った特許文献14、溶液からの堆積によって調製される薄膜複合膜を扱った特許文献15、イソシアヌレート架橋化ポリウレタン膜、および、非芳香族化合物から芳香族化合物を分離するためのそれらの使用を扱った特許文献16、イソシアヌレート架橋化ポリウレタン膜、および、非芳香族化合物から芳香族化合物を分離するためのそれらの使用を扱った特許文献17、懸濁液の堆積によって調製される薄膜複合膜を扱った特許文献2、親和性のある第2のプレポリマーを用いて伸展したイミドまたはアミド酸プレポリマー鎖を含むマルチブロックポリマーから製造される膜、および、分離におけるその使用を扱った特許文献18、親和性のある第2のプレポリマーを用いて伸展したオキサゾリドンプレポリマー鎖を含むマルチブロックポリマーから製造される膜、および、分離におけるその使用を扱った特許文献19、親和性のある第2のプレポリマーを用いて伸展した尿素プレポリマー鎖を含むマルチブロックポリマー、それから製造される膜、および、分離におけるその使用を扱った特許文献20、エポキシをジアミンと混合することによって製造され、親和性のある第2のプレポリマーを用いて伸展した第1のプレポリマー鎖を含むマルチブロックポリマー、それから製造される膜、および、分離におけるその使用を扱った特許文献21、高度に芳香族性のポリ尿素/ウレタン膜、および、非芳香族化合物から芳香族化合物を分離するためのそれらの使用を扱った特許文献22、高度に芳香族性のポリ尿素/ウレタン膜、および、非芳香族化合物からの芳香族化合物の分離についてそれらの使用を扱った特許文献23、イソシアヌレート架橋化ポリウレタン膜、および、非芳香族化合物から芳香族化合物を分離するためのそれらの使用を扱った特許文献24、親和性のある第2のプレポリマーを用いて伸展したエステルプレポリマー鎖を含むマルチブロックポリマー、それから製造される膜、および、分離におけるその使用を扱った特許文献25、親和性のある第2のプレポリマーを用いて伸展した尿素プレポリマー鎖を含むマルチブロックポリマー、それから製造される膜、および、分離におけるその使用を扱った特許文献9、親和性のある第2のプレポリマーを用いて伸展した第1のアミド酸プレポリマー鎖を含むマルチブロックポリマー、それから製造される膜、および、分離におけるその使用を扱った特許文献26、エポキシをポリエステルと混合することによって製造され、親和性のある第2のプレポリマーを用いて伸展したエステルプレポリマー鎖を含むマルチブロックポリマー、それから製造される膜、および、分離のためのその使用を扱った特許文献27、架橋化ポリエステルアミド膜、および、有機物の分離のためのそれらの使用を扱った特許文献28、ハロゲン化ポリウレタンを扱った特許文献29、飽和ポリエステル、および、それから架橋された芳香族化合物/飽和物の分離用の膜を扱った特許文献30、不飽和ポリエステル、および、それから架橋された芳香族化合物/飽和物の分離用の膜を扱った特許文献31、ペンダントカルボン酸基のないポリイミド/脂肪族化合物のポリエステルコポリマーを扱った特許文献32、芳香族化合物/飽和物の分離用のポリフタレートカルボネート膜を扱った特許文献33、芳香族化合物/飽和物の分離用のポリアリレート膜を扱った特許文献34、飽和ポリエステル、および、それから架橋された芳香族化合物/飽和物の分離用の膜を扱った特許文献35、不飽和ポリエステル、および、それから架橋された芳香族化合物/飽和物の分離用の膜を扱った特許文献36、膜抽出によるオレフィン/パラフィン分離を扱った特許文献37、膜抽出によるイソ/ノルマルパラフィン分離を扱った特許文献38。
その他の適切な高分子としては、ポリアクリロニトリル(「PAN」)およびポリスルホン(「PS」)が挙げられる。一実施形態では、PVAおよびPS膜は、多孔質ポリエステルなどの非織成高分子支持体に担持される。薄い(例えば0.01マイクロメートル〜10マイクロメートル)高分子層を使用して、選択性を増強することができる。例えば、ポリビニルアルコール(「PVA」)、ポリジメチルシロキサン(「PDMS」)、およびセルロースエステルの薄層が使用できる。
【0035】
薄膜高分子膜ウェーハアセンブリは、薄膜高分子膜および少なくとも1つのウェーハを含む。ウェーハについては、これからは、図示のような芳香族化合物および非芳香族成分を含む液体原料からの芳香族化合物の分離に関する特定の実施形態によって説明する。本発明は、かかる実施形態に限定されないことに留意する必要がある。
【0036】
ある実施形態に使用するのに適するウェーハは、図1Aに記載されている。1つのウェーハアセンブリに2つ以上のウェーハが使用できる。ウェーハが薄い半円シリンダの幾何形状で示されているが、他の円筒状の幾何形状も適することが理解されるべきである。例えば、円形、三角形、矩形、規則的な多角形、および不規則な多角形断面などの断面を有するシリンダが使用できる。さて図1Aを参照して、第1の外側ウェーハ2aの斜視図を説明する。第1の外側ウェーハ2aは、一般に半円の固体部材である。第1の外側ウェーハは、半円の外側端部4を含み、それは半径方向の表面6まで延在する。半円の外側端部4は、リム8を含み、リム8は、例えば10に見られるように、この図には示されないネジまたはO−リング溝などの締め金具を配置するために複数の開口部を有する。半円の外側端部4は、ウェーハ2aの最上部(頂点とも称する)に第1の窪み12を含む。窪み12は、後述のように、管状部材を受け入れるように構成される。
【0037】
ウェーハ2aは、また、第1のコーナー窪み14および第2のコーナー窪み16を含み、コーナー窪み14、16も管状部材を受け入れるように構成される。半径方向の表面は、中央窪み22に加えて、第1の辺窪み18および第2の辺窪み20を含み、それは、管状部材を受け入れ、かつそれと運転可能に関連付けられるように構成される。管状部材の機能は様々であり、より十分に後述される。上記のように、ウェーハ2aは、固体裏面壁24を有する。換言すれば、ウェーハ2aはプレートの形態をしている。裏面壁24は、それを横切る2つのアンダーフロー堰、すなわちアンダーフロー堰26およびアンダーフロー堰28を有する。堰26、28は、以下により十分に開示されるように、原料ストリームの流れパターンを変える隆起した突出物である。堰26、28により、ウェーハ2aの構造上の支持も追加される。より大径のシステムの場合、管状部材用の追加のリブおよび窪みを提供することができる。
