説明

風力発電装置管理システム

【課題】様々な個所に設置される各風力発電装置の異常を、遠隔地にて正確に判断することが可能な風力発電装置管理システムを提供する。
【解決手段】各々が異なる箇所に設置された複数の風力発電装置1を管理する管理装置1000が、各風力発電装置1から送信される風力状況データに基づいてそれら風力発電装置1周辺の風力状態を特定し、特定された風力状態において、各風力発電装置1から送信される稼動状態データが正常なものであるか否かを判定し、出力する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、各々が異なる箇所に設置された複数の風力発電装置が、通信手段を介して管理装置と通信可能に接続される形で構成された風力発電装置管理システムに関する。
【背景技術】
【0002】
近年、地球環境の保全のため、再生可能エネルギーを用いた発電方法として、二酸化炭素等の温室効果ガスを排出しない風力発電に注目が集まっている(例えば特許文献1等)。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2004−239113号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
ところが、様々な個所に設置される風力発電装置において、それらを個別に管理することは非効率であるため、全ての風力発電装置を一元管理するシステムが望まれている。しかしながら、風力発電装置の異常や故障は、実際に現地に行って個別に確認して判断する必要があり、遠隔地でそうした判断をすることは難しい。
【0005】
本発明の課題は、様々な個所に設置される各風力発電装置の異常を、遠隔地にて正確に判断することが可能な風力発電装置管理システムを提供することにある。
【課題を解決するための手段および発明の効果】
【0006】
上記課題を解決するために、本発明の風力発電装置管理システムは、
各々が異なる箇所に設置された複数の風力発電装置が、通信手段を介して管理装置と通信可能に接続されて構成された風力発電装置管理システムであって、
各風力発電装置は、
自身の予め定められた稼働状態を示す稼動状態データを所定周期で繰り返し取得する稼働状態取得手段と、
取得した稼働状態データを、通信手段を介して管理装置に逐次送信する稼動状態送信手段と、
自身に設けられた風車周辺の風力状態を示す風力状態データを所定周期で繰り返し取得する風力状態取得手段と、
取得した風力状態データを、通信手段を介して管理装置に逐次送信する風力状態送信手段と、を備え、
管理装置は、
各風力発電装置から稼働状態データを、通信手段を介して逐次受信する稼働状態受信手段と、
各風力発電装置から風力状態データを、通信手段を介して逐次受信する風力状態受信手段と、
受信した稼働状態データが、受信した風力状態データに基づいて決定される正常範囲内にあるか否かを逐次判定し、正常範囲内にある場合にはそれら稼働状態データ及び風力状態データの送信元の風力発電装置を正常、正常範囲内に無い場合には当該風力発電装置を異常として逐次特定する異常特定手段と、
異常特定手段による風力発電装置毎の正常/異常の特定結果を出力する出力手段と、
を備えることを特徴とする。
【0007】
上記本発明の構成によれば、各風力発電装置が、自身の稼働状態を示すデータと共に自身周辺の風力状態を示すデータを管理装置に送信することにより、管理装置において、各風力発電装置の稼働状態がそれぞれの周辺の風力状況に見合うものであるか否かを判断し、風力状況に見合う稼働状態の風力発電装置を正常、風力状況に見合わない稼働状態の風力発電装置を異常(故障)と判断し、その判断結果を出力することができる。これにより、様々な個所に設けられた風力発電装置の異常を、遠隔地にて正確に判断することが可能となる。また、風力発電装置の稼働状態を、周辺の風力状況に基づいて判断するので、より正確な判断が可能となる。
【0008】
本発明における管理装置は、受信した風力状態データに基づいて、その送信元である風力発電装置の風車周辺の風力状態を逐次特定するとともに、特定された風力状態において該風力発電装置が正常稼動中であることを規定する、稼働状態データの正常範囲を逐次決定する正常範囲決定手段を備えて構成できる。
【0009】
本発明における管理装置は、稼働状態受信手段が受信した稼働状態データと共に、異常特定手段が特定した風力発電装置の正常/異常の特定結果を、予め定められた管理データ記憶部に逐次記憶し、蓄積する記憶手段を備えて構成できる。
【0010】
本発明において、風力発電装置は、風力発電装置の風車の回転を強制停止させる強制停止手段を備えて構成できる。この場合、管理装置は、異常特定手段により異常と特定された風力発電装置に風車の回転を強制的に停止させる強制停止指令を出力し、強制停止手段による該風車の回転の強制停止を実行させる強制停止指令手段を備えて構成できる。これにより、異常状態の風力発電装置に対する強制減速や強制停止を、遠隔地より容易に行うことが可能となる。
【0011】
本発明における稼働状態データは、風力発電装置の発電量データと、風力発電装置の風車の回転速度データとのいずれか又は双方を含むことができる。発電量データに基づいて風力発電装置の発電機能の異常を判断できるし、回転速度データに基づいて風力発電装置の回転機構の異常を判断できる。
【0012】
また、本発明において、風力発電装置の風車の翼が、回転軸の回転軸線方向からの風力を受けて回転するよう該回転軸周りに2以上設けられ、該回転軸に対し径方向外向きに延出するとともに、その受風面の幅方向と回転軸の回転軸線方向とのなす角度が可変可能となる形で該回転軸に対し固定される形で構成される場合、風力発電装置は、当該角度を風力の大きさに応じて可変させる翼角度調整機構と、当該角度を翼角度として検出する翼角度検出手段と、を備えて構成することができる。そして、この場合、稼働状態データは、風力発電装置における翼角度を示す翼角度データを含むことができる。これにより、風力に応じた翼角度とするべき翼角度調整機構の異常の有無を正確に判断することができる。
【図面の簡単な説明】
【0013】
【図1】本発明の一実施形態である風力発電装置管理システムの構成を簡略的に示すブロック図。
【図2】図1の風力発電装置の構成を簡略的に示す第一のブロック図。
【図3】図1の風力発電装置の構成を簡略的に示す第二のブロック図。
【図4】図1の実施形態におけるブレーキ装置の構成を簡略的に示す模式図。
【図5】図1のメイン管理装置の構成を簡略的に示すブロック図。
【図6】図1のサブ管理装置及び個別管理装置の構成を簡略的に示すブロック図。
【図7】データ送信処理の流れを示すフローチャート。
【図8】データ収集処理の流れを示すフローチャート。
【図9】正常範囲決定処理の流れを示すフローチャート。
【図10】異常特定処理の流れを示すフローチャート。
【図11A】第一の遠隔制御処理の流れを示すフローチャート。
【図11B】第二の遠隔制御処理の流れを示すフローチャート。
【図12A】第一の強制制御処理の流れを示すフローチャート。
【図12B】第二の強制制御処理の流れを示すフローチャート。
【図13】地球温暖化気体排出権価値算出処理の流れを示すフローチャート。
【図14】出力処理の流れを示すフローチャート。
【図15】表示出力の一例を示す図。
【図16】図10とは異なる異常特定処理の流れを示すフローチャート。
【図17】図16の実施形態における表示出力の一例を示す図。
【図18】図2及び図3とは異なる風力発電装置の構成を簡略的に示すブロック図。
【図19】本発明の一実施形態である風力発電装置を示す斜視図。
【図20】図19の風車のブレードの斜視図。
【図21】図20のブレードの背面図。
【図22】図20のブレードの正面図。
【図23】図21のブレードの左側面図。
【図24】図21のブレードの右側面図。
【図25】図21のブレードの平面図。
【図26】図21のブレードの底面図。
【図27】図19の風力発電装置の風車部分の側面図。
【図28】図27の正面図。
【図29】図27の背面図。
【図30】図27の後方側斜視図。
【図31】図27の前方側斜視図。
【図32】図27の側面断面図(側面透視図)。
【図33】図27の風導ケース部分の底面透視図。
【図34】図19の風力発電装置であって、ブレード及びハブを受風方向上流側から見た図。
【図35】図34の部分拡大図と、それを平面視した図。
【図36】図34の風車を有した風力発電装置の部分断面図であって、錘部材が径方向内側に位置した状態を示す図。
【図37】図36の部分拡大図。
【図38】図34の風車を有した風力発電装置の部分断面図であって、錘部材が径方向外側に位置した状態を示す図。
【図39】図38の部分拡大図。
【図40】図37の状態を簡略的に示した模式図。
【図41】図37を平面視した状態を簡略的に示した模式図。
【図42】図39の状態を簡略的に示した模式図。
【図43】図39を平面視した状態を簡略的に示した模式図。
【図44】図34の実施形態におけるブレードの回転動作を簡略的に説明する模式図。
【図45】図34の風力発電装置の電気的構成を簡略的に示すブロック図。
【図46A】図45の風力発電装置の出力部の電気的構成の一例を簡略的に示すブロック図。
【図46B】図46Aの変形例を簡略的に示すブロック図。
【図47】図19の風力発電装置における支柱部分の拡大断面図。
【図48】図19の風力発電装置における発電ケース体内部を拡大した拡大断面図。
【図49】図20のブレードの変形例を示す平面図。
【図50】図49の底面図。
【図51】図19とは異なる本発明の実施形態である風力発電装置であって、ブレード及びハブを受風方向上流側から見た図。
【図52】図51の部分拡大図と、それを平面視した図。
【図53】図51の風車を有した風力発電装置の部分断面図であって、錘部材が径方向内側に位置した状態を簡略的に示した模式図。
【図54】図53を平面視した状態を簡略的に示した模式図。
【図55】図51の風車を有した風力発電装置の部分断面図であって、錘部材が径方向外側に位置した状態を簡略的に示した模式図。
【図56】図55を平面視した状態を簡略的に示した模式図。
【図57】図51に示す実施形態におけるブレードの回転動作を簡略的に説明する模式図。
【図58】図57に続く図。
【図59】図48に示す発電ケース体の変形例であり、発電ケース体内部を拡大した拡大断面図。
【図60】図35及び図52とは異なる角度変更機構を説明する図。
【図61】図35、図52及び図60とは異なる角度変更機構を説明する図。
【発明を実施するための形態】
【0014】
以下、本発明の風力発電装置管理システムの一実施形態を、図面を参照して説明する。
【0015】
本実施形態の風力発電装置管理システム5000は、図1に示すように、各々が異なる箇所に設置された複数の風力発電装置1が、インターネット等の通信手段2000を介して、管理装置1000と通信可能に接続されて構成される。
【0016】
