説明

風力発電システム

【課題】翼に備えられた気流発生装置への雷撃や大電流の通流を防止する風力発電システムを提供する。
【解決手段】実施形態の風力発電システム10は、翼表面に有するレセプタ70、レセプタ70を接地する避雷導線73を備えた落雷保護装置と、翼表面に設けられ、誘電体63を介して第1の電極61と第2の電極62を備えた気流発生装置60と、第1の電極61を出力端子84に接続可能なスイッチ90、第2の電極62を出力端子85に接続可能なスイッチ91、第1の電極61または第2の電極62を選択的に接地導線100に接続可能なスイッチ92を備える放電用電源65と、雷雲の接近に係る情報を検知する雷雲検知装置とを具備する。雷雲の接近に係る情報が検知された場合、第2の電極62を接地導線100に接続し、第1の電極61および第2の電極62と電圧印加部83の出力端子84、85との接続を遮断する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明の実施形態は、風力発電システムに関する。
【背景技術】
【0002】
現在、地球温暖化防止の観点から、全地球規模で再生エネルギ発電システムの導入が進められている。そのような状況中、風力発電は普及が進められている発電方式の一つである。しかしながら、日本においては、風力発電の普及率は、欧州などに比べて低い。
【0003】
日本において風力発電が普及し難いのは、その地理的制約によるところが大きい。特に、日本においては山岳性気象であるため、風力および風向がめまぐるしく変化し、風力発電において安定した出力を維持することが困難となる。このようなことが原因となり、風車1台あたりの発電効率を低下させ、結果的に風力発電システムの導入コストを押し上げている。
【0004】
日本のような風速風向変動の激しい地域で大規模な風力発電を導入するためには、これらの問題を克服した耐変動型の風車開発が必須となる。そこで、誘電体を介して対向配置された電極間に電圧を印加して発生したプラズマによってプラズマ誘起流を発生させる気流発生装置を、風車の翼面に配設することで、風の変動に対応した制御が可能な風力発電システムが提案されている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2008−25434号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
風力発電システムにおいては、雷撃による翼の損傷が頻繁に発生する。そのため、金属電極を備える気流発生装置を風車の翼に適用した場合、雷撃時に金属電極を雷電流が通流し、電極や電源を破損するだけでなく、気流発生装置付近の翼本体を損傷する可能性がある。実際の風車に気流発生装置を適用するためには、気流発生装置への受雷や、大電流の通流を防止するための構造や運用方法を確立する必要がある。
【0007】
本発明が解決しようとする課題は、翼に気流発生装置を備えた風車において、気流発生装置への雷撃や大電流の通流を防止することができる、安全性に優れた風力発電システムを提供するものである。
【課題を解決するための手段】
【0008】
実施形態の風力発電システムは、翼に設けられた受雷部、および前記受雷部から前記翼の内部、風車本体を介して地中に亘って設けられ、前記受雷部に落雷した雷電流を地中に導く避雷導線を備えた落雷保護装置と、前記翼に設けられた第1の電極と、当該第1の電極と誘電体を介して離間され、前記誘電体に埋設された第2の電極とを備えた気流発生装置と、前記気流発生装置の前記第1の電極と前記第2の電極との間に電圧を印加可能であり、前記第1の電極を電圧印加部の一方の端子または接地導線に電気的に接続可能であり、前記第2の電極を電圧印加部の他方の端子または接地導線に電気的に接続可能である電圧印加機構と、雷雲の接近に係る情報を検知する雷雲検知装置とを具備する。
【0009】
そして、前記雷雲検知装置によって雷雲の接近に係る情報が検知された場合、前記第2の電極が前記接地導線に電気的に接続され、かつ前記第1の電極および前記第2の電極と前記電圧印加部の端子との電気的な接続が遮断される。
【図面の簡単な説明】
【0010】
【図1】実施の形態の風力発電システムを示す斜視図である。