【0038】
図1Bは、図1Aの第1のウェーハ2aの側面立面図である。それぞれの図に現れる同じ数字は、類似の構成要素を指すことに留意する必要がある。したがって、半径方向の表面6は、窪み14、18、22、20、および16と一緒になって示される。図1Bは、裏面壁24まで延在するリム8も示す。やはり示されているのが、再分配穴30a、30bである。図1Cを参照すると、図1Aの第1の外側ウェーハの反対側の面からの斜視図が示されている。図1Cは、裏面壁24を描いている。
【0039】
さて、図2Aを参照して、内側ウェーハ34aの斜視図を説明する。内側ウェーハ34aは、やはり半円の輪郭36であり、上部外側リムを通る開口部、例えば、この図には示されないネジまたはO−リング溝などの締め金具手段を配置するための開口部38を含んだ上部外側リム36aを有する。内側ウェーハ34aは、第1のリブ部材40および第2のリブ部材42を有する。リブ40、42は、そこを通る穿孔された穴44、46を有する。穿孔された穴44、46は、以下により十分に説明するように、水蒸気などの高温媒体がリブを経由して流れ、それによってウェーハアセンブリの含有物を加熱するのが可能になる。より大径のシステムの場合、管状部材用の追加のリブおよび窪みを提供することができる。
【0040】
内側ウェーハ34aは、頂点に、管状部材の配置用の最上部窪み48を有する。外側リム36aは、半径方向の平坦な表面50まで延在する。半径方向の平坦な表面50は、第1のコーナー窪み52および第2のコーナー窪み54を有し、さらに、第1の辺窪み56および第2の辺窪み58が含まれる。中央窪み60は、そこを通るアパーチャー62を有して示されている。内側ウェーハ34aは、壁を含まず、しかしその代わりに、開放された領域を有する。したがって、図2Aに見られる符号64、66、および68は、透過物域に対応する開放領域を表す。内側ウェーハ34aは、第1の壁取付け棚72aおよび第2の壁取付け棚74aを有する。
【0041】
さて、図2Bを参照して、図2Aの内側ウェーハ34aの側面立面図を説明する。半径方向の平坦な表面50が、アパーチャー62と共に示されている。外側リムは、上部リム表面36aおよびより下部リム表面36bを含み、この場合、両方のリム表面36a、36bは、以下にさらに詳細に記載するように、シール面としての機能を果たす。図2Cに見られるように、上部リム表面36aは、第1の壁取付け棚72aおよび第2の壁取付け棚74aにつながり、一方、下部リム表面36bは、第3の壁取付け棚72bおよび第4の壁取付け棚74bにつながる。
【0042】
さて、図3Aの第2の外側ウェーハ76aの斜視図を参照されたい。好適な実施形態では、第2の外側ウェーハ76aは、全体として第1の外側ウェーハ2aと構造的に同じものである。したがって、第2の外側ウェーハ76aは、半円の外側端部78を含み、それは、半径方向の表面80まで延在する。半円の外側端部78および半径方向の表面80はリム82を含み、リム82は、例えば84に見られるように、ネジなどの締め金具を配置するための複数の開口部を有し、あるいは、O−リング溝を含む場合があり、それらはこの図には示されてない。半円の外側端部78は、ウェーハ76aの最上部(頂点とも称する)に第1の窪み86を含む。窪み86は、より十分に後述されるように、管状部材を受け入れるように構成される。管状部材の機能は様々であり、より十分に後述される。
【0043】
ウェーハ76aは、また、第1のコーナー窪み88および第2のコーナー窪み90を含み、コーナー窪み88、90は、やはり管状部材を受け入れるように構成される。半径方向の表面80は、中央窪み96に加えて、第1の辺窪み92および第2の辺窪み94を含み、それは、管状部材を受け入れ、かつそれと運転可能に関連付けられるように構成される。
【0044】
ウェーハ76aは、固体裏面壁98を有する。換言すれば、ウェーハ76aは、プレートの形態をしている。裏面壁98は、それを横切る2つのアンダーフロー堰、すなわちアンダーフロー堰100およびアンダーフロー堰102を有する。堰100、102は、以下により十分に開示されるように、原料ストリームの流れパターンを変える隆起した突出物である。堰100、102により、ウェーハ76aの構造上の支持も追加される。より大径のシステムの場合、管状部材用の追加のリブおよび窪みを提供することができる。
【0045】
図3Bは、図3Aの第1のウェーハ76aの側面立面図である。先に説明したように、それぞれの図に現れる同じ数字は、類似の構成要素を指す。したがって、半径方向の表面80は、窪み88、94、96、92、および90と一緒になって示される。窪み92は、再分配アパーチャー104を有する。窪み94は、再分配アパーチャー105を有する。図3Cは、図3Aの第2の外側ウェーハの反対側の面からの斜視図であり、この図は、固体裏面壁98、並びに、支持体99aおよび99bを描いている。
【0046】
さて、図4を参照して、第2のウェーハアセンブリ108と直列接続した第1のウェーハアセンブリ106の分解側面立面図を説明する。図4に見られるように、ウェーハアセンブリ106は、第1の外側ウェーハ2a、第1の膜構成要素110、内側ウェーハ34a、第2の膜構成要素112、次いで第2の外側ウェーハ76aからなる。したがって、ウェーハアセンブリは、第1の外側ウェーハ、膜構成要素、内側ウェーハ、膜構成要素、次いで外側ウェーハからなる。第1の外側ウェーハ2aは、補強されたタイプのものであり、ウェーハ76aより厚く、構造的により強いことに留意する必要がある。
【0047】
図4に示すように、第2のウェーハアセンブリ108は、第1のウェーハアセンブリ106と直列接続している。したがって、第2のウェーハアセンブリ108は、第1の外側ウェーハ2b、第1の膜構成要素114、内側ウェーハ34b、第2の膜構成要素116、および第2の外側ウェーハ76bからなる。本発明の教示によると、第1のウェーハアセンブリ106は、第2のウェーハアセンブリ108に対して直列接続で運転可能に取り付けられ、直列接続ウェーハアセンブリが形成される。