各風力発電装置1は、図2及び図3に示すように、CPU,ROM,RAM等を有した制御部(制御装置)3000に対し、自身の予め定められた稼働状態を示す稼動状態データを所定周期で繰り返し取得する稼働状態取得部(稼働状態取得手段)701,703,704,705と、自身に設けられた風車3の周辺の風力状態を示す風力状態データを所定周期で繰り返し取得する風力状態取得部(風力状態取得手段)702と、を備えて構成される。制御部3000は、送受信部(通信インターフェース)800と接続しており、これを介してインターネット等の通信手段2000に接続され、管理装置1000とのデータの授受が可能となっている。
【0017】
本実施形態における稼働状態データは、風力発電装置1の発電機500の発電量データと、風力発電装置1の風車3の回転速度データと、風力発電装置1のブレード30の後述する翼角度データと、風力発電装置1の風車3もしくは風車3のブレード30の撮影画像データであるが、他の稼働状態を示すデータを含んでもよいし、いずれかを省略してもよい。
【0018】
稼働状態取得部701は、風力発電装置1の風車3の回転速度を計測する周知の回転センサ(回転速度検出手段)であり、ここでは、風車3と一体回転する回転軸の回転を検出するロータリーエンコーダーである。制御部3000は、ロータリーエンコーダー701からの出力パルスに基づいて回転軸2(風車3)の回転速度を特定し、その特定結果である回転速度データを稼働状況データとして管理装置1000に送信する。
【0019】
稼働状態取得部703は、風力発電装置1の発電機500からの発電出力を検出する発電出力検出手段であり、ここでは発電電流を検出する電流計と、発電電圧を検出する電圧計である。制御部3000は、これらからの出力信号に基づいて予め定められた発電量(発電電流、発電電圧、発電電力等)を特定するとともに、その特定結果である発電量データを稼働状況データとして管理装置1000に送信する。
【0020】
稼働状態取得部704は、風力発電装置1の風車3の各ブレード30の、後述する翼角度を検出する角度センサ(翼角度検出手段)であり、ここでは、各ブレード30の後述するブレード固定部33に設けられたポテンショメータである。制御部3000は、ポテンショメータ704からの出力信号に基づいて翼角度を特定し、その特定結果である翼角度データを稼働状況データとして管理装置1000に送信する。ここで言う翼角度とは、ブレード30の受風面の幅方向と回転軸の回転軸線方向とのなす角度であり、本実施形態においては、当該角度を風力の大きさに応じて可変させる翼角度調整機構300を備えている。
【0021】
稼働状態取得部705は、風力発電装置1の風車3もしくは風車3のブレード30の外観の動画を撮影するカメラ(撮影手段)であり、ここでは、風力発電装置1の支柱110に取り付けられ、風車3のブレード30を撮影する。制御部3000は、撮影された撮影画像データ(ここでは動画データ)を取得し、これを稼働状況データとして管理装置1000に送信する。
【0022】
風速状態取得部702は、風力発電装置1の風車3周辺の風力を検出する風力検出手段であり、ここでは風車3周辺の風速を計測する周知の風速計と風車3周辺の風向きを計測する風向計である。制御部3000は、これらからの出力信号に基づいて予め定められた風力状態(風速、風向き等)を特定するとともに、その特定結果を風力状態データとして管理装置1000に送信する。
【0023】
また、制御部3000は、所定の記憶部(例えばROM)に、上述のようにして得られたデータを管理装置1000に送信するデータ送信プログラム3000aと、外部からの指令に基づいて風力発電装置を強制停止する強制制御プログラム3000bとを記憶している。
【0024】
風力発電装置1は、外部の管理装置1000からの強制停止指令に基づいて風車3の回転を強制停止させるブレーキ装置(強制停止手段)600を有する。ここでのブレーキ装置600には、回転軸に対しブレーキをかける周知の装置を用いることができるが、ここでは風力発電装置1の風車3の回転を強制減速状態とする減速機構(減速手段)610と、所定回転速度を下回った後、もしくは停止した後に、回転軸2を停止状態でロック保持するロック機構(停止ロック手段)620とを備える。ここでの減速機構610は、図4(a)に示すように、風車3の予め定められた回転方向とは逆向きの回転力を、ギア部601を介して回転軸2に付与する駆動部(モータ)602を有して構成される。他方、ロック機構620は、図4(b)に示すように、駆動部(モータ)622を駆動して、ロック部材621をロック位置(図4(b)の右)とアンロック位置(図4(b)の左)との間で進退可能に構成されており、ロック部材621は、回転軸2が所定回転速度を下回ったときにアンロック位置へと移行する。ロック部材621は、アンロック位置において、回転軸2の軸方向に対し垂直に貫通する貫通孔629に挿通されて一体に回転する状態となるが、その先端621aが、回転軸2の回転に対して非連動となる形でナセル200側と一体に固定された位置決め部材628に対し、回転方向側で接触するため、回転が規制され。これにより回転軸2の回転も規制される。
【0025】
管理装置1000は、図1に示すように、全ての風力発電装置1を管理・監視対象とするメイン管理装置1000Aと、全ての風力発電装置1のうちの一部を管理・監視対象とするサブ管理装置1000Bと、予め定められた1つの風力発電装置1のみを管理・監視対象とする個別管理装置(子機)1000Cとを有する。管理装置1000Aは、全ての風力発電装置1から稼働状態データを受信してそれら風力発電装置1の正常/異常を監視する一方、サブ管理装置1000Bは、予め定められたエリア内に設けられた複数の風力発電装置1から稼働状態データを受信してそれら風力発電装置1の正常/異常を監視する。管理装置1000Cは、予め定められた1つの風力発電装置1に対し、通信手段2000を介することなく、ローカルネットワーク1000cを介して接続され、当該風力発電装置1のみの正常/異常を監視する。図1では、破線によって各管理装置1000A,1000B,1000Cの管理・監視対象が示されている。
【0026】
これら管理装置1000(1000A〜1000C)は、図5及び図6に示すように、CPU,ROM,RAM等を備えて構成される制御部1001に対し、キーボード、マウス、その他のポインティングデバイス等からなる入力部1002、液晶ディスプレイ等の表示部1003、スピーカ等の音声出力部1004、ハードディスクドライブ(HDD)で構成された記憶装置1005、ネットワーク接続のための送受信部(通信インターフェース)1006等が接続する構成を有したサーバ装置であって、通信インターフェース1006を介して、インターネット等の通信手段2000と接続している。
【0027】
記憶装置1005には、制御部1001が実行する種々のプログラムと共に、それらプログラムの実行に必要な種々のデータが記憶されている。具体的にいえば、図5及び図6に示すように、記憶装置1005には、管理対象として予め定められている各風力発電装置1から送信されてくる各種のデータ(稼働状態データ及び風力状態データ)を、通信手段2000を介して逐次受信して、記憶装置1005に記憶・蓄積するデータ収集プログラム(稼働状態受信手段及び風力状態受信手段)1005aと、逐次受信する風力状態データに基づいて、その送信元である風力発電装置1の風車3周辺の風力状態を逐次特定し、特定された風力状態において該風力発電装置1が正常稼動中であることを規定する、稼働状態データの正常範囲を逐次決定する正常範囲決定プログラム(正常範囲決定手段)1005bと、逐次受信する稼働状態データが、対応する風力発電装置1の正常範囲内にあるか否かを逐次判定し、正常範囲内にある場合を正常、正常範囲内に無い場合を異常として逐次特定する異常特定プログラム(異常特定手段)1005cと、特定された風力発電装置1毎の正常/異常の結果を出力する出力プログラム(出力手段)100eと、が記憶されている。
【0028】
また、記憶装置1005には、図5及び図6に示すように、管理対象として予め定められている風力発電装置1から受信した稼働状態データに含まれる発電量データから、各風力発電装置1における地球温暖化気体(ここでは二酸化炭素であるが、該当する他の気体であってもよい)の排出量の削減量をそれぞれ換算する地球温暖化気体削減量算出手段と、その削減量の累積値を風力発電装置1毎に記憶装置1005(地球温暖化気体削減量記憶部)に記憶・蓄積するとともに(削減量地球温暖化気体削減量記憶手段)と、当該累積値から地球温暖化気体の排出権価値を風力発電装置1毎に算出し(地球温暖化気体排出権価値算出手段)、その排出権価値を風力発電装置1毎に記憶装置1005(排出権価値記憶部)に記憶する排出権価値算出プログラム1005dを記憶している。出力プログラム(出力手段)100eは、風力発電装置1毎の正常/異常の結果のみならず、管理対象とされた風力発電装置1毎の、もしくは全風力発電装置1の、もしくは予め定められた複数の風力発電装置1からなる風力発電装置群の地球温暖化気体の排出権価値も出力する(排出権価値出力手段)。
【0029】
地球温暖化気体(ここでは二酸化炭素)の排出量の削減量は、再生可能エネルギーを用いた発電による周知の地球温暖化気体排出削減量(ここでは二酸化炭素排出削減量)の計測・算出方法に従い算出する。即ち、再生可能エネルギーである風力を用いる風力発電の場合、一般に消費される化石燃料量はゼロであるが、従来の化石燃料を用いた発電の代わりに風力による発電を行ったと考えれば、どれだけの消費化石燃料を削減することができたかを算出することが可能である。このため、まず、再生可能エネルギーを用いた発電により出力された電力量を計測し、所定期間における累積出力電力量を累積発電量とする。次に、風力発電により得られた累積発電量に所定の係数を掛けることによって、従来の化石燃料を用いた発電により、同量の発電を行う場合に必要な化石燃料量を算出する。そして、算出した化石燃料量を、従来であれば必要であった化石燃料の未使用量ととらえ、この未使用量を、ここでは二酸化炭素発生量に換算して、二酸化炭素の排出量の削減量(二酸化炭素排出削減量)とする。この換算は、消費化石燃料の未使用量を、その化石燃料を燃焼した場合に発生する理論上の二酸化炭素量に変換することにより行うことができる。具体的には、消費化石燃料の未使用量に所定の係数を乗じる形で、二酸化炭素排出削減量を算出する。もちろん、このような理論上の二酸化炭素量のみならず、実験値等にもとづき調整するようにしてもよい。
【0030】
地球温暖化気体の排出権価値は、例えば累積発電量に所定の売買レート(例えば約6〜7円/kWh等)を掛けることによって、金銭価値として算出される。算出された二酸化炭素排出削減量に基づいて算出してもよい。
【0031】
また、記憶装置1005には、図5及び図6に示すように、管理対象として予め定められている風力発電装置1毎に、受信した稼働状態データ及び風力状態データといった受信データ1005fが記憶されるとともに、それら受信データ1005fに基づいて特定された風力発電装置1の正常/異常の特定結果や、算出された二酸化炭素削減量及び排出権価値等の出力用データ1005gとが記憶されている。なお、本実施形態においては、受信データ1005fに後述する時刻情報が対応付けて記憶されている。