【図2】実施の形態の風力発電システムに設けられた気流発生装置を説明するための、翼の前縁部の断面を示した図である。
【図3】実施の形態の風力発電システムに設けられた翼の斜視図である。
【図4】実施の形態の風力発電システムの電気配線系統を模式的に示す図である。
【図5】実施の形態の風力発電システムの通常運転時における電気配線系統を模式的に示す図である。
【図6】実施の形態の風力発電システムの雷雲の接近時における電気配線系統を模式的に示す図である。
【図7】落雷試験の結果を示す図である。
【発明を実施するための形態】
【0011】
以下、本発明の実施の形態について図面を参照して説明する。
【0012】
図1は、実施の形態の風力発電システム10を示す斜視図である。図2は、実施の形態の風力発電システム10に設けられた気流発生装置60を説明するための、翼42の前縁部の断面を示した図である。図3は、実施の形態の風力発電システム10に設けられた翼42の斜視図である。なお、以下において、同一の構成部分には同一の符号を付して、重複する説明を省略または簡略する。
【0013】
図1に示すように、風力発電システム10において、地面20に設置されたタワー30の頂部には、発電機(図示しない)などを収容したナセル31が取付けられている。また、ナセル31から突出した発電機の回転軸にロータ40が軸支されている。
【0014】
ロータ40は、ハブ41、およびこのハブ41に取り付けられた翼42を備えている。また、翼42は、例えばピッチ角が変更可能に備えられている。なお、ここでは、3枚の翼42を備える一例を示しているが、翼42は、少なくとも2枚以上備えられていればよい。ナセル31の上面には、図1に示すように、風の風向や速度を計測する風向風速計50が設けられている。
【0015】
翼42の前縁部には、図2に示すように、気流発生装置60が設けられている。気流発生装置60は、第1の電極61と、この第1の電極61と誘電体63を介して離間して配設された第2の電極62とを備える。また、第1の電極61は、誘電体63の表面に設けられ、第2の電極62は、誘電体63内に埋設されている。なお、誘電体63を構成する誘電材料については、特に限定されず、使用される用途や環境に応じて、公知な固体からなる誘電材料から適宜選択することができる。また、誘電体63は、複数種類の材料を組み合わせて構成されてもよい。
【0016】
なお、気流発生装置60の構成は、これに限られるものではない。例えば、翼42に溝部を構成し、この溝部に、第1の電極61、第2の電極62および誘電体63からなる構成を嵌め込むように設置し、気流発生装置60が翼42の表面から突出しないように構成してもよい。この場合、翼42が、例えば、グラスファイバを合成樹脂により固形化したGFRP(グラスファイバ強化樹脂)などの誘電材料で構成されているときには、誘電体63として翼42自体を機能させることができる。すなわち、翼42の表面に直接第1の電極61を配設し、この第1の電極61と離間して翼42に第2の電極62を直接埋設することができる。
【0017】
ここで、例えば、第1の電極61の第2の電極62側の端縁が、翼42の前縁上となるように第1の電極61を配置し、第1の電極61よりも翼42の背側42aとなる位置に第2の電極62を配置することができる。なお、気流発生装置60の配置位置は、翼面に発生する剥離などを制御できる位置であればよく、特に限定されるものではないが、的確に流れを制御するためには、翼42の前縁部とすることが好ましい。
【0018】
このように気流発生装置60では、発生するプラズマ誘起流が第1の電極61側から第2の電極62側に向かって流れるように、第1の電極61および第2の電極62が配置されている。例えば、図2に示した気流発生装置60においては、プラズマ誘起流は、翼42の前縁から翼面の背側42aに向かって流れる。
【0019】
気流発生装置60は、例えば、図1に示すように、翼42の翼根部から翼端部に向かう翼幅方向に、複数個独立して配置される。この場合、各気流発生装置60は、それぞれ単独で制御され、例えば、第1の電極61と第2の電極62との間に印加される電圧条件(波高値、周波数、波形、変調周波数、デューティ比など)を、各気流発生装置60ごとに制御することができる。なお、翼幅が小さい場合には、例えば、1つの気流発生装置60を、翼42の前縁部に翼幅方向に配置することもできる。