【0048】
ウェーハアセンブリを一緒に固定するための複数のネジが示されている。例えば、ネジ117aは、ウェーハ2aの開口部117bを通って嵌合し、ネジ117cは、ウェーハ76aの開口部117dを通って嵌合し、ウェーハ34aの開口部117e/117fと連携して働いて、その結果、ウェーハ2a、34a、および76aが一緒に固定される。
【0049】
図5Aは、図4に見られる直列接続ウェーハアセンブリの分解側面立面図であり、膜構成要素の一実施形態の詳細図である。図5Aは、高分子膜ウェーハアセンブリの好適な実施形態を描いている。この好適な実施形態では、膜構成要素110は、供給スペーサスクリーン120a、ガスケット122a、薄いフィルム膜124a、および焼結金属部材126aを含む。焼結金属部材126aは、一般に電子ビーム溶接によって部材34aに取り付けられる。当業者に一般的なその他の取付け形態も実行可能である。部材126aは、(また、)多孔質金属または多孔質セラミックの支持材料から組み立てられる場合がある。多孔質支持材料は、膜ファブリックが重ね合わさるように巧みに処理された平坦な表面を提供し、本明細書に開示される動的および高分子の両方の実施形態に対して共通のものである。
【0050】
供給スペーサスクリーンは、商業的に入手可能である。供給スペーサスクリーンは、商業的に入手可能な金属または非金属のスクリーン材料である。焼結金属部材126aは、マーティンクルツ社(Martin Kurz and Co.Inc.)からダイナポア(DYNAPORE)の商品名で入手可能である。等級TWM−80からBWM−80までそれぞれの等級のダイナポアが使用可能である。5層スクリーンろ過媒体から製造されるダイナポア等級が、この焼結金属部材にとって最も好ましい実施形態である。デュポン(DuPont)から入手可能なビトン(Viton)ガスケットが適する。焼結金属(Sintered Metal)の商品名でモット社から入手可能な焼結金属が適する。
【0051】
第2の膜構成要素112は、供給スペーサスクリーン128a、ガスケット130a、薄いフィルム膜132a、および焼結金属134aを含む。焼結金属部材134aは、一般に電子ビーム溶接によって部材34aに取り付けられる。当業者に一般的なその他の取付け形態も実行可能である。部材134aは、また、多孔質金属または多孔質セラミックの支持材料でもよい。
【0052】
膜構成要素114は、供給スペーサスクリーン120b、ガスケット122b、薄いフィルム膜124b、および焼結金属部材126bを含む。焼結金属部材126bは、一般に電子ビーム溶接によって部材34aに取り付けられる。当業者に一般的なその他の取付け形態も実行可能である。好適な一実施形態では、第2の膜構成要素116は、供給スペーサスクリーン128b、ガスケット130b、薄いフィルム膜132b、および焼結金属部材134bを含む。焼結金属部材134bは、一般に電子ビーム溶接によって部材34aに取り付けられる。当業者に一般的なその他の取付け形態も実行可能である。部材126aおよび134aは、また、多孔質金属または多孔質セラミックの材料から組み立てることができる。
【0053】
膜構成要素内には、様々な構成要素が考えられることに留意する必要がある。例えば、図5Aに示さないが、膜支持ファブリックを、図5Bにて、図示するような膜構成要素の一部として含むことができる。図5Bは以下に検討される。加えて、膜構成要素内の構成要素の様々な順序および/または配列も考えられる。
【0054】
図5Bは、図4に見られる直列接続ウェーハアセンブリの分解側面立面図であり、膜構成要素パッケージの第2の実施形態の詳細図である。図5Bの実施形態は、動的膜、すなわち、膜透過に対し選択された成分または化学種の吸着に対して選択性のある材料の層で被覆された膜を描いている。この第2の好適な実施形態では、膜構成要素400は、O−リングロープ409a、ワイヤメッシュスクリーン410a、吸着媒体の粉末化層412a、膜414a、膜支持ファブリック416a、およびO−リングロープ417aを含む。さらに含まれるのは、多孔質支持材料媒体418aであり、それは、膜支持ファブリックに当接する多孔質金属または多孔質セラミックのいずれかの支持材料でよい。O−リングロープは、カブレス(Cabres)の商品名でアメリカンシール社(American Seal Inc.)から商業的に入手可能である。金属および非金属供給スペーサスクリーン(410a)は、商業的に入手可能である。膜支持ファブリックは、例えば、ゴアテックス(登録商標)(GoreTex)の商標名でW.L.ゴア社(Gore,Inc.)から商業的に入手可能である。ゴアテックスは、テフロン(登録商標)すなわちポリテトラフルオロエチレン(PTFE)ファブリックである。膜支持ファブリックは、ファブリックのポリエステル、ナイロン、ノーメックス(登録商標)、またはケブラー(登録商標)系でもよい。テフロン(登録商標)、ノーメックス(登録商標)、およびケブラー(登録商標)は、デュポンの商標である。多孔質金属性の支持材料(418a)は、ダイナポアの商品名でマーティンクルツ社から商業的に入手可能である。等級TWM−80からBWM−80までそれぞれの等級のダイナポアが使用可能である。5層スクリーンろ過媒体から製造されるダイナポア等級が、この焼結金属部材にとって最も好ましい実施形態である。吸着媒体は、多孔質シート上に配置しても、または、薄いフィルム膜の表面上に配置してもよい。吸着媒体は、グラムあたり100〜1500平方メートルの範囲の表面積を有することが好ましい。代表的な吸着材料は、活性炭、モレキュラーシーブ、ゼオライト、シリカゲル、アルミナであろう。含浸された吸着剤も使用可能である。吸着材料は、以下の材料、−ナトリウム、コバルト、モリブデン、銅および他の金属−を含浸して、性能を増強することができる。好適な吸着材料は、例えば、以下から入手可能である。
(a)活性炭および含浸された活性炭の場合、カルゴン社(Calgon Co.)、非含浸の場合の市販の商品名は、Cal F−200およびCal F−400、含浸の場合は、Centur(ナトリウム含浸)であり;