【0032】
ただし、メイン管理装置1000Aの記憶装置1005には、図5に示すように、異常特定プログラム(異常特定手段)1005cにより異常と特定された風力発電装置1の制御部3000に対し、風車3の強制停止指令を出力し、ブレーキ装置600による風車3の強制停止を実行させる遠隔制御プログラム(強制停止指令手段)1000hが記憶されているが、他の管理装置1000B,1000Cには、図6に示すように記憶されていない。
【0033】
各風力発電装置1の制御部3000が実行するデータ送信プログラム3000aについて、図7を用いて説明する。
【0034】
データ送信プログラム3000aが実行されると、制御部3000は、所定周期(例えば1秒)の到来に伴い(S1:Yes)、取得部701〜705から受信する検出信号に基づいて、回転速度データ、発電量データ、翼角度データ、及び撮影画像データといった稼働状況データや、風力状態(風速、風向き等)を示す風力状態データを所定周期(例えば1秒)で算出(生成)し、制御部3000内の記憶部、もしくは制御部3000と接続する外部メモリ3001に記憶する(S2)。これら算出結果は、各種のデータ毎に更新されていく形で記憶される。続いて制御部3000は、記憶された最新の稼働状況データ及び風力状態データ(記憶されている最新のデータ)を読み出し、自身が属する風力発電装置の識別情報と、現在時刻を示す時刻情報とを対応付けて(S3)、送受信部800から、送信先として予め定められている管理装置1000へと送信させる(S4)。その後、本プログラムの終了指令があった場合には終了するが(S5:Yes)、終了指令が無ければこれら(S1〜S4)が繰り返し実施される。これにより、各風力発電装置1からは、逐次(リアルタイムで)稼働状態データ及び風力状態データが、送信先に定められている管理装置1000へと送信される。
【0035】
各管理装置1000の制御部1001が実行するデータ収集プログラム1005aについて、図8を用いて説明する。
【0036】
データ収集プログラム1005aが実行されると、制御部1001は、まずは、管理対象に定められている風力発電装置1から送信される稼働状況データ及び風力状態データの受信の有無を判定する(S11)。稼働状況データ及び風力状態データの受信があった場合は、それらのデータに対応付けられている識別情報に基づいて送信元の風力発電装置1を特定し(S12)、特定された風力発電装置に対応付けた形で、それら稼働状況データ及び風力状態データを記憶装置1005に記憶する。なお、このとき記憶される稼働状況データ及び風力状態データには、上述した時刻情報が対応付けられている。その後、本プログラムの終了指令があった場合には終了するが(S14:Yes)、終了指令が無ければこれら(S11〜S13)が繰り返し実施される。これにより、各管理装置1000には、受信した稼働状態データ及び風力状態データが、送信元の風力発電装置1に対応付けられた形で、順次蓄積されていく。
【0037】
各管理装置1000の制御部1001が実行する正常範囲決定プログラム1005bについて、図9を用いて説明する。
【0038】
正常範囲決定プログラム1005bが実行されると、制御部1001は、まずは、管理対象に定められている風力発電装置1から送信される風力状態データの受信の有無を判定する(S101)。風力状態データの受信があった場合は、当該データに対応付けられている識別情報に基づいて送信元の風力発電装置1を特定し(S102)、風力状態データに基づいて風力状態(ここでは風速)を特定する(S103)。記憶装置1005には、各種の風力状態(風速)において風力発電装置1が正常に稼動しているときに得られる各種の稼動データの値(以下、基準値という)を有した正常稼動データ情報を記憶しているので、正常稼動データ情報に基づいて、特定された風力状態に対応する基準値を特定する(S104)。そして、特定された基準値が含まれる正常範囲(風力発電装置1が正常稼動中であることを規定する、稼働状態データの正常範囲)を、予め決められた演算方法(例えば基準点に対する予め定めておく誤差範囲を定めておき、その誤差範囲を正常範囲とする)により算出・決定し(S105)、決定された正常範囲により、直前に決定された正常範囲(ただし識別情報が同じもの)を上書きする形で、記憶装置1005に記憶する(S106)。なお、この処理は所定周期内で繰り返し実行される。
【0039】
各管理装置1000の制御部1001が実行する異常特定プログラム1005cについて、図10を用いて説明する。
【0040】
異常特定プログラム1005cが実行されると、制御部1001は、まずは、管理対象に定められている風力発電装置1から送信される稼動状態データの受信の有無を判定する(S201)。稼動状態データの受信があった場合は、当該データに対応付けられている識別情報に基づいて送信元の風力発電装置1を特定するとともに(S202)、当該稼動状態データが、記憶装置1005に記憶されている最新の正常範囲内にあるか否かを判定する(S203)。そして、制御部1001は、正常範囲内にある場合を正常と特定し(S205)、正常範囲内に無い場合を異常として特定して(S207)、その特定結果により、直前に特定された結果(ただし識別情報が同じもの)を上書きする形で、記憶装置1005に記憶する(S206)。この処理は所定周期内で繰り返し実行される。
【0041】
なお、この処理は、各種の稼動状態データ全てに対しそれぞれ実行され、それら全てが正常と判定された場合に、その風力発電装置は正常と特定され、いずれか1つでも異常と判定された場合には、その風力発電装置は異常と特定される。記憶装置1005には、異常特定プログラム1005cにより特定された各稼動状態データ毎の異常/正常の特定結果が記憶される一方で、出力用データ1005gとして、それら稼動状態データの異常/正常の特定結果に基づいて特定された、各風力発電装置1の正常/異常の特定結果が記憶される。
【0042】
メイン管理装置1000Aの制御部1001のみが実行する第一の遠隔制御プログラム1005cについて、図11Aを用いて説明する。
【0043】
第一の遠隔制御プログラム1005cが実行されると、制御部1001は、まずは、管理対象に定められている風力発電装置1の異常の有無を、記憶装置1005の記憶情報(出力用データ1005g)に基づいて判定し(S401)、異常があると判定された場合には(S401:Yes)、異常の風力発電装置1を特定し(S402)、特定された風力発電装置1の制御部3000に向けて強制停止指令を送信し(S403)、本処理を終了する。なお、この処理は所定周期内で繰り返し実行される。
【0044】
各風力発電装置1の制御部3000が、メイン管理装置1000Aからの強制停止指令を受けて実行する第一の強制制御プログラム3000bについて、図12Aを用いて説明する。
【0045】
強制制御プログラム3000bが実行されると、制御部3000は、ブレーキ装置600の減速機構610(駆動部602)に対する減速用の駆動制御を開始する(S41)。続いて、回転速度検出部60の検出結果から回転軸2の回転速度を特定し(S42)、特定された回転速度が所定の回転速度まで下がった場合に(所定の低速回転状態となった場合に)、ロック機構620(駆動部622)による駆動制御し、ロック部材621をアンロック位置(図4(b)の左)からロック位置(図4(b)の右)へと移動させるロック動作を実行させ(S43)、本処理を終了する。
【0046】
メイン管理装置1000Aの制御部1001のみが実行する第二の遠隔制御プログラム1005cについて、図11Bを用いて説明する。
【0047】
第二の遠隔制御プログラム1005cは、管理装置1000の入力部1002への所定のユーザー操作(強制停止解除操作)により実行されるものである。当該ユーザー操作(強制停止解除操作)は、強制停止中の風力発電装置1の中から強制停止を解除するものを選択する形でなされるため、まずは、選択された風力発電装置1を特定する(S411)。その上で、特定された風力発電装置1が正常になったか否かを判定する(S412)。異常のままであれば、当該ユーザー操作(強制停止解除操作)が無効であることを表示部1003や音声出力部1004にて報知する(S414)。正常復帰していれば、特定された風力発電装置1の制御部3000に向けて強制停止解除指令を送信し(S413)、本処理を終了する。
【0048】
各風力発電装置1の制御部3000が、メイン管理装置1000Aからの強制停止解除指令を受けて実行する第二の強制制御プログラム3000bについて、図12Bを用いて説明する。
【0049】
強制制御プログラム3000bが実行されると、制御部3000は、ブレーキ装置600のロック機構620(駆動部622)に対する駆動制御を実行し、ロック部材621をロック位置(図4(b)の右)からアンロック位置(図4(b)の左)へと移動させるアンロック動作を実行させ(S44)、本処理を終了する。
【0050】
各管理装置1000の制御部1001が実行する排出権価値算出プログラム1005dについて、図13を用いて説明する。
【0051】
排出権価値算出プログラム1005dが実行されると、制御部1001は、まずは、管理対象に定められている風力発電装置1から送信される発電量データの受信の有無を判定する(S201)。発電量データの受信があった場合は、当該データに対応付けられている識別情報に基づいて送信元の風力発電装置1を特定するとともに(S202)、受信した発電量データを、予め定められた換算式を用いて、地球温暖化気体削減量(ここでは二酸化炭素削減量)に換算し(S303)、これまでに記憶装置1005において累積・記憶されてきた地球温暖化気体削減量の累積値に、換算された地球温暖化気体削減量を足し、その結果により、出力用データ1005gとして記憶装置1005に記憶されていた地球温暖化気体削減量の累積値を更新する(S304)。また、更新された風力発電装置1の地球温暖化気体削減量の累積値を、もしくは当該風力発電装置1の累積発電量を、予め定められた地球温暖化気体排出権の価値(価格)に換算する換算式を用いて、地球温暖化気体排出権価値(地球温暖化気体排出権価格)を算出する(S305)。そして、算出された地球温暖化気体排出権価値により、出力用データ1005gとして記憶装置1005に記憶されていた地球温暖化気体排出権価値を更新し、本処理を終了する。なお、この処理は所定周期内で繰り返し実行される。
【0052】
S304においては、発電量データの送信元の風力発電装置1に関する地球温暖化気体削減量の累積値が更新されるが、ここではさらに、管理対象に定められた全風力発電装置1の地球温暖化気体削減量の累積値を足した合計値についても、更新されるものとする。また、S305においては、発電量データの送信元の風力発電装置1に関する地球温暖化気体排出権価値が更新されるが、ここではさらに、管理対象に定められた全風力発電装置1の地球温暖化気体排出権価値を足した合計値についても、更新されるものとする。