【0020】
第1の電極61および第2の電極62は、図2に示すように、それぞれケーブル配線64a、64bを介して、電圧印加機構として機能する放電用電源65に電気的に接続されている。この放電用電源65を起動することで、第1の電極61と第2の電極62との間に電圧が印加される。
【0021】
放電用電源65は、第1の電極61と第2の電極62との間に、例えば、パルス状(正極性、負極性、正負の両極性(交番電圧))のパルス変調制御された電圧や、交流状(正弦波、断続正弦波)の波形を有する電圧などを印加することができる。このように、放電用電源65は、電圧値、周波数、電流波形、デューティ比などの電流電圧特性などを変化させて、第1の電極61と第2の電極62との間に電圧を印加することができる。
【0022】
例えば、複数の気流発生装置60を備える場合、放電用電源65は、各気流発生装置60ごとに備えられてもよいし、各気流発生装置60を独立して電圧制御できる機能を備える1つの電源で構成されてもよい。
【0023】
また、図3に示すように、翼42の翼幅方向の先端部42b、および翼42の先端部42b側における腹側および背側の表面には、受雷部として機能するレセプタ70が設けられている。なお、図3には、翼42の背側の表面が示されている。
【0024】
レセプタ70は、翼42の意図しない部分へ落雷し、翼42が損傷するのを防止するために設けられている。すなわち、レセプタ70は、翼42の他の部分へ落雷することがないように落雷を誘導し、予め落雷点を特定するために設けられている。レセプタ70は、例えば、落雷時の溶損量の小さい金属材料で構成されることが好ましく、例えば、銅−タングステンの合金、アルミニウムなどで構成される。
【0025】
レセプタ70は、翼42の内部、風車本体として機能する、ハブ41、ナセル31およびタワー30を介して地中に亘って設けられた、後述する避雷導線73に接続されている。レセプタ70に落雷した雷電流は、この避雷導線73によって地中に導かれる。なお、回転部と静止部は、例えば、ブラシや放電ギャップによって電気的に接続されている。レセプタ70と避雷導線73とを備えることで落雷保護装置として機能する。
【0026】
ここで、風力発電システム10の電気配線系統について説明する。
【0027】
図4は、実施の形態の風力発電システム10の電気配線系統を模式的に示す図である。
【0028】
図4に示すように、レセプタ70は、避雷導線73と電気的に接続されることで接地されている。ここで、避雷導線73は、ケーブル配線71と、引き下げ導線72とから構成されている。ケーブル配線71は、レセプタ70から、翼42などの回転部内に配線され、引き下げ導線72は、一端側がケーブル配線71と、例えばブラシや放電ギャップによって電気的に接続部74において接続され、他端側が地中に埋設されている。
【0029】
落雷時には、数十kAにも達する大電流が避雷導線73に通流するため、ケーブル配線71や引き下げ導線72は、それに十分に耐えることができる導線径に設計されている。また、接続部74における接続抵抗は、十分に低くなるように設計されている。
【0030】
放電用電源65は、1次電源80から供給された電力から高周波電圧を生成する発振器81と、この発振器81の出力を変圧するトランス82とを有する電圧印加部83を備えている。電圧印加部83は、2つの出力端子84、85を有している。
【0031】
気流発生装置60の第1の電極61に接続されたケーブル配線64aは、第1の可動接触子として機能するスイッチ90によって、電圧印加部83の出力端子84に電気的に接続または遮断される。気流発生装置60の第2の電極62に接続されたケーブル配線64bは、第2の可動接触子として機能するスイッチ91によって、電圧印加部83の出力端子85に電気的に接続または遮断される。
【0032】
また、放電用電源65は、一端側が地中に埋設された接地導線100を備えている。この接地導線100は、避雷導線73とは別系統で設けられている。すなわち、接地導線100と避雷導線73とは、それぞれ独立した接地系統を構成している。なお、接地導線100の経路中には、避雷導線73と同様に、ブラシや放電ギャップなどによって電気的に接続される部分を含んでもよい。