(b)モレキュラーシーブ/ゼオライト、シリカゲルの場合、グレイス社(Grace Co.)、モレキュラーシーブ/ゼオライトの市販の商品名は、13X、5A、およびその他であり、シリカゲルの市販の商品名は、グレイスゲルおよびその他であり;
(c)アルミナの場合、アルコア社(ALCOA Co.)、市販の商品名はA−200、A−400、およびその他であり;並びに、
(d)ゼオライトの場合、エクソンモービル社(ExxonMobil Co.)、市販の商品名はZSM−5、MCMシリーズおよびその他である。
【0055】
第2の膜構成要素402は、O−リングロープ409b、ワイヤメッシュスクリーン410b、吸着媒体の粉末化層412b、膜414b、膜416b、O−リングロープ417b、および金属でもセラミックでもよい多孔質支持材料418bを含む。
【0056】
膜構成要素406は、O−リングロープ409c、ワイヤメッシュスクリーン410c、吸着媒体の粉末化層412c、膜414c、O−リングロープ417c、支持ファブリック膜416c、および金属でもセラミックでもよい多孔質支持材料418cを含む。好適な一実施形態では、第2の膜構成要素パッケージ408は、O−リングロープ409d、ワイヤメッシュスクリーン410d、吸着媒体の粉末化層412d、膜414d、膜支持ファブリック416d、O−リングロープ417d、および金属でもセラミックでもよい多孔質支持材料418dを含む。膜構成要素内には、様々な構成要素、または構成要素の様々な順序が考えられることに留意する必要がある。
【0057】
図5Cは、図5Bに見られる動的な実施形態による流れの概略図である。流れストリーム「F」は、粉末吸着媒体を経由し、次いで薄いフィルム高分子膜を経由し、次いで膜ファブリックを経由し、その次に多孔質支持層を経由して流れる。
【0058】
さて、図6を参照すると、直列接続で接続される2つの内側ウェーハの平面図が示されている。すなわち、34aなどの内側ウェーハと第2の内側ウェーハ34bが運転可能に取り付けられる。いくつかの取付け方法が可能であり、管状部材148および149の外側に位置合わせしたボルト/ネジ302、304を含めるのが、好適な実施形態である。代替の方法として、ウェーハ34aおよび34bの中にネジ止め/ボルト締めしたオープン矩形ピンまたはハープ型のものとすることができよう。圧縮バンドも使用可能である。両方のウェーハ34a、34bが半円であるので、接続された2つのウェーハは、全体として円形の断面を有する円筒状のアセンブリを形づくる。この円筒状のアセンブリにより、全装置を圧力容器135内に配置し、したがって、前記容器135内の空間および体積を最大にするのが可能になる。換言すれば、円筒状のアセンブリは、圧力容器内での原料ストリームの大量処理にとって最も効率のよい構成である。とはいえ、シリンダは、半円形または円形のシリンダである必要はない。容器135は、環状路領域A内に置かれる水蒸気などの高温媒体を有することができる。
【0059】
図6には、中央窪み60aおよび60bが描かれており、それは、管状部材140の中に入る透過物の流路用のアパーチャー140aおよび140bと共に、透過物用の管状部材140を配置するための円筒状の流路を形成する。また、窪み48aは、その中に流入原料用の管状部材142を有する。窪み48bは、その中に原料(残留物)流出用の管状部材144を有する。窪み52aおよび52bは、その中に水蒸気供給用の管状部材146を有する。窪み54aおよび54bは、水蒸気供給用の管状部材148を有する。辺窪み56a、56bは、再分配管状部材150を有する。辺窪み58a、58bは、再分配管状部材152を有する。
【0060】
管状部材142は、ウェーハの中に原料ストリームを供給する。管状部材144は、原料ストリーム(残留物)用の出口管である。管状部材146および148は、追加の水蒸気供給入口である。管状部材150および152は、より十分に後述するように、ウェーハ34aの領域からウェーハ34bの領域へ残留物を再分配させるための再分配管である。管状部材144、142を固定するため、取付けプレート306、308も使用される。
【0061】
さて、図7Aを参照して、直列に配置される直列接続ウェーハアセンブリの概略側面立面図を説明する。図7Aには、内側ウェーハ162に取付けられる端部ウェーハ160を含むウェーハアセンブリが描かれており、内側ウェーハ162は、端部ウェーハ164に取付けられる。端部ウェーハ160は、2つの支持突出物を有し、すなわち、構造上の支持を提供するため、並びに、他のウェーハアセンブリからの異なる平面にある支持突出物の相互関係にあるセットと協同するための支持突出物166および168を有する。端部ウェーハ164は、2つの支持突出物を有し、すなわち、構造上の支持を提供するため、並びに、異なる平面にある支持突出物の相互関係にあるセットと協同するための支持突出物170および172を有する。このウェーハアセンブリは、W1として表示される。
【0062】
直列接続の相互関係にあるウェーハアセンブリは、内側ウェーハ176に取り付けられる端部ウェーハ174を含み、内側ウェーハ176は、端部ウェーハ178に取付けられる。端部ウェーハ174は、2つの支持突出物を有し、すなわち、構造上の支持を提供するため、並びに、異なる平面にある支持突出物の相互関係にあるセットと協同するための支持突出物184および186を有する。端部ウェーハ178は、2つの支持突出物を有し、すなわち、構造上の支持を提供するため、並びに、異なる平面にある支持突出物の相互関係にあるセットと協同するための支持突出物180および182を有する。このウェーハアセンブリは、W2として表示される。
【0063】
ウェーハアセンブリW3およびW4が示されている。ウェーハアセンブリW3およびW4は、実質的にW1およびW2と同じものである。ウェーハアセンブリW3は、運転可能にウェーハアセンブリW4に取り付けられる。図7Aは、原料ストリームの貫流を描いている。より詳しくは、原料ストリームは、入口管142を介し、190、192で示される矢印を経由しながら入ることになる。図7Bを参照して、概略正面図の直列接続ウェーハアセンブリW3、W4を説明する。図7Bに見られるように、W3からの原料/残留物液体は、再分配管150および152を介してW3から流出し、これら管150、152を経由してW4に入り、透過物は、W3およびW4から管状部材140の中に流出する。