【0053】
各管理装置1000の制御部1001が実行する出力プログラム1005eについて、図14を用いて説明する。
【0054】
出力プログラム1005eは、管理装置1000の入力部1002への所定のユーザー操作(出力実行操作)により実行されるものである。これが実行された場合、制御部1001は、まずは、管理対象に定められている風力発電装置に対し1から順に付番された識別番号Nの値を、N=1とする(S501)。次に、識別番号Nが識別番号の最後の番号Iであるか否かを判定して(S502)、Iでなければ識別番号Nの風力発電装置1が現時点で正常であるか異常であるかを、記憶装置1005の記憶情報(出力用データ1005g)に基づいて特定する(S503)。続いて、識別番号Nの風力発電装置1が現時点において発電中であるか発電停止中であるかを、記憶装置1005に記憶された記憶情報(受信データ1005fに含まれる最新の発電量データ)に基づいて特定する(S504)。さらに、識別番号Nの風力発電装置1の現時点における地球温暖化気体削減量と地球温暖化気体排出権価値とを、記憶装置1005の記憶情報(出力用データ1005g)に基づいて特定する(S505)。その上で、N=N+1とし、再びS502〜S505の処理を実行する。S502において、識別番号Nが識別番号の最後の番号Iであった場合には、これまでに特定された各風力発電装置1(N=1〜I)の特定結果(S503〜S505)を、予め定められた形式にて出力する(S506)。
【0055】
図15は、各風力発電装置1(N=1〜I)の特定結果の出力例である。ここでは、液晶等のディスプレイ上において、各風力発電装置1(N=1〜5)に対し、それぞれの発電状況として、正常に発電している場合を丸、正常であるが無風で発電していない場合を三角、異常の為に停止している場合をバツとして表示している。なお、表示部1003に、各風力発電装置1(N=1〜5)に対応するランプやLED等の光源を設け、上記三種の状態を色によって識別しているが、さらに、異常の為に停止している場合については、色以外の発光状態も異なるようにして強調してもよい。例えば、正常に発電している場合を緑や青、正常であるが無風で発電していない場合を黄、異常の為に停止している場合を赤の点滅として表示してもよい。
【0056】
さらに、図15においては、各風力発電装置1(N=1〜5)に対し、それぞれの地球温暖化気体削減量と地球温暖化気体排出権価値とが表示されるとともに、それら全ての風力発電装置1(N=1〜5)の地球温暖化気体削減量の合計、地球温暖化気体排出権価値の合計が表示されている。
【0057】
このような構成を有することで、本実施形態の風力発電装置管理システム5000は、稼動状態データである各データに対し、個別に異常/正常判定を行って、それらから各風力発電装置1に対する異常の有無を判定している。ここでは、各種の稼動状態データのうち1つでも異常と判定されたものがあれば、その風力発電装置1は異常と判断され、強制停止の処理が実行される。
【0058】
また、本実施形態においては、風力発電装置1の風車3のブレード30が、回転軸2の回転軸線2x方向からの風力を受けて回転するよう該回転軸2の周りに2以上(ここでは3)設けられている。また、ブレード30は、該回転軸2に対し径方向外向きに延出するとともに、その受風面30wの幅方向Wと回転軸2の回転軸線2x方向とのなす角度が可変可能となる形で該回転軸2に対し固定されている。さらに、風力発電装置1は、当該角度を風力の大きさに応じて可変させる後述する角度調整機構300を備えて構成されている(これらについては後述する)。さらに、本実施形態の風力発電装置1は、当該角度を翼角度として検出する翼角度検出部704を備えて構成されている。稼働状態データに、風力発電装置1における翼角度を示す翼角度データが含まれていることで、翼角度の異常、さらには角度調整機構300の異常を特定することができる。
【0059】
以下、上記実施形態に採用されている風力発電装置について、図面を参照して説明する。
【0060】
なお、上記実施形態に採用されている発電機500とは、後述する発電機5と発電機9の双方のことである。
【0061】
図19は、本発明の風力発電装置の一実施形態を示す斜視図である。図19に示す風力発電装置1の風車3には、回転軸2の軸線方向2x(図34参照)からの風力を受けて該回転軸2の周りを一定回転方向に回転するよう形成されたブレード30が、回転軸2の周りに2以上設けられている。ブレード30は、回転軸線2x周りに所定間隔おきに配置され、互いに同形状をなして形成される。
【0062】
ブレード30は、回転軸2側と先端30s側で流れの速度に差が生ずるように、受風面30wにねじりを設けた形で形成されている。具体的にいえば、ブレード30は、先端30s側ほどピッチが浅くなる形で形成されている。
【0063】
さらに、本発明のブレード30は、回転軸2に対し径方向外向きに延出するブレード本体部30Tと、ブレード本体部30Tの外側から一定回転方向とは逆側に延出するブレード先端部30Sと、を備える。つまり、ブレード30は、その外側の先端部が一定回転方向とは逆側に曲がった形状をなしており、ブレード30の回転に対し尾を引くような形状を有している。
【0064】
ブレード先端部30Sは、正面視(図22)及び背面視(図21)において、直線状に延出するブレード本体部30Tから湾曲して続くように見える形状をなす。ここでのブレード先端部30Sは、ブレード本体部30Tの外周側から滑らかに連続して続く形で形成されており、正面視(図22)及び背面視(図21)において、直線状に延びて見えるブレード本体部30Tの外周側から、弧状を描く形で湾曲したフック状に見えるように形成されている。
【0065】
また、ブレード先端部30Sは、正面視(図22)及び背面視(図21)において、ブレード本体部30Tとは逆に位置する先端30sが直線状に見える形状をなす。つまり、ブレード30において湾曲する先端が直線状にカットされたような形状をなす。そのカット面は、上記一定回転方向とは逆向きを臨むよう形成されている。ここでは、ブレード先端部30Sの先端30sが、正面視(図22)及び背面視(図21)において、回転軸2に対する径方向に直線状に延出するブレード本体部30Tの、上記一定回転方向側の端面(端縁部)30aと略平行に見える形で形成されている。
【0066】
ブレード30の背面30v(受風面30wとは逆側の面)には、ブレード本体部30Tからブレード先端部30Sにかけてブレード延出方向に沿った稜線30pを有するよう幅方向中央部に山型の凸部30Pが形成されている。また、この凸部30Pは、背面30vの幅方向Wにおいて、上記稜線30pが後述するブレード固定部33の回転支軸33Z(図35参照)側に偏った位置に設けられている。即ち、ここでの凸部30Pは、図21に示すように、上記稜線30pが背面30vの幅方向Wにおいて一定回転方向側(図21の上側)に偏った位置となるよう形成され、一定回転方向側(図21の上側)の面30p1の面幅のほうが、その逆側(図21の下側)の面30p2の面幅よりも短い。
【0067】
ブレード先端部30Sは、上記したブレード30の一定回転方向側を上側とした場合、その上面視(図25)及び下面視(図26)において、ブレード本体部30Tの延出方向に対し、ブレード本体部30の受風面側(受風方向とは逆向き)に曲がった形状とされている。この屈曲形状により、ブレード30は、その屈曲部分において風を受け止めやすくなっている。このため、受け止めた風によって効率的に回転できる。また、ブレード30の先端側(外周側)に加わる応力に対しては、ブレード先端側が受風方向にしなる形で抗することができ、高い強度を有した構造となっている。また、既に述べたように、ブレード30の先端側(外周側)が回転方向逆側に屈曲していることにより、上記応力に対し、ブレード先端側が弾性的にねじれる形でも風力に対し抗することができるから、より高い強度を有した構造となっている。
【0068】
また、図25及び図26に示すように、ブレード本体部30Tの受風面30wは、外周側(ブレード先端部側)に向かうに従い受風方向にわずかに反った形状となっており、その外周側に、受風方向逆向き(受風面側)に屈曲するブレード先端部30Sが設けられている。さらに、図23及び図24に示すように、翼先端部30Sの先端30sの外周側端縁位置は、外周側から見たときに、翼本体部30Tの受風面30wよりも、受風方向逆向き(受風面側)に突出して位置している。
【0069】
ブレード30は、内周側(根元側)の端部30tに向かうに従い厚みが増し、なおかつ外周側(先端)に向かうに従い受風面30wの面幅が減少する先細りの全体形状を有する。端部30tのさらに内周側には、ブレード固定部33により固定される固定部30Uを有する。
【0070】
ブレード30(風車3)の風上側には、図27〜図31に示すように、発電部ケース(ハウジング)を兼ねる風導ケース(ナセル)200が設けられる。風導ケース(ナセル)200の内部には発電部が格納されるとともに、風導ケース200(ケース本体201でもある)の外部には、風向フィン(風向板部)202を一体的に形成することができる。本実施形態においては、風車3の外側に筒状風洞部(ダクト)は存在せず、風車3がむき出し(露出状態)で風を受ける。風導ケース200のケース本体201は風車3の軸方向に直角な断面が、縦長楕円状又は円形状等をなす滑らかな外周面を有し、そのケース本体201の風上側の端部は先端側ほど滑らかに細くなり、先端が曲率の小さい円弧状の縦断面を有している。
【0071】
ケース本体201の外周面には、上述の風向フィン202が、風車3の軸方向に沿う方向において、そのケース本体201(風導ケース200)の外周面から外方に(例えば上向きに)突出するように形成され、風向フィン202は風車3の回転面と直角な位置関係を占める。風向フィン202はケース本体201の軸方向長さと同等か少し短い長さを有し、かつケース本体201の風上側先端近傍から漸次高さが円弧状(又は直線状)に増加する斜辺203を備えて、ケース本体201の風下側の端部近傍で最大高さとなり、その頂部から風上側へ円弧状(湾曲状)に食い込む(えぐれる)ように降下する後端部204を備え(風下側に円弧状に膨出する後端部、あるいは直線状に垂下する後端部でもよいが)、その下端がケース本体201の上部面に連続する。また風向フィン202は、その斜辺203がナイフエッジ状に先鋭に形成され、また中間部から後端部204に向かっても後端ほど先鋭となる曲面を有して、風向フィン202の風向き方向の中間部が最も厚く形成され、風上からみて、図28に示すように先鋭な三角形状をなしている。
【0072】