【0033】
また、放電用電源65は、この接地導線100に、気流発生装置60の第1の電極または第2の電極を選択的に電気的に接続可能な第3の可動接触子として機能するスイッチ92を備えている。すなわち、接地導線100に電気的に接続されたスイッチ92は、ケーブル配線64aまたはケーブル配線64bに切り替えて電気的に接続可能に設けられている。
【0034】
上記した構成に加えて風力発電システム10は、雷雲の接近に係る情報を検知する雷雲検知装置(図示しない)をさらに備えている。雷雲検知装置として、例えば、雷雲の接近に伴うレセプタ70などの電圧上昇に係る情報を検知する電圧検知装置を使用することができる。電圧検知装置としては、例えば電圧計を使用することができ、例えば、避雷導線73(ケーブル配線71または引き下げ導線72)の電圧を測定する。すなわち、雷雲の接近に伴うレセプタ70の電圧上昇に係る情報として、電圧計からの出力が挙げられる。
【0035】
また、雷雲検知装置として、例えば、先駆放電に伴ってレセプタ70に生じる電流に係る情報を検知する電流検知装置を使用することができる。電流検知装置としては、例えば電流計を使用することができ、例えば、避雷導線73(ケーブル配線71または引き下げ導線72)の電流を測定する。すなわち、先駆放電に伴ってレセプタ70に生じる電流に係る情報として、電流計からの出力が挙げられる。
【0036】
また、雷雲検知装置として、例えば、外部から発せられた、雷雲の接近に係る情報を無線または有線により受信する受信装置を使用することができる。受信装置としては、例えば、無線LANや有線ネットワーク機能を有するコンピュータなどを使用することができる。受信装置によって受信された落雷予報などに係る情報から、風車設置地域の落雷確率などの情報を選定し、その確率が予め設定された閾値を超えていると判断することによって雷雲の接近に係る情報を特定する。そして、雷雲の接近に係る情報を特定した場合、受信装置からそれに伴う所定の信号を出力する。
【0037】
雷雲検知装置は、各スイッチ90、91、92と電気的に接続され、上記した雷雲検知装置からの出力信号に基づいて、直接的に各スイッチ90、91、92を作動するように構成してもよい。
【0038】
また、風力発電システム10は、雷雲検知装置からの情報に基づいて、放電用電源65の各スイッチ90、91、92を制御する制御装置を備えてもよい。この制御装置は、例えば、演算装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)などから主に構成され、CPUでは、ROMやRAMに格納されたプログラムやデータなどを用いて各種の演算処理などを実行する。この制御装置が実行する処理は、例えばコンピュータ装置などで実現される。
【0039】
制御装置は、雷雲検知装置、各スイッチ90、91、92と電気信号の出入力が可能に接続されている。なお、制御装置は、電圧印加部83の出力を制御して、気流発生装置60の第1の電極61と第2の電極62との間に印加する電圧を制御する機能を備えてもよい。
【0040】
制御装置は、雷雲検知装置から出力された、例えば、出力信号などの情報や、予め設定された、雷雲検知装置から出力された情報に対応する各スイッチ90、91、92の状態に係る情報などに基づいて、各スイッチ90、91、92を制御する。スイッチ90、91、92の状態に係る情報としては、例えば、スイッチ90、91に対しては、ON状態、OFF状態、スイッチ92に対しては、ケーブル配線64aまたはケーブル配線64bとの接続状態などの情報が挙げられる。雷雲検知装置から出力された情報に対応するこれらの情報は、例えば、制御装置のメモリに記憶させてもよい。
【0041】
また、制御装置と電気信号の出入力が可能に接続された記憶装置などを別個に備え、この記憶装置に、雷雲検知装置から出力された情報に対応する各スイッチ90、91、92の状態に係る情報などを記憶させてもよい。
【0042】
例えば、雷雲検知装置が、前述した避雷導線73(ケーブル配線71または引き下げ導線72)の電圧を測定する電圧計で構成される場合には、制御装置は、電圧計から出力された信号と、メモリなどに記憶された、予め設定された、電圧計から出力された信号に対応する各スイッチ90、91、92の状態に係る情報とに基づいて、各スイッチ90、91、92を制御する。