【0064】
図7Aに戻り、原料ストリームは、矢印194、196で示されるように出口管144を経由して出る。膜構成要素を経由して透過する原料ストリームの一部は、管140を介して出て、それは、符号198および200で表示されている。本発明の教示によれば、この流れパターンは、図7Aに示す全てのウェーハアセンブリ(W1−W2、W5−W6、W7−W8)について同様である。
【0065】
図7Aには、運転可能にウェーハアセンブリW6に取り付けられるウェーハアセンブリW5が描かれている。最後に、ウェーハアセンブリW7は、運転可能にウェーハアセンブリW8に取付けられて示されている。ウェーハアセンブリW5およびW6は、実質的にW3およびW4と同じものであり、ウェーハアセンブリW7およびW8は、実質的にウェーハアセンブリW5およびW6と同じものである。ただし、W7ウェーハアセンブリでは、端部ウェーハ2aが補強されたタイプであること、W8では、端部ウェーハ2bもまた補強されたタイプであることを除く。内側ウェーハ34aおよび34b、並びに、外側ウェーハ76a、76bがやはり示されている。
【0066】
図7Aは、ウェーハが直列接続で配置され、次いで、直列接続ウェーハアセンブリが直列に配置されることを例示する。換言すれば、ウェーハW1は、ウェーハW2と直列接続している。作業者により、直列接続ウェーハアセンブリを直列に付け加えられと、装置の流れ容量が事実上増加する。図7Aはまた、支持突出物が、どのように隣接するウェーハ上の、しかし異なる平面にある、隣接する支持突出物と協同するかを示す。例えば、端部ウェーハ164の支持突出物170および172は、裏面壁350に当接することになり、端部ウェーハ210のウェーハ突出物206および208は、ウェーハ164の裏面壁351に当接することになる。これにより、直列接続ウェーハアセンブリが直列に所定の位置に圧縮されるとき、強度が増し、圧縮荷重が分配される。
【0067】
さて、図8を参照して、管部材と共に直列に配置される直列接続ウェーハアセンブリの斜視図を説明する。この図では、ウェーハアセンブリW1、W2、W3、W4、W5、W6、W7、およびW8が示されている。ウェーハW7の端部ウェーハ2aおよびウェーハW8の端部ウェーハ2bが、補強されたタイプであることに留意する必要がある。図8には、原料入口管142が示され、透過物管140が示され、原料出口管144が示されている。再分配管150、152と共に、ストッパプレート244および接続プレート246が示されている。
【0068】
図9は、図8に見られる直列接続ウェーハアセンブリの部分切取図である。すなわち、W1、W2、W3、W4、W5、W6、W7、およびW8ウェーハアセンブリが示されている。この部分断面図には、再分配管152が、ノズル220、222、224、226、228、230、231、232、233、および234と共に描かれている。かかるノズルは、原料(残留物)を、第1のウェーハアセンブリから、直列接続で配置された第2のウェーハアセンブリに導く。例えば、原料は、ウェーハアセンブリW1から、ノズル224およびノズル226を介してウェーハアセンブリW2に導かれる。加えて、ウェーハアセンブリから生成される透過物を、透過物域(図10に透過物域262が示されている)から、装置から最終的に生成される透過物の管140に導くためのノズル236、238、240、242、および243と共に、透過物管140が示されている。
【0069】
図9では、第1のストッパプレート244が接続プレート246と共に固定され、好適な一実施形態では、ストッパプレート244と接続プレート246が、一連の直列接続ウェーハアセンブリを一緒にして適切に圧縮する際の助けとなるべく、加えられる。接続プレート250と共に固定される第2のストッパプレート248が示されており、ストッパプレート248と接続プレート250が、一連の直列接続ウェーハアセンブリを一緒にして相互に圧縮するため、反対側に加えられる。好適な一実施形態では、接続プレートは二等分されたものからなり、それは、ナットおよびボルトなどの締め金具手段によって全体として一緒に取り付けられることに留意する必要がある。ストッパプレート244、248も、ナットおよびボルトなどの締め金具手段によってウェーハアセンブリに取り付けられる。ストッパプレートにより、ウェーハW1〜W8のアセンブリに対する追加の機械的結合性が提供される。
【0070】
さて、図10を参照して、一連の直列接続ウェーハアセンブリを経由する流れパターンの好適な実施形態の断面図を説明する。すなわち、第1の外側ウェーハ2aが示されており、これは運転可能に内側ウェーハ34aに取付けられる。その次に、前述したように、内側ウェーハ34aが、ウェーハアセンブリW7の第2の外側ウェーハ76aに運転可能に取付けられる。第1の膜構成要素110は、ウェーハ2aとウェーハ34aの間に作り出される第1の空洞内に配置される。第2の膜112は、ウェーハ76aとウェーハ34aの間に作り出される第2の空洞内に配置される。
【0071】
原料ストリームは、チャネル260を経由して導かれる。堰26および堰28は、原料ストリームが乱流になるのを引き起こす。一部のストリームは、膜110と反応することになり、このようにして生成された透過物が透過物域262に導かれ、それは、その次にノズル243を介して透過物管140に導かれる。透過物の経路は、矢印「P」で示されている。膜構成要素110を経由して透過しなかった原料ストリーム部分は残留物として知られており、この残留物は、経路矢印「R」で示される残留物領域を経由して流れる。
【0072】
この実施形態によれば、流入原料ストリームは、チャネル263も経由して導かれる。堰102および堰100は、原料ストリームが乱流になるのを引き起こす。一部のストリームは、膜112と反応することになり、このようにして生成された透過物が、透過物域262に、次いで、ノズル243を介して透過物管140の中に導かれる。先に説明したように、透過物の流路は矢印Pで示される。(透過する化学種または成分が希薄であるという意味において)反応しなかった流入ストリームの一部、すなわち残留物は、経路矢印Rで示される残留物領域を経由して流れる。