このような風向フィン202とはケース本体201の軸線をはさんで反対側(下側)には、風車3を所定の高さに維持する支柱(ポール)110と接続する支柱接続部208が形成され、ここに支柱110が接続される。この支柱接続部208はケース本体201の下面から下方に突出するとともに、滑らかに先細りとなり、下端部が円筒状になるように形成されて、その円筒状部に支柱110の円形断面の上端部が嵌合され、かつ、図27に示すように軸受(ベアリング)210を介して、風導ケース200及び風車3が、支柱206の軸線(垂直軸)の周りに回転自在に支持されている。その結果、風導ケース200に形成された風向フィン202が風向きに沿うように、言い換えれば風車3の回転面が常に風向きと正対するように、風車3及び風導ケース200がフリーな状態に保持されることとなる。
【0073】
図32は風車3と風導ケース200を含む部分の側面断面図(透視図)であり、風導ケース200の内部に、風車3の回転軸2が風導ケース200の中心線と同心的に配置され、また図48又は図59に示した発電ケース体100がその回転軸2に同心的に組み付けられる。さらに、図35〜図44で説明した風車3の角度調整機構300もこの風導ケース200内に収容される。
【0074】
なお、図27、図30及び図32に示すように、風車3の中心部(ブレード30の基端部)は、円形断面の筒状部212が占めるようにされ、この筒状部212の中心部から前記風導ケース200とは反対側(風下側)へコーン状に突出するコーン状中心部214が形成され、このコーン状中心部214と筒状部212(風下側へややテーパ状に縮径されたほぼ円筒部)との間には、円環状でかつ底部側ほど幅が狭くなるコーン付き環状凹部216が形成され、それらの内部にハブ22やブレード固定部33が配置されている。仮に、風向きが大きく変わって、風導ケース200の後方から風が吹くようになっても、そのコーン付き環状凹部216が後方からの風を受けて回転モーメントを生じ、その結果、フリー状態の風導ケース200及び風車3が姿勢(向き)を例えば180度近く変え、風導ケース200の先端が風上を向く(風に正対する)ように姿勢変更することができる。
【0075】
以下、風導ケース(ナセル)200内の構造について説明する。
【0076】
図34は、図19の風力発電装置1においてブレード及びハブを正面側(受風方向上流側)から見た図であり、図35はその部分拡大図である。図36は、図34の風車3を有した本実施形態の風力発電装置の部分断面図であり、図37はその部分拡大図であり、双方とも、後述する錘部材35が内方に位置している。図38は、図34の風車を有した本実施形態の風力発電装置の部分断面図であり、図39はその部分拡大図であり、双方とも、後述する錘部材35が外方に位置している。
【0077】
図34に示す風力発電装置1の風車3は、回転軸2と、回転軸2の周りに2以上設けられるブレード(翼)30と、該ブレード30を、その受風面30w(図44参照)の幅方向Wと回転軸2の回転軸線2xの方向とのなす角度(上述した翼角度)θが可変可能となる形で回転軸2に対し固定されるブレード固定部33と、該ブレード30の角度θを、風力が所定の微風レベルを下回る場合に最も風平行寄り(風平行方向X寄り:受風方向2w寄り)となる所定の初期回転用角度位置Aとして加速回転しやすいようにする第一段階(回転開始段階)と、風力が所定の微風レベルをこえた場合に風直交寄り(風直交面Y寄り)に可変してより高速回転となりやすいようにする第二段階(高回転段階)と、風力が所定の強風レベルをこえた場合に過回転が防止されるようにする第三段階(過剰回転防止段階)という風力に応じた各段階を有し、それら各段階する形で、風力に応じて自立的に可変するよう調整する角度調整機構300(図36〜図43参照)と、を備えて構成される。
【0078】
本実施形態の風車3は、図36及び図38に示すように、受風方向2wが回転軸2の回転軸線2xの方向と一致している。風車3は、該受風方向2wから風力を受けることで一定方向に回転するように配置される複数のブレード30と、それら複数のブレード30を回転軸2と一体回転可能に連結(接続)するハブ22と、を備えて構成される。
【0079】
ブレード30は、受風面30w(図44参照)が受風方向2wに対し交差するように配置されており、回転軸2の回転軸線2xの方向からの風力を受けて回転する。ブレード30は、回転軸線2xの周りに所定間隔おきに2以上設けられ(ここでは等間隔おきに3枚)、各々が回転軸2に対し径方向外向きに延出する。
【0080】
ハブ22は、図37及び図39に示すように、回転軸2に対し一体回転する形で固定される軸固定部(固定部材)221と、各ブレード30を軸固定部221に固定するブレード固定部(翼固定部)33と、を有する。これにより、各ブレード30は、対応するブレード固定部33によって軸固定部221(図34及び図35参照)に固定され、回転軸2と一体に回転する。
【0081】
軸固定部221は、図37及び図39に示すように、円盤形状をなす環状の前端部221Aと、その前端部221Aの中心部が回転軸2の受風方向下流側に延出した筒状の後端部221Bとを有した形状をなす。軸固定部221は、受風方向上流側から回転軸2が挿通されており、それらが締結部材によって互いが一体に回転するよう固定されている。
【0082】
ブレード固定部33は、図37及び図39に示すように、複数あるブレード30毎に設けられ、対応するブレード30が風力を受けた場合にその受風面30wの幅方向Wが風平行寄りとなるよう押圧力FW(図44参照)を受ける形で、なおかつ該幅方向Wと回転軸線2xの方向とのなす角度θが可変可能な形で、共通の軸固定部(固定部材)221に固定される。これにより、各ブレード固定部33は、回転軸2と一体回転可能に固定された共通の軸固定部(固定部材)221を介して回転軸2に対し一体に固定される。
【0083】
本実施形態のブレード固定部33は、ブレード30の延出方向に延びる回転支軸33Zと、該回転支軸33Zの軸線33z(図35参照)周りにおいて互いのなす角度を可変可能とされた対をなす2つの固定部33A,33Bとを有した蝶番部材である。一方の固定部33Aは、ブレード取付部材330を介した形で、ブレード30の内周側端部をなす固定部30Uに対し締結部材によって一体に固定される。他方の固定部33Bは回転軸2側の軸固定部221に対し同じく締結部材によって一体に固定され、これによりブレード固定部33全体が軸固定部221と一体回転可能となる。
【0084】
本実施形態のブレード取付部材330は、図35に示すように、ブレード30を挟持するための対をなす平行板部330A,330Aと、これらを直交する形で結合する直交結合部330Bとを有して構成され、平行板部330A,330Aに挟まれたブレード30(固定部30U)が締結部材によって一体に固定される。図35の(a)は、図34における1つのプレート固定部を拡大した部分断面図であり、図35の(b)及び(d)は図35(a)のA−A断面、図35(c)及び(e)は図35(a)のB−B断面を簡略的に示した模式図である。ただし、図35の(b)及び(d)と、図35の(c)及び(e)とではブレード30の幅方向Wと回転軸線2xの方向とのなす角度θが異なっており、図35の(b)及び(d)はブレード30が風直交寄りの状態、図35の(c)及び(e)はブレード30が風平行寄りの状態を示している。図35においては、ブレード固定部33の固定部33Aが直交結合部330Bに対し締結固定され、ブレード30が平行板部330A,330Aと共に回転支軸33Zの軸線33z周りに回転可能とされている。他方、ブレード固定部33の固定部33Bは、軸固定部221に対し締結部材によって直接固定されている。
【0085】
回転支軸33Zは、図41及び図43に示すように、ブレード30が幅方向Wにおける第一側の端部30A側を中心にして、他方の第二側の端部30B側が回転するよう、第一側の端部30A側に偏った位置に設けられている。本実施形態においては、第一側の端部30Aが軸線33zに対し内周側となり、第二側の端部30Bが外周側となっており、ここでの回転支軸33Zは、第一側の端部30A側の端縁位置よりも外側に軸線33zが位置している。
【0086】
角度調整機構300は、図44に示すように、風力が所定の微風レベルを下回る場合に、その風力を受けるブレード30を幅方向Wが最も風平行寄り(風平行方向X寄り)となる所定の初期回転用角度位置Aに保持させる初期位置保持手段(ここでは後述する延出部380と当接部390)と、翼30をその初期回転用角度位置Aに付勢保持する付勢手段34(図37及び図39参照)と、風力がその微風レベルを上回った場合に、遠心力FAが、ブレード30に加わるその風力による受風面30wへの押圧力FWと付勢手段34の付勢力FBとに打ち勝つことにより自らを外方に変位させつつブレード30が風直交寄り(風直交面Y寄り)に可変するようリンク機構37(図37及び図39参照)を介してブレード30に連結する錘部材35(図37及び図39参照)と、を備え、風力が所定の強風レベルに達した場合には、ブレード30を幅方向Wが最も風直交寄りとなる所定の高速回転用角度位置Bに到達させるとともに、風力がその強風レベルをさらに上回った場合には、その風力による押圧力FWと付勢手段34の付勢力FBとが遠心力FAに打ち勝って錘部材35を内方に押し戻すことにより、ブレード30をその幅方向Wが風平行寄りとなるよう復帰させる。
【0087】
なお、本発明において、ブレード30の受風面30wの幅方向Wが風平行寄りであるとは、ブレード30の受風面30wの幅方向Wと、受風方向2w(即ち回転軸2の回転軸線2xの方向、即ち風平行方向X)とのなす角が小さい側に寄るという意味であり、ブレード30の受風面30wの幅方向Wが風直交寄りであるとは、ブレード30の受風面30wの幅方向Wと、受風方向2wに直交する面Y(即ち回転軸2の回転軸線2xの方向に対する直交面Y)とのなす角が小さい側に寄るという意味である。
【0088】
以下、本実施形態の角度調整機構300の構成を、図40〜図43を用いて説明する。なお、本発明の角度調整機構300は、以下で述べる本実施形態の構成に限られるものではない。
【0089】
錘部材35は、複数あるブレード30毎に設けられ、図40及び図42に示すように、それぞれが回転軸2に対し一体回転可能となるよう取り付けられる。これら錘部材35は、回転軸2の回転に伴い自らも回転し、自らが受ける遠心力に応じて回転軸線2xに対する径方向内外に変位可能となるよう、リンク機構37(図37及び図39参照)を介して回転軸2と一体にあるいは連動して回転可能に設けられている。ここでは軸固定部221に対し、その径方向(対応する錘部材35が変位する径方向)と回転軸線2xとの双方に対し直交する回転軸線371y周りに回転可能な形で連結固定される。一方で、リンク機構37を介して共通の連結部材36に対し連結し、これにより、連結部材36は、錘部材35の径方向における内外への変位に応じて、回転軸2上をスライド移動するように設けられる。
【0090】