【0043】
予め設定された、電圧計から出力された信号に対応する各スイッチ90、91、92の状態に係る情報として、例えば、電圧計からの出力の閾値や、この閾値以下またはこの閾値を超えた場合における各スイッチ90、91、92の状態などが記憶されている。例えば、制御装置は、記憶された情報に基づいて、出力が閾値を超えたと判定した場合には、後述する、雷雲の接近時における電気配線系統となるように各スイッチ90、91、92を制御する。
【0044】
雷雲検知装置が、前述した避雷導線73(ケーブル配線71または引き下げ導線72)の電流を測定する電流計で構成される場合には、予め設定された、電流計から出力された信号に対応する各スイッチ90、91、92の状態に係る情報として、例えば、電流計からの出力の閾値や、この閾値以下またはこの閾値を超えた場合における各スイッチ90、91、92の状態などが記憶されている。例えば、制御装置は、記憶された情報に基づいて、出力が閾値を超えたと判定した場合には、後述する、雷雲の接近時における電気配線系統となるように各スイッチ90、91、92を制御する。
【0045】
雷雲検知装置が、前述した受信装置で構成される場合には、前述したように、受信装置によって受信された落雷確率に係る情報などから、制御装置は、雷雲の接近に係る情報を特定する。そして、雷雲の接近に係る情報を特定した場合には、制御装置は、後述する、雷雲の接近時における電気配線系統となるように各スイッチ90、91、92を制御する。
【0046】
次に、風力発電システム10の動作について説明する。
【0047】
(通常運転時)
まず、雷雲検知装置によって雷雲の接近に係る情報が検知されていない通常運転時の動作について説明する。
【0048】
図5は、実施の形態の風力発電システム10の通常運転時における電気配線系統を模式的に示す図である。
【0049】
風力発電システム10が通常運転されている場合、図5に示すように、スイッチ90をON状態にして、ケーブル配線64aを電圧印加部83の出力端子84に電気的に接続し、スイッチ91をON状態にして、ケーブル配線64bを電圧印加部83の出力端子85に電気的に接続する。すなわち、気流発生装置60の第1の電極61が電圧印加部83の出力端子84と、第2の電極62が電圧印加部83の出力端子85と電気的に接続された状態となり、気流発生装置60を作動することが可能な状態となる。
【0050】
また、接地導線100に電気的に接続されたスイッチ92をケーブル配線64aに電気的に接続する。すなわち、気流発生装置60の第1の電極61が接地導線100と電気的に接続された状態となる。
【0051】
上記した電気配線系統の状態において、1次電源80から電力を供給し、発振器81から高周波電圧が発振され、第1の電極61と第2の電極62との間が一定の閾値以上の電位差となると、第1の電極61の近傍に放電が誘起される。このとき生成した電子やイオンは、電界によって駆動され、それらが気体分子と衝突することで運動量が気体分子に移行する。これによって、第1の電極61付近にプラズマ誘起流が発生する。
【0052】
例えば、雨天や汚損などによって、樹脂などの絶縁材料からなる翼42の絶縁抵抗が低下するような場合でも、第1の電極61は接地となっているため、第1の電極61から翼42の表面を通じて地上設備に漏電することはない。そのため、安全性に優れた運転を行うことができる。
【0053】
(雷雲の接近時)
次に、雷雲検知装置によって雷雲の接近に係る情報が検知された雷雲の接近時の動作について説明する。
【0054】
図6は、実施の形態の風力発電システム10の雷雲の接近時における電気配線系統を模式的に示す図である。
【0055】
雷雲検知装置によって雷雲の接近に係る情報が検知された場合、図6に示すように、スイッチ90をOFF状態にして、ケーブル配線64aと電圧印加部83の出力端子84とを電気的に遮断し、スイッチ91をOFF状態にして、ケーブル配線64bと電圧印加部83の出力端子85とを電気的に遮断する。すなわち、気流発生装置60の第1の電極61が電圧印加部83の出力端子84と、第2の電極62が電圧印加部83の出力端子85と電気的に遮断された状態となる。このように、雷雲の接近時には、気流発生装置60は作動できない状態となる。