【0073】
好適な実施形態では、第1のウェーハアセンブリW7からの残留物は、再分配管150、152(図10には管150は示されてない)を介して直列接続ウェーハアセンブリW8に送られ、そこで、それは、原料ストリーム(残留物)が堰および膜構成要素に暴露されるという点でこの場合も同様のプロセスに暴露される。この透過物は透過物管140に導かれ、残留物は出口管144に導かれる。
【0074】
図10に例示したように、全ての直列接続ウェーハアセンブリについて同様の流れパターンが存在する。より詳しくは、図10は、ウェーハW5およびW6の場合の流れパターンも描いている。ウェーハアセンブリW5、W6、W7、およびW8について、矢印のPは、透過物経路の場合の流れを描き、矢印のRは、残留物の場合の流れを描いている。例えば、残留物は、ノズル233を介してウェーハW7を出て、ノズル400を介して入る。残留物は、最終的にはノズル402を介してウェーハW8を出て、出口管144の中に入ることになる。透過物は、ノズル404を介して透過物管140に入る。加えて、透過物管140を、その次に透過物域を吸引する凝縮器および真空ポンプ300も、図10に示されている。
【0075】
図11Aにおいて、ウェーハアセンブリ用のシール部材の第1の実施形態を説明する。図11Aに示すシール部材は、当技術分野でよく知られているガスケット270である。ウェーハ2aは、その周縁部にリム272を含み、内側ウェーハ34aは、その周縁部に相互関係にあるリム274を含む。スクリーン276(それは、例えば膜構成要素パッケージ110または膜構成要素パッケージ400の構成部材とすることができる)が、ウェーハ34aの壁取付け棚表面277a内に配置されるように構成されて示されている。薄いフィルム膜は、符号278で表示されている。したがって、ガスケット270は、シール手段を提供するためにリム272と274の間に配置される。ガスケット270は、ビトン(デュポンから入手可能)、または、所望の原料ストリーム、透過物、残留物、および処理条件に供用するのに適するその他のエラストマーとすることができる。
【0076】
ウェーハアセンブリ用のシール部材の第2の実施形態が、図11Bに示されている。本実施形態では、スクリーン276が、符号280で表示される膜構成要素と共に使用される。この場合もガスケット270が使用される。本実施形態では、第2の壁取付け棚282が、リム274内に構成される。O−リング284が、この第2の壁取付け棚内に配置され、スクリーン276によって当接される。O−リング284は、それが膜構成要素280に対して圧縮され、その次にそれがガスケット270に対して圧縮されるとき、第二のシール機構が提供される。
【0077】
図11Cでは、ウェーハアセンブリ用のシール部材の第3の実施形態が示されている。本実施形態では、この場合もO−リング284が壁取付け棚282内に配置される。ウェーハ2aには、リム272内に2つの溝、すなわち溝286および溝288が構成される。O−リング290は溝286内に配置され、O−リング292は溝288内にある。この実施形態により、O−リング290とO−リング284がシール手段のために一緒に協同するのが可能になる。O−リング292は冗長性をもつシールを提供し、このシールはO−リング292と膜構成要素280の間で生じる。
【0078】
本明細書に記載した膜は、液体原料から所望の成分または化学種を分離するのに有用である。膜抽出および浸透気化分離を使用することができる。
【0079】
膜抽出分離では、透過物は、液体掃引ストリームを使用して透過物域から取り除かれる。透過物は、掃引ストリームの中に溶解し、透過物域における透過物の蓄積を防止するために、掃引ストリーム流れによって導き出される。掃引液体は、透過物に対して親和力を有し、かつ透過物と混合できることが好ましい。浸透気化では、透過物は、蒸気として透過物域から導き出される。透過物域は、真空または減圧に維持され、原料ストリーム中の所望の化学種または成分が、膜両面間を移動したとき蒸発する。浸透気化では、残留物域の原料ストリームと透過物域の透過物の分圧との間の蒸気圧の差異が、所望の化学種または成分の膜両面間の移動をもたらす。平坦なシートによって膜を説明したが、分離プロセスでは、スパイラル巻きまたは中空糸などの、実行可能などんな構造の膜でも使用することができる。
【0080】
膜分離は、膜が物理的な損傷を受けるかまたは分解する温度より、低い温度で行うべきである。炭化水素分離の場合、膜の温度は、25℃〜500℃、好ましくは25℃〜250℃の範囲にあるだろう。
【0081】
本方法は、原料ストリームから所望の化学種または成分を分離するのに有用である。特に、本方法は、炭化水素原料ストリームから所望の化学種または成分を分離するのに有用である。一実施形態では、芳香族化合物が、炭化水素原料ストリームから分離される。
【0082】
本明細書で使用されるとき、用語「炭化水素」は、主に炭化水素の性質を有する有機物の化合物を意味する。したがって、1種もしくは複数の非炭化水素ラジカル(例えば硫黄または酸素)を含む有機化合物は、この定義の範囲内ということになる。本明細書で使用されるとき、用語「芳香族炭化水素」は、少なくとも1個の芳香環を含む炭化水素ベースの有機化合物を意味する。この環は、縮合したもの、架橋したもの、または縮合したものと架橋したものの組合せでもよい。好適な実施形態では、炭化水素原料から分離される芳香族化学種は、1個もしくは2個の芳香環を含む。「非芳香族炭化水素」は、芳香族化合物コアのない炭化水素ベースの有機化合物を意味する。一実施形態では、炭化水素原料ストリームは、25℃〜250℃の範囲の沸点を有し、芳香族化合物および非芳香族炭化水素を含む。好適な実施形態では、芳香族炭化水素は、25℃〜250℃の範囲で沸騰し、かつ芳香族化合物および非芳香族炭化水素を含むナフサから分離される。本明細書で使用されるとき、用語「ナフサ」は、25℃〜100℃で沸騰する軽質ナフサ、100℃〜160℃で沸騰する中間ナフサ、および160℃〜250℃の範囲で沸騰する重質ナフサを含む。用語のナフサには、熱分解ナフサ、接触分解ナフサ、および直留ナフサが含まれる。流体接触分解プロセス(「FCC」)から得られるナフサが、それらの高い芳香族化合物含量の故に特に好ましい。