リンク機構37は、回転軸2の回転速度が大きいほど大きく作用する遠心力FAによって可動するものであり、遠心力FAが大きくなるほど錘部材35が外方に位置し、遠心力が小さくなるほど錘部材35が内方に位置するよう、予め定められた径方向範囲の中で錘部材35を変位させる。本実施形態においては、図40及び図42に示すように、互いがリンク結合する第一リンク部材371と第二リンク部材372とを有して構成される。L字形状に形成された第一リンク部材371には、一方の端部371Aに錘部材35が締結部材により一体に固定され、他方の端部371Bに第二リンク部材372の一方の端部372Aが、回転軸線2xとその径方向(対応する錘部材35が変位する径方向)との双方に直交する回転軸線372yを有する形で互いに回転可能に取り付けられる。第二リンク部材372の他方の端部372Bは、円盤形状をなした環状の連結部材36の外周部に対し、回転軸線372yと平行な回転軸線373yを有する形で互いに回転可能に取り付けられる。また、L字形状に形成された第一リンク部材371の中間に位置する屈曲部371Cには、軸固定部221に対し同じく回転軸線372yと平行な回転軸線371yを有する形で回転可能に取り付けられる。軸固定部221は、回転軸2と一体に固定されており、錘部材35の径方向の移動に伴い変位を生じることはなく、この軸固定部221を固定リンクとする形で、第一リンク部材371と第二リンク部材372とが可動する。
【0091】
付勢手段34は、ばね部材(引っ張りばね)であり、ブレード30毎に設けられ、それら付勢手段34は、図40及び図42に示すように、一方の端部が軸固定部221におけるブレード固定部33とは逆の面側にて固定されるとともに、他方の端部が、回転軸線2xの方向にて対向する連結部材36の対向面側にて固定される。本実施形態においては、軸固定部221の受風方向上流側の面に、ばね部材34の一端を固定するばね固定部221c(図35(a)参照)が設けられ、連結部材36の受風方向下流側の面に、ばね部材34の他端を固定するばね固定部36c(図37及び図39参照)が設けられている。このばね固定部221c,36cの対が予め複数個所(ここでは三箇所)に設けられていることで、ばね部材34の数を増やす形での付勢力の調整が可能となっている。
【0092】
連結部材36は、リンク機構37及び軸固定部221を介して回転軸2に対し一体回転可能とされるとともに、錘部材35の径方向内方への変位により回転軸線2xの第一側にスライド移動し(図40及び図41参照)、錘部材35の径方向外方への変位により回転軸線2xの第二側にスライド移動する(図42及び図43参照)ように、中央部にて軸受装置を介して回転軸2に対し連結している。ここでは第一側が受風方向下流側(軸固定部221側)、第二側が受風方向上流側である。
【0093】
連結部材36には、対応するブレード30を、錘部材35の径方向内方への変位による回転軸線2xの第一側へのスライド移動によって角度θが風平行寄りとなるよう直接的又は間接的に押し付け、錘部材35の径方向外方への変位による回転軸線2xの第二側へのスライド移動によって角度θが風直交寄りとなるよう直接的又は間接的に引き戻す押付部材362が、ブレード30毎に設けられている。これにより、各ブレード30の角度θは、それら錘部材35の径方向における内外への移動に伴いスライド移動する連結部材36の回転軸上の位置に応じて決定されるよう構成されており、これにより各ブレード30の角度θが互いに同期して同角度となる形で変化する。
【0094】
なお、図40〜図43における各押付部材362は、対応するブレード30を直接的に押し付ける、あるいは引き戻す構成として図示されているが、実際のところは図35に示すように、軸固定部221の円盤状の前端部221Aに形成された貫通孔221hを貫通する形で延出し、その延出先端部が、対応するブレード30に一体に固定される固定部33A(ここでは受風方向上流側の平行板部330Aに設けられた回転固定部330a)に対し、回転支軸33Zの軸線33zと平行な軸線周りに回動可能な形で固定されている。なお、ここでの押付部材362は、固定部33Aの回転支軸33Zから遠い側の第二側に対し回動可能に固定されている。
【0095】
また、錘部材35は、径方向における可動範囲があらかじめ規定されている。図42の状態は、錘部材35が径方向の最外位置にある状態であり、リンク機構37の構成上、これ以上径方向外側には変位できない。錘部材35が、この最外位置に到達したときに、ブレード30は、その受風面30wの幅方向Wが最も風直交寄りとなる所定の高速回転用角度位置Bに到達する(図44参照)。一方で、図40の状態は、錘部材35が径方向の最内位置にある状態であり、これ以上径方向内側には変位できない。ただし、これはリンク機構37の構成により規定される最内位置ではない。即ち、その最内位置は、ブレード30を含むブレード30の風平行寄りへの角度変更動作に連動して動作する可動構造体に対し、その動作方向に対向する位置に設けられた当接部材38との当接位置として規定されている。図40及び図41、さらには図44(a)の状態において、ブレード30は、風力による押圧力FWと付勢手段34による付勢力FBにより風平行寄りに付勢されるが、それらの力FW及びFBによるブレード30の風平行寄りへの角度変更動作は、ブレード30を含むブレード30の角度変更動作に連動して動作する可動構造体に対し当接部材38が当接する形で止まる。そして、その停止位置が、錘部材35の径方向における最内位置であって、同時のそのときのブレード30の位置が、初期回転用角度位置Aとなっている。
【0096】
本実施形態においては、各ブレード固定部33が、回転軸2と一体回転可能に固定された共通の固定部材を介して回転軸2に対し固定され、その固定部材が当接部材38として機能する。ここでは、軸固定部221が当接部材38である。一方、連結部材36は、ブレード30の幅方向Wが風平行寄りとなるに従い上記固定部材に接近するようリンク機構37と接続しており、上記の可動構造体39として機能する。そして、当接部材38である軸固定部221及び可動構造体39である連結部材36のいずれか又は双方には他方の部材に向けて延出する延出部380が形成されており、その延出部380における他方の部材側の先端がその他方の部材の当接部390に対し当接することにより、ブレード30が初期回転用角度位置Aに位置保持される。ここでは、連結部材36に、その中央部から軸固定部221側に向けて延出形成された筒状部又は突起部が延出部380として形成されており、その先端と軸固定部221の当接部390とが当接することにより、ブレード30は、初期回転用角度位置Aに位置保持される。なお、当接部材38の当接部及び可動構造体39の当接部のうち少なくとも一方は、ゴム等の弾性部材として設けられている。ここでは、軸固定部221の当接部390が弾性部材として設けられている。
【0097】
このような構成を有することにより、ブレード30は、図44に示すような形で動作することになる。
【0098】
即ち、風力が所定の微風レベルを下回る場合には、図44(a)に示すように、その風力によるブレード30の受風面30wへの押圧力FWと付勢手段34の付勢力FBとが遠心力FAに打ち勝って錘部材35を内方に押し付けて、ブレード30は初期回転用角度位置Aに付勢保持される。具体的にいえば、風力が所定の微風レベルを下回る場合、上述の可動構造体39が当接部材38に当接するよう上記の押圧力FWと付勢力FBとにより押し付けられ、その当接位置である初期回転用角度位置Aにブレード30が位置保持され、このときブレード30は、その受風面の幅方向が最も風平行寄りとなる。この状態は、わずかな風力でも風車3が高いトルクを得やすい状態で、風車3が回転し易い状態である。ただし、高い回転数を得難い状態である。
【0099】
風力が上記の微風レベルを上回った場合には、図44(b)に示すように、遠心力FAが増大し始めて、受風面30wへの押圧力FWと付勢手段34の付勢力FBとに打ち勝ち、FAと、FW及びFBとが釣り合う位置まで錘部材35が外方へ変位するとともに、ブレード30の角度θも初期回転用角度位置Aを離れ、風直交寄りへと位置を変える。この状態は、風直交寄りとなるほど高いトルクは得にくくなるものの、より高速回転に適した状態へ遷移している途中の状態である。
【0100】
ただし、錘部材35は最外位置が規定されている。風力が上記の微風レベルを上回った所定の強風レベルに達すると、錘部材35はその最外位置に到達し、それよりも外方へは変位できなくなる。このとき、ブレード30は、その幅方向Wが最も風直交寄りとなる所定の高速回転用角度位置Bに到達した状態となる。この状態は、風車3が最も高速で回転可能な状態である。
【0101】
風力がその強風レベルをさらに上回った場合には、図44(c)に示すように、その風力による受風面30wへの押圧力FWと付勢手段34の付勢力FBとが遠心力FAに打ち勝って、今度は錘部材35を内方に押し戻すことにより、ブレード30を幅方向Wが風平行寄りとなるように復帰させる。この状態は、風車3が徐々に高い回転数を得難い状態へと遷移している途中の状態である。ここでのブレード30は、上述の可動構造体39が当接部材38に当接する初期回転用角度位置Aまで位置復帰可能とされている。
【0102】
このように、本実施形態によれば、付勢手段34と錘部材35とリンク機構37とを有することで、微風時に回転し易いようにブレード30の角度θを風平行寄りとする第一段階と、風速が増した時に高回転となり易いようにブレード30の角度θを風直交寄りとする第二段階と、強風時に過回転が防止されるように風直交寄りから風平行寄りにブレード30が押し戻される第三段階という三段階にて、ブレード30の角度θを可変させることが可能となり、この三段階のブレード30の角度変更による自律的な回転速度制御によって、風車3は、始動性に優れ、高回転時の効率も高く、なおかつ強風時の過剰回転の抑制も可能となっている。
【0103】
以下、上記した風車3を備える風力発電装置1の構成について説明する。なお、本発明の風力発電装置1は、以下で述べる本実施形態の構成に限られるものではない。
【0104】
本実施形態の風力発電装置1は、上記のような構成を有することにより所定の受風方向2wからの風力を受けて所定の回転軸線2xの周りを一定回転方向に回転する風車3(図19,図34及び図45参照)と、上記一定回転方向において、回転軸2が増速している場合には該回転軸2と一体回転状態となって自身も増速回転し、回転軸2が減速している場合には該回転軸2から切り離されて慣性回転するように1方向クラッチ6(ワンウェイクラッチ:図48参照)を介して配置されるフライホイール7(図48参照)を備えて構成され、さらにここでは、フライホイール7と同軸をなして一体回転するよう配置されたロータ91(図48参照)を有してフライホイール7の回転に伴う該ロータ91の回転により電力を生成する発電機(発電手段)9(図45参照)を備えて構成される。
【0105】
さらにいえば、発電機9を第二の発電機とし、フライホイール7と同軸をなして一体回転するよう配置されたロータ51を有してフライホイール7の回転に伴う該ロータ51の回転により電力を生成する、第2の発電機9とは異なる第1の発電機5を備えて構成されている。ここでは、図48に示すように、フライホイール7に対する受風方向下流側に第一の発電機5が設けられ、受風方向上流側に第二の発電機9が設けられる。