【0056】
また、接地導線100に電気的に接続されたスイッチ92をケーブル配線64bに電気的に接続する。すなわち、気流発生装置60の第2の電極62が接地導線100と電気的に接続された状態となる。
【0057】
ここで、図5に示した通常運転時における電気配線系統状態において、雷雲が接近した場合、気流発生装置60の第1の電極61は、外表面に露出した接地電極であるため、レセプタ70と同様に受雷部として作用する可能性がある。気流発生装置60の第1の電極61は、レセプタ70のような受雷を想定した構造ではないため、受雷して大電流が通流すると、電極が溶損したり、付近の誘電体を損傷する可能性がある。
【0058】
例えば、負極性の雷雲が接近した場合には、大地から正極性の電荷が供給されることで、レセプタ70および第1の電極61が正極性の誘導電位を有する。そのため、第1の電極61のエッジ部から正極性のストリーマが進展する先駆放電が発生し、これによって誘雷の確率が増加する。
【0059】
そこで、雷雲が接近した場合に、図6に示した電気配線系統状態にすることで、第2の電極62を接地電位にすることができる。この場合において、負極性の雷雲が接近したときには、大地から正極性の電荷が供給されることで、レセプタ70および第2の電極62が正極性の誘導電位を有する。一方、第1の電極61には、誘電体63の静電容量によって定まる負極性の電荷が誘導される。その結果、雷雲で生じる第1の電極61付近の電界が弱められ、第1の電極61付近への誘雷確率が低下する。
【0060】
レセプタ70においては、正極性の誘導電位を有するため、先駆放電を発生し、誘雷確率が上昇する。このように、誘雷しやすいレセプタ70と、誘雷し難い第1の電極61とを翼面上に存在させることができるため、落雷はレセプタ70に発生する。これによって、第1の電極61への落雷の発生を防止することができ、落雷による第1の電極61の溶損などを防止することができる。
【0061】
上記したように、実施の形態の風力発電システム10によれば、雷雲の接近に係る情報が検知された場合に、電気配線系統を、通常運転時における電気配線系統状態から雷雲の接近時における電気配線系統状態に切り替えることにより、気流発生装置60への雷撃や大電流の通流を防止することができる。そのため、優れた安全性を有する風力発電システムを提供することができる。
【0062】
(落雷試験)
ここでは、風車翼のスケールモデルを用いて、前述した、通常運転時における電気配線系統状態(図5)および雷雲の接近時における電気配線系統状態(図6)において落雷試験を行った。
【0063】
翼42の翼根部から翼端部に向かう翼幅方向の長さが0.15mのモデル翼を使用した。なお、このモデル翼の翼弦長は、最大で0.02mであった。モデル翼は、FRP(Fiber Reinforced Plastics)で構成されたものを使用した。
【0064】
モデル翼の前縁部に、翼幅方向に、2個の気流発生装置60を設置し、モデル翼の先端部にレセプタ70を設置した。モデル翼の表面に設けられたレセプタ70は、直径が20mmの円形状のものを使用した。
【0065】
落雷試験は、モデル翼を床面から高さが1mの位置に設置し、モデル翼の上方に設置した荷電ロッドに負極性雷インパルス電圧を印加し、気流発生装置60の第1の電極61、レセプタ70、地上のそれぞれに落雷する回数を調べた。落雷試験は、通常運転時における電気配線系統状態(図5)および雷雲の接近時における電気配線系統状態(図6)においてそれぞれ繰り返して実施された。
【0066】
図7は、落雷試験の結果を示す図である。図7に示すように、雷雲の接近時における電気配線系統状態(図6)において、第1の電極61では落雷は起こらなかった。また、図7に示すように、雷雲の接近時における電気配線系統状態(図6)では、通常運転時における電気配線系統状態(図5)に比べて、第1の電極61への落雷回数は少ないことが明らかとなった。この結果から、雷雲の接近時における電気配線系統状態(図6)とすることで、第1の電極61への落雷の発生を防止することができることがわかった。