【0083】
好適な実施形態では、ナフサ原料ストリーム中に存在する芳香族化合物は、動的な薄膜高分子膜の残留側の選択吸着媒体層に優先的に吸着する。残留物域の圧力は、大気圧〜100psigの範囲である。動的な薄膜高分子膜の温度は、25℃〜250℃の範囲にあるだろう。ナフサ原料ストリームから分離される芳香族化合物は、透過物域から導き出される。透過物域の圧力は、大気圧〜1.0ミリメートル水銀柱の範囲にある。
【0084】
検討したように、図12に示した運転範囲で膜を運転することが望ましいだろう。従来型の膜の場合、分離の際に起こる断熱冷却の結果として、より温度の高い原料域からより温度の低い透過物域まで、膜両面間に温度勾配が存在するであろう。運転条件に依存して、この温度勾配は、2,000psi〜20,000psiの圧力で炭化水素から芳香族化合物が分離されるとき、10℃〜120℃の範囲になるはずである。
【0085】
本発明の膜を使用することによって、透過物域が、断熱冷却の場合に存在するであろう温度に比べて高い温度になるように分離プロセスを運転することが可能である。本発明の膜は、本明細書に記載したように、原料域から透過物域へ熱を導くことができる。透過物域を加熱しながら、従来の断熱冷却の範囲に存在する温度より上の温度にある透過物域で膜分離運転を行うことができる。例えば、透過物域が原料域とほぼ同じ温度で(すなわち等温運転)、または、さらには原料域より高い温度で分離運転を行うことができる。
【0086】
特定の実施形態に関して本発明を記載したが、本発明は、それらに限定されない。特定の条件下で運転するのに好適な変更および修正形態は、当業者に明らかであろう。したがって、添付の特許請求の範囲は、本発明の真の精神と範囲内に属するものとして全てのかかる変更および修正形態を包含するように解釈されることを意図する。
【0087】
どんな理論またはモデルによっても束縛されることを望まないが、従来の膜分離プロセスは、圧力勾配を基にして、濃度プロフィルによる分離のための化学ポテンシャルを確立すると考えられる。温度勾配は、この圧力勾配によって支配され、断熱的なフラッシュ冷却曲線が得られる。すなわち、温度勾配と圧力勾配が関連し、互いに無関係ではない。浸透気化膜分離では、この断熱的なフラッシュ冷却曲線は、流束および選択性の性能に大きな影響を及ぼす。
【0088】
本発明の内部で加熱されるウェーハアセンブリは、様々なプロセス運転環境を提供する。膜が運転される圧力勾配および温度勾配は、独立して制御することができる。等温運転モードでは、平均の膜運転温度は原料温度に等しく、それは透過物温度に等しい。一般に、これは、典型的な断熱運転より少なくとも40℃高い運転温度が得られることになる。
【0089】
加熱媒体の熱レベルは、プロセス原料温度と無関係に選択することが可能であり、追加の熱をプロセスに供給することが可能である。この「プラス加熱モード」においては、プロセス原料温度より高いレベルに、膜温度を操作して、原料/残留物に追加としてプラス加熱を伝達することが可能である。一般に、200℃の材料動作限界を有する高分子膜の場合、これにより、等温運転より少なくとも50℃高い、または、従来の断熱運転より+90℃高い運転温度が得られることになる。
【0090】
商業的影響は、膜プロセスの費用効率を10倍〜100倍変えることになる。
【0091】
この新規な膜モジュール技術は、上記モードのどれでも運転することができる:断熱(原料温度より低い平均の膜運転温度)、等温(原料温度に等しい平均の膜運転温度)、またはプラス加熱(原料温度より高い平均の膜運転温度)。平均の膜運転温度を選択および制御することによって、流束および選択性を、プロセスの性能要件を満たすように調節することができる。これにより、原料組成が変化したとき、または、膜が「経年変化」し、「経年変化」に伴い性能が変ったときの調節を行う適応性が提供される。
【図面の簡単な説明】
【0092】
【図1A】第1の外側ウェーハの斜視図である。
【図1B】図1Aの第1のウェーハの側面立面図である。
【図1C】図1Aの第1の外側ウェーハの反対側の面からの斜視図である。
【図2A】内側ウェーハの斜視図である。
【図2B】図2Aの内側ウェーハの側面立面図である。
【図2C】図2Aの内側ウェーハのライン2C−2Cからとった断面図である。
【図3A】第2の外側ウェーハの斜視図である。
【図3B】図3Aの第2の外側ウェーハの側面立面図である。
【図3C】図1Aの第1の外側ウェーハの反対側の面からの斜視図である。
【図4】2つのウェーハアセンブリの分解側面立面図である。
【図5A】図4に見られる2つのウェーハアセンブリの分解側面立面図であり、膜構成要素の一実施形態の詳細図である。
【図5B】図4に見られる2つのウェーハアセンブリの分解側面立面図であり、膜構成要素の第2の実施形態の詳細図である。
【図5C】図5Bに見られる第2の実施形態による流れの概略図である。
【図6】直列接続の2つの内側ウェーハの平面図である。
【図7A】直列に配置される直列接続ウェーハアセンブリの概略側面立面図である。
【図7B】図7Aに見られる直列接続ウェーハアセンブリの1つの概略正面図である。
【図8】管部材と共に直列に配置される直列接続ウェーハアセンブリの斜視図である。
【図9】図8に見られる直列接続ウェーハアセンブリの部分切取図である。
【図10】直列接続ウェーハアセンブリを経由する流れパターンの好適な実施形態の図6のライン10〜10からとった断面図である。
【図11A】ウェーハアセンブリ用のシール部材の第1の実施形態を示す。
【図11B】ウェーハアセンブリ用のシール部材の第2の実施形態を示す。
【図11C】ウェーハアセンブリ用のシール部材の第3の実施形態を示す。
【図12】好ましい膜分離システム用の運転包絡線を示す。従来型の膜分離は、菱形点によって示したラインに沿って起こるだろう。図示のように、従来型の膜の場合、温度および圧力が原料域から透過物域に向かって膜両面間で低下するだろう。しかし、本発明の膜分離の場合、図示のように、分離は、等温で、または、原料域から透過物域へ温度上昇(「加熱運転」)させて行うことができる。