【0106】
そして、本実施形態の風力発電装置1は、図46A及び図46Bに示すように、第1の発電機5と第2の発電機9により生成された双方の電力入力を受け、それらを合わせて外部出力する出力部(出力手段)10を備えて構成される。つまり、第1の発電機5及び第2の発電機9の発電電力の出力ラインを、外部出力に至るまでの間で接続し、1系統で外部出力する形で構成される。
【0107】
出力部10は、例えば図46Aに示すように、第1の発電機5と第2の発電機9により生成された双方の三相の交流電力を、それぞれ整流器12に入力した上で、昇圧コントローラ11に入力して所定の電圧で出力し、さらにそれをパワーコンディショナ15にて入力して、入力された直流の電力を系統電力に変換し、出力するように構成できる。これにより、第1の発電機5と第2の発電機9により生成された双方の電力を合わせて外部の電源系統19Aに供給することができ、例えば売電等が可能となる。また、パワーコンディショナ15にて、家庭内で使える交流電力に変換して出力してもよい。また、出力部10は、図46Bに示すように、第1の発電機5と第2の発電機9により生成された双方の電力をそれぞれ、整流器12に入力した上で、昇圧コントローラ13に入力し、所定電圧とされた直流の電力をバッテリー(蓄電手段)19Bに供給して蓄電させてもよい。また、バッテリー(蓄電手段)19Bに蓄電された電力を、パワーコンディショナ15を介して外部の電源系統19Aに供給するようにしてもよいし、バッテリー(蓄電手段)19Bに蓄電された電力を所定の目的で使用してもよい。
【0108】
図47は、風導ケース200をなすナセルを、軸線2x,110xを通過する平面で切断した断面図である。ナセル200は、図47に示すように、地表の基礎部190(図19参照)から延びる支柱(タワー)110の上端部110Tと共に、支柱本体110Sに対し風向きに合わせて水平面内において向きを変えることが可能(支柱本体110Sの鉛直方向の軸線110xの周りに回転可能)に取り付けられている。
【0109】
ナセル200は、第1の発電機5とフライホイール7と第2の発電機9、さらに回転軸2を内部に収容し、ここではさらに角度調整機構300を収容している。ハブ22及びブレード30は、受風方向2wにおいてナセル200よりも下流側に設けられており、下流側のブレード30で得た回転力が、回転軸2を介して受風方向2wの上流側に位置する発電機5,9側へと伝達される。ナセル200の内部には、フライホイール7と第1の発電機5と第2の発電機9とを、風車3の受風方向2wの上流側からこの順で収容した発電ケース体100が配置され、ナセル200に対し締結部材によって締結固定される。
【0110】
発電ケース体100は、図48に示すように、その内部に、受風方向2wの上流側から順に、第2の発電機9を収容する上流側収容空間9Sと、フライホイール7を収容する中間収容空間7Sと、第1の発電機5を収容する下流側収容空間5Sとを有し、これらをひとつながりの空間とする形状をなす。このひとつながりの空間は、フライホイール7が中間収容空間7S内に配置されることで、上流側収容空間9Sと下流側収容空間5Sとに分断される。これら円筒状の上流側収容空間9S及び下流側収容空間5Sよりも、同じく円筒状の中間収容空間7Sの方が径大で、かつ収容されるフライホイール7自体も、径方向において中間収容空間7Sの円筒状外周壁に対し近接して位置するため、フライホイール7が配置されたときには、上流側収容空間9Sと下流側収容空間5Sとは、フライホイール7の外周側においてのみ連通するので、より確実な分離状態となっている。これにより、上流側収容空間9S及び下流側収容空間5Sのうち、一方の空間内での回転体(ロータ91,51)の回転に伴う気流の乱れの影響を、他方の空間が受けることがない。
【0111】
回転軸2は、発電ケース体100に対し自身の軸線方向に貫通し、なおかつ発電ケース体100に対し円滑に相対回転するよう軸受装置60を介して取り付けられる(図48参照)。本実施形態の軸受装置60は、例えばシール装置(Oリング等)やグリース等のような密閉機能付きの密閉型軸受装置であり、その密閉機能によって密閉状態としている。密閉された発電ケース体100内部は、空気が大気圧で充填されている場合に、内部の回転体51,91,7等が受ける充填気体による抵抗(空気抵抗)が軽減されるよう、減圧状態等のような内部状態とされている。
【0112】
第1の発電機5及び第2の発電機9は、回転軸2の周りを回転可能なロータ(発電機回転子)51,91の周方向に沿って所定間隔おきに複数の磁性部材52,92が配置されるとともに、それら磁性部材52,92に対しエアギャップを形成する形で対向し、かつ該ロータ51,91に対し非回転となるステータコイル54,94が配置されたステータ(発電機固定子)53,93を備えて構成され、それら磁性部材52,92とステータコイル54,94との相対回転により電力を生成する。生成される電力(発電電力)は、その相対回転速度が大きいほどが大となる。なお、本実施形態における磁性部材52,92は永久磁石であり、例えばネオジウム磁石等を用いることができる。また、本実施形態においては、磁性部材52,92とステータコイル54,94との数の比が3:4であり、ステータコイル54,94からは三相の交流電力が出力される。
【0113】
支柱110の上端部110Tの上端軸部111Tには、図47に示すように、スリップリング110SA,110SBが設けられており、各スリップリング110SA,110SB上を摺動するブラシ102CA(図示有り),102CB(図示なし)を介し、ステータコイル54,94から発電出力を取り出すよう構成されている。取り出された発電出力は、筒状の支柱(タワー)110の内部空間を通る配線を介して、出力部10に接続される。
【0114】
なお、支柱110の上端部110Tの上端面には、回転軸2に回転可能に固定するために、図47に示すように、軸受装置を内包した固定部120が締結部材により締結固定されている。発電ケース体100は、それら固定部120よりも受風方向上流側に設けられている。なお、回転軸2の受風方向上流側では、回転軸2と、これを延長する回転軸延長部2’とが軸連結部130により一体回転可能に連結されている。発電ケース体100内を挿通する回転軸2はその回転軸延長部2’である。
【0115】
第1の発電機5及び第2の発電機9における双方のステータ53,93は、発電ケース体100からケース内部に向けて回転軸2の軸線方向に沿って突出形成された筒状部材として設けられる。それら筒状部材53,93には、径方向に貫通する開口部が周方向に沿って所定間隔おきに形成される。これらの開口部は、周方向に設けられた回転軸2の軸線方向に延びる各柱部により区画されており、各柱部にはステータコイル54,94が巻き付けられている。本実施形態においては、隣接する柱部で巻き方向が逆向きとなっている。
【0116】
本実施形態の第1の発電機5及び第2の発電機9は、ロータ51,91として、回転軸2と同軸をなしフライホイール7と共に互いに一体回転する第1ロータ部51A,91Aと第2ロータ部51B,91Bとを有する。それら双方のロータ部51A,91Aと51B,91Bは、エアギャップを介して互いに対向(対面)する対向面を有し、それら双方の対向面上には、周方向において複数の磁性部材92が所定間隔おきに同数配置され、締結部材により固定されている。ただし、一方のロータ部51A,91Aの磁性部材52A(52),92A(92)と他方のロータ部51B,91Bの磁性部材52B(52),92B(92)とは、互いに異なる極性(磁極)の着磁面同士にて対面している。さらに、それら第1ロータ部51A,91Aと第2ロータ部52A,92Aとの間の空隙にステータ53,93のステータコイル54,94が位置する。ステータコイル54,94は、回転するそれら双方のロータ51A,51Bと91A,91Bの磁性部材間52,52と92,92に挟まれるステータ53,93上の環状の対向領域に、その周方向に沿って所定間隔おきに複数配置される。
【0117】
また、第1の発電機5及び第2の発電機9において、第1ロータ部51A,91A及び第2ロータ部51B,91Bは、回転軸2の回転軸線2xに対する径方向に対向して配置される。第1ロータ部51A,91Aは、フライホイール7の固定部70Aの外周側に形成される固定部50A,90Aに対し、フライホイール7に対し同軸をなして一体回転するよう固定されている。第2ロータ部をなす円筒状部51B,91Bは、フライホイール7の固定部70Aの内周側に形成される固定部50B,90Bに対し、フライホイール7に対し同軸をなして一体回転するよう固定されている。
【0118】
なお、本実施形態のフライホイール7は、回転軸2に対し1方向クラッチ(ワンウェイクラッチ)6を介して固定される軸固定部70Cと、軸固定部70Cから径方向外側に延出する円盤状の中間部70Bと、中間部70Bの径方向外側にて第1ロータ部51A,91A及び第2ロータ部51B,91Bが一体に固定される固定部70Aとを有する。さらに本実施形態では、固定部70Aから径方向外側に延出する外端部70Dを有する。
【0119】
以上、本発明の一実施形態を説明したが、これはあくまでも例示にすぎず、本発明はこれに限定されるものではなく、特許請求の範囲の趣旨を逸脱しない限りにおいて、当業者の知識に基づく種々の変更が可能である。
【0120】
例えば上記実施形態を、以下のように変更することができる。
【0121】
各管理装置1000の制御部1001が実行する異常特定プログラム1005cを、図10ではなく、図16のように変更することができる。
【0122】
図16の異常特定プログラム1005cが実行されると、制御部1001は、まずは、管理対象に定められている風力発電装置1から送信される発電量データ及び回転速度データの受信の有無を判定する(S2001)。それらのデータの受信があった場合は、それらのデータに対応付けられている識別情報に基づいて送信元の風力発電装置1を特定するとともに(S2002)、それら発電量データ及び回転速度データがそれぞれ、記憶装置1005に記憶されている最新の正常範囲内にあるか否かを判定する(S2003)。そして、回転速度データが正常範囲内にあるか否かを判定し(S2004)、正常範囲に無い場合を回転動作異常状態(第二の異常状態)と特定する(S2005)。回転速度データが正常範囲内にある場合は(S2004:Yes)、発電量データが正常範囲内にあるか否かを判定し(S2007)、正常範囲に無い場合を発電異常状態(第一の異常状態)と特定する(S2008)。発電量データが正常範囲内にある場合は、発電量データ及び回転速度データの双方が正常と特定される(S2009)。そして、S2005,S2008,S2009のいずれかで得られた結果が、直前に特定された結果のうち識別情報が同じものを上書きする形で、記憶装置1005に記憶される(S2006)。なお、この処理は所定周期内で繰り返し実行される。