【0067】
以上説明した実施形態によれば、翼に気流発生装置を備えた風車において、気流発生装置への雷撃や大電流の通流を防止することができ、優れた安全性を有することが可能となる。
【0068】
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
【符号の説明】
【0069】
10…風力発電システム、20…地面、30…タワー、31…ナセル、40…ロータ、41…ハブ、42…翼、42a…背側、42b…先端部、50…風向風速計、60…気流発生装置、61…第1の電極、62…第2の電極、63…誘電体、64a、64b…ケーブル配線、65…放電用電源、70…レセプタ、71…ケーブル配線、72…引き下げ導線、73…避雷導線、74…接続部、80…1次電源、81…発振器、82…トランス、83…電圧印加部、84,85…出力端子、90,91,92…スイッチ、100…接地導線。

【特許請求の範囲】
【請求項1】
翼に設けられた受雷部、および前記受雷部から前記翼の内部、風車本体を介して地中に亘って設けられ、前記受雷部に落雷した雷電流を地中に導く避雷導線を備えた落雷保護装置と、
前記翼に設けられた第1の電極と、当該第1の電極と誘電体を介して離間され、前記誘電体に埋設された第2の電極とを備えた気流発生装置と、
前記気流発生装置の前記第1の電極と前記第2の電極との間に電圧を印加可能であり、前記第1の電極を電圧印加部の一方の端子または接地導線に電気的に接続可能であり、前記第2の電極を電圧印加部の他方の端子または接地導線に電気的に接続可能である電圧印加機構と、
雷雲の接近に係る情報を検知する雷雲検知装置と
を具備し、
前記雷雲検知装置によって雷雲の接近に係る情報が検知された場合、前記第2の電極が前記接地導線に電気的に接続され、かつ前記第1の電極および前記第2の電極と前記電圧印加部の端子との電気的な接続が遮断されることを特徴とする風力発電システム。
【請求項2】
前記電圧印加機構は、前記第1の電極を電圧印加部の一方の端子に電気的に接続可能な第1の可動接触子、前記第2の電極を電圧印加部の他方の端子に電気的に接続可能な第2の可動接触子、および前記第1の電極または前記第2の電極を選択的に接地導線に電気的に接続可能な第3の可動接触子を備えることを特徴とする請求項1記載の風力発電システム。
【請求項3】
前記雷雲検知装置によって雷雲の接近に係る情報が検知されていない場合、
前記第1の電極が、前記第1の可動接触子によって前記電圧印加部の一方の端子に電気的に接続され、
前記第2の電極が、前記第2の可動接触子によって前記電圧印加部の他方の端子に電気的に接続され、
前記第1の電極が、前記第3の可動接触子によって前記接地導線に電気的に接続されることを特徴とする請求項2記載の風力発電システム。
【請求項4】
前記雷雲検知装置が、雷雲の接近に伴う前記受雷部の電圧上昇に係る情報を検知する電圧検知装置を備えることを特徴とする請求項1乃至3のいずれかに記載の風力発電システム。
【請求項5】
前記雷雲検知装置が、先駆放電に伴って前記受雷部に生じる電流に係る情報を検知する電流検知装置を備えることを特徴とする請求項1乃至3のいずれかに記載の風力発電システム。
【請求項6】
前記雷雲検知装置が、外部から発せられた、雷雲の接近に係る情報を無線または有線により受信する受信装置を備えることを特徴とする請求項1乃至3のいずれかに記載の風力発電システム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2012−255431(P2012−255431A)
【公開日】平成24年12月27日(2012.12.27)
【国際特許分類】
【出願番号】特願2012−70189(P2012−70189)
【出願日】平成24年3月26日(2012.3.26)
【国等の委託研究の成果に係る記載事項】(出願人による申告)国等の委託研究の成果に係る特許出願(平成22年度独立行政法人新エネルギー・産業技術総合開発機構「省エネルギー革新技術開発事業/先導研究/動的流れ場に対するプラズマ気流制御最適化の研究開発」業務委託、産業技術力強化法第19条の適用を受ける特許出願)
【出願人】(000003078)株式会社東芝 (54,554)
【Fターム(参考)】