【特許請求の範囲】
【請求項1】
(a)液体原料ストリームを、ウェーハ、および、ウェーハによって機械的に支持される薄膜高分子膜を含むウェーハアセンブリの中に導く工程であって、
前記薄膜高分子膜は、所望の成分の透過に対して選択性があり、かつ、上流側面および下流側面を有する工程と、
(b)薄膜高分子膜の下流側面と流体接触している透過物域の中に所望の成分の透過を引き起こすために、薄膜高分子膜の上流側面から下流側面まで、膜両面間に所望の成分の濃度勾配を確立する工程であって、
前記下流側面は、第1の温度より上の第2の温度に維持され、前記第1の温度が断熱冷却に特徴的なものである工程とを、
含むことを特徴とする液体原料ストリームから所望成分を分離する方法。
【請求項2】
(a)残留物ストリームを、薄膜高分子膜の上流側面と流体接触している残留物域から導き出す工程と、
(b)所望の成分を含む透過ストリームを、透過物域から導き出す工程とを、
さらに、含むことを特徴とする請求項1に記載の方法。
【請求項3】
前記液体が炭化水素を含み、前記所望の成分が芳香族化合物を含むことを特徴とする請求項1または2に記載の方法。
【請求項4】
(a)液体原料ストリームを、複数のウェーハアセンブリの中に並列に導く工程であって、それぞれのウェーハアセンブリは、少なくとも1つのウェーハ、および、ウェーハによって機械的に支持され、独立して選択される少なくとも1つの薄膜高分子膜を含み、それぞれの薄膜高分子膜は、所望の成分または第2の所望の成分の透過に対して選択性があり、かつ、上流側面および下流側面を有する工程と、
(b)透過物域の中に所望の成分の透過を引き起こすために、それぞれの薄膜高分子膜の上流側面から下流側面まで、それぞれ独立して選択される薄膜高分子膜の両面間に所望の成分の濃度勾配を確立する工程と、
(c)残留物ストリームを、それぞれの薄膜高分子膜の上流側面と流体接触している残留物域から導き出す工程と、
(d)所望の成分を含む透過ストリームを、透過物域から導き出す工程とを、
さらに含み、前記液体が炭化水素を含み、前記所望の成分が芳香族化合物を含むことを特徴とする請求項1〜3のいずれか一項に記載の方法。
【請求項5】
前記独立して選択される薄膜高分子膜は、1種もしくは複数の、ポリイミド/脂肪族ポリエステルコポリマー、脂肪族ポリエステルジオールおよび二無水物の架橋コポリマー、ハロゲン化ポリウレタン、ジエポキシド架橋/エステル化ポリイミド−脂肪族ポリエステルコポリマー、ポリイミド脂肪族ポリエステルコポリマー、親和性の第二のプレポリマーで伸展された尿素プレポリマー鎖を含むマルチブロックポリマー、ポリカーボネート、高度芳香族異方性ポリ尿素/ウレタン膜、高度芳香族性ポリ尿素/ウレタン膜、イソシアヌレート架橋ポリウレタン膜、イソシアネレート架橋ポリウレタン膜、親和性の第二のプレポリマーで伸展されたイミドまたはアミド−酸プレポリマー鎖を含むマルチブロックポリマー、親和性の第二のプレポリマーで伸展されたオキサゾリドンプレポリマー鎖を含むマルチブロックポリマー、親和性の第二のプレポリマーで伸展された尿素プレポリマー鎖を含むマルチブロックポリマー、親和性の第二のプレポリマーで伸展され、エポキシをジアミンと組合せることによって調製された第一のプレポリマー鎖からなるマルチブロックポリマー、高度に芳香族質のポリ尿素/ウレタン、親和性の第二のプレポリマーで伸展された第一のアミド酸プレポリマー鎖を含むマルチブロックポリマー、エポキシを親和性の第二のプレポリマーで伸展されたポリエステル鎖と組合わせることによって調製されたエステルプレポリマー、架橋ポリエステルアミド膜、ハロゲン化ポリウレタン、飽和ポリエステルおよび架橋膜、不飽和ポリエステルおよび架橋膜、ペンダントカルボン酸基を有しないポリイミド/脂肪族ポリエステルコポリマー、ポリフタレートカルボネート膜、またはポリアリレート膜を含むことを特徴とする請求項1〜4のいずれか一項に記載の方法。
【請求項6】
少なくとも1つのウェーハアセンブリは、分散堰、スクリーン、支持ファブリックのうちの少なくとも1つを、単独でまたは組合わせて、さらに含むことを特徴とする請求項1〜5のいずれか一項に記載の方法。
【請求項7】
前記膜支持ファブリックは、テフロン(登録商標)、ポリエステル、ナイロン、ノーメックス(登録商標)、およびケブラー(登録商標)ファブリックよりなる群から選択されることを特徴とする請求項1〜6のいずれか一項に記載の方法。
【請求項8】
それぞれ独立して選択される薄膜高分子膜は、ウェーハに取付けられる少なくとも1つのリブ部材によって機械的に支持され、かつ、前記リブ部材がそこを通る内腔を含むことを特徴とする請求項1〜7のいずれか一項に記載の方法。
【請求項9】
前記第2の温度は、原料ストリームを加熱するために少なくとも1つのリブを経由する伝熱ストリームを提供することによって、維持されることを特徴とする請求項1〜8のいずれか一項に記載の方法。
【請求項10】
前記透過物域から透過物を吸引する工程を、さらに含むことを特徴とする請求項1〜9のいずれか一項に記載の方法。

【図1A】
image rotate

【図1B】
image rotate

【図1C】
image rotate

【図2A】
image rotate

【図2B】
image rotate

【図2C】
image rotate

【図3A】
image rotate

【図3B】
image rotate

【図3C】
image rotate

【図4】
image rotate

【図5A】
image rotate

【図5B】
image rotate

【図5C】
image rotate

【図6】
image rotate

【図7A】
image rotate

【図7B】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11A】
image rotate

【図11B】
image rotate

【図11C】
image rotate

【図12】
image rotate


【公表番号】特表2007−511364(P2007−511364A)
【公表日】平成19年5月10日(2007.5.10)
【国際特許分類】
【出願番号】特願2006−541245(P2006−541245)
【出願日】平成16年11月18日(2004.11.18)
【国際出願番号】PCT/US2004/037332
【国際公開番号】WO2005/049182
【国際公開日】平成17年6月2日(2005.6.2)
【出願人】(390023630)エクソンモービル リサーチ アンド エンジニアリング カンパニー (442)
【氏名又は名称原語表記】EXXON RESEARCH AND ENGINEERING COMPANY
【Fターム(参考)】