【0123】
この場合、出力プログラム1005eが実行されると、図17に示すような出力表示画実行される。即ち、図17では、管理対象とされた風力発電装置1毎の正常/異常の特定結果を、発電異常状態(第一の異常状態)と回転動作異常状態(第二の異常状態)とを識別可能な形で出力されている。
【0124】
また、各風力発電装置1は、図18のように構成することができる。
【0125】
既に述べた実施形態における風力発電装置1は、制御部3000、各種検出部701〜705,外部メモリ001、強制停止駆動部600、及び送受信部の駆動電力を外部電力としているが(外部電力に関する図示は省略している)、図18の風力発電装置では、発電機500が発電した発電電力が、出力部10から外部だけでなく、バッテリー900にも入力されており、バッテリー900の蓄電電力にて、制御部3000、各種検出部701〜705,外部メモリ001、強制停止駆動部600、及び送受信部を駆動している。そして、バッテリー900の蓄電量を検出する蓄電量検出部706が設けられており、制御部3000は、検出された蓄電量を示す蓄電量データを管理装置1000に送信する。そして、管理装置データは、蓄電量データが示す蓄電量が所定レベル以下となっている風力発電装置を異常と特定するようにできる。これにより、各種の稼動状態データの取得・送信が困難な状態となった風力発電装置を強制停止することができる。
【0126】
なお、ここでのバッテリー900として、バッテリー19Bを用いてもよい。
【0127】
また、管理装置1000の制御部1001は、外部の気象予報センターより通信手段2000を介して風情報を取得し、予め定められた強風レベル以上の強風が予測される箇所に設置された風力発電装置1に対し、風車3の強制停止指令を出力し、ブレーキ装置600による強制停止を実行させてもよい。この場合の強制停止指令は、ユーザーにより強制停止対象の風力発電装置1を選択する形でなされる、入力部1002への所定の強制停止操作に基づいて、選択された風力発電装置1に出力されるようにすることができる。
【0128】
なお、ブレーキ装置600は、予め定められた強風レベル以上の強風が予測される箇所に設置された風力発電装置1を強制停止させる場合にのみ用いられる構成でもよい。
【0129】
他にも、上記実施形態を、以下のように変更することができる。
【0130】
図59に示す実施形態の風力発電装置1は、所定の受風方向2wからの風力を受けて所定の回転軸線2xの周りを一定回転方向に回転する風車3と、風車3の回転軸2と同軸をなして一体回転するよう配置されたロータ51を有して回転軸2の回転に伴う該ロータ51の回転により電力を生成する第1の発電機(発電手段)5と、回転軸2と同軸をなし、かつ上記一定回転方向において、回転軸2が増速している場合には該回転軸2と一体回転状態となって自身も増速回転し、回転軸2が減速している場合には該回転軸2から切り離されて慣性回転するように1方向クラッチ(ワンウェイクラッチ)6を介して配置されるフライホイール7と、フライホイール7と同軸をなして一体回転するよう配置されたロータ91を有してフライホイール7の回転に伴う該ロータ91の回転により電力を生成する、第1の発電機5とは異なる第2の発電機(発電手段)9と、を備えて構成される。
【0131】
さらに、図59の風力発電装置1の場合は、第1の発電機5と第2の発電機9により生成された双方の電力入力を受け、それらを合わせて外部出力する出力部(出力手段)10を備えて構成される。つまり、第1の発電機5及び第2の発電機9で発電された互いに位相の異なる発電電力を、1系統で外部出力する形で構成される。なお、この場合の出力部10の構成は図46A及び図46Bと同様とすることができる。
【0132】
図59の第1の発電機5は、ロータ51として、回転軸2と同軸をなし互いに一体回転する第1ロータ部51Aと第2ロータ部51Bとを有する。それら双方のロータ部51A,51Bは、エアギャップを介して互いに対向(対面)する対向面を有し、それら双方の対向面上には、周方向において複数の磁性部材52が所定間隔おきに同数配置され、締結部材により固定されている。ただし、それら双方のロータ部51A,51Bのうち、一方のロータ部51Aの磁性部材52A(52)と他方のロータ部51Bの磁性部材52B(52)とは、互いに異なる極性(磁極)の着磁面同士にて対面している。さらに、それら第1ロータ部51Aと第2ロータ部51Bとの間の空隙にステータ53のステータコイル54が位置し、ステータコイル54は、回転するそれら双方のロータ部51A,51Bの磁性部材52,52間に挟まれるステータ53上の環状の対向領域に、その周方向に沿って所定間隔おきに複数配置される。
【0133】
また、第1の発電機5において、第1ロータ部51A及び第2ロータ部51Bは、回転軸2の軸線2xに対する径方向(ラジアル方向)に対向して配置される。本実施形態においては、ロータ51の本体部として、回転軸2と一体回転するよう固定される軸固定部50Cと、軸固定部50Cから径方向外側に延出する円盤状の中間部50Bと、中間部50Bの径方向外側の外端部50Aと、を有したロータ本体部50を備える。ただし、ロータ本体部50は、外周側に大重量を有するフライホイール7よりも軽く、小径である。第1ロータ部をなす円筒状部51Aと、第2ロータ部をなす、円筒状部51Aよりも径大の円筒状部51Bとは、ロータ本体部50に対し同軸をなす形で一体回転するよう双方とも、ロータ本体部50の外端部50Aに固定されている。
【0134】
図59の第2の発電機9は、ロータ91として、回転軸2と同軸をなしフライホイール7と共に互いに一体回転する第1ロータ部91Aと第2ロータ部91Bとを有する。それら双方のロータ部91A,91Bは、エアギャップを介して互いに対向(対面)する対向面を有し、それら双方の対向面上には、周方向において複数の磁性部材92が所定間隔おきに同数配置され、締結部材により固定されている。ただし、それら双方のロータ91A,91Bのうち、一方のロータ部91Aの磁性部材92A(92)と他方のロータ部91Bの磁性部材92B(92)とは、互いに異なる極性(磁極)の着磁面同士にて対面している。さらに、それら第1ロータ部91Aと第2ロータ部91Bとの間の空隙にステータ93のステータコイル94が位置する。ステータコイル94は、回転するそれら双方のロータ91A,91Bの磁性部材間92,92に挟まれるステータ93上の環状の対向領域に、その周方向に沿って所定間隔おきに複数配置される。
【0135】
また、第2の発電機9において、第1ロータ部91A及び第2ロータ部91Bは、回転軸2の軸線2xに対する径方向に対向して配置される。第1ロータ部91Aは、フライホイール7に対し、第1ロータ部をなす円筒状部91Aと、第2ロータ部をなす、円筒状部91Aよりも径大の円筒状部91Bとが、フライホイール7に対し同軸をなして共に一体回転するよう固定されている。
【0136】
なお、本実施形態のフライホイール7は、回転軸2に対し1方向クラッチ(ワンウェイクラッチ)6を介して固定される軸固定部70Cと、軸固定部70Cから径方向外側に延出する円盤状の中間部70Bと、中間部70Bの径方向外側にて第1ロータ部をなす円筒状部91Aと第2ロータ部をなす円筒状部91Bを固定する固定部70Aとを有し、本実施形態ではさらに、固定部70Aから径方向外側に延出する外端部70Dを有する。
【0137】
また、上記実施形態における角度調整機構300は、以下のように変更することができる。
【0138】
即ち、上記実施形態における角度調整機構300では、付勢手段34として、ブレード30の受風面30wの幅方向Wが初期回転用角度位置Aと高速回転用角度位置Bとの間に位置する間、その幅方向Wが風平行寄り側となるようブレード30を初期回転用角度位置A側へと一定の付勢力で付勢するばね部材34を使用しているが、ブレード30に対し、その受風面30wの幅方向Wを初期回転用角度位置A側へと付勢する付勢力が、初期回転用角度位置Aから離間するほど増大するものに変更してもよい。以下、図51〜図58を用いて、上記実施形態とは異なる角度調整機構300’及び風車3’について説明する。
【0139】
図51は、上記実施形態の風車3とは異なる風車3’を示すものである。また、図52の(a)は、図51における1つのプレート固定部を拡大した部分断面図であり、図52の(b)及び(d)は図52(a)のA−A断面、図52(c)及び(e)は図52(a)のB−B断面を簡略的に示した模式図である。ただし、図52の(b)及び(d)と、図52の(c)及び(e)とではブレード30の幅方向Wと回転軸線2xの方向とのなす角度θが異なっており、図52の(b)及び(d)はブレード30が風直交寄りの状態、図52の(c)及び(e)はブレード30が風平行寄りの状態を示している。
【0140】
図51に示す風車3’の角度調整機構300’は、図52〜図56に示すように、図19の実施形態において付勢手段として使用したばね部材34に代わって、ネオジム磁石等のマグネット(磁性部材)340a,340bを使用している点が異なる。マグネット340bは、受風面30w(図57及び図58参照)の幅方向Wと回転軸2の回転軸線2xの方向とのなす角度θが可変可能なブレード(可動構造体)30の、受風方向上流側に取り付けられる。具体的に言えば、ブレード30を取り付けるためのブレード取付部材(可動構造体)330をなす平行板部330A,330Aのうち受風方向上流側の平行板部330Aに締結部材によって直接固定される。他方、マグネット340aは、マグネット340bが取り付けられた平行板部330A(ブレード30)が風直交寄りとなるほど接近してくる軸固定部(固定構造部)221に、マグネット340bと対向する形で取り付けられる。具体的に言えば、軸固定部(固定構造部)221の受風方向下流側に締結部材によって直接固定される。対向するマグネット(磁性部材)340a,340bは互いの極性が同じであり、接近時には互いの接近を妨げる反発力FM(図57及び図58参照)を生ずる。この反発力FMは、対向するマグネット(磁性部材)340a,340bの対向間距離が小さくなるほど増大する。
【0141】
このような構成を有することにより、ブレード30は、図57及び図58に示すような形で動作することになる。
【0142】
即ち、風力が所定の微風レベルを下回る場合には、図57(a)に示すように、その風力によるブレード30の受風面30wへの押圧力FWと付勢手段340a,340bの付勢力FMとが遠心力FAに打ち勝って錘部材35を内方に押し付けて、ブレード30は初期回転用角度位置Aに付勢保持される。具体的にいえば、風力が所定の微風レベルを下回る場合、上述の可動構造体39が当接部材38に当接するよう上記の押圧力FWと付勢力FBとにより押し付けられ、その当接位置である初期回転用角度位置Aにブレード30が位置保持され、このときブレード30は、その受風面の幅方向が最も風平行寄りとなる。この状態は、図44(a)と同様の状態であるが、ここでは付勢力FMがマグネット340a,340bの反発力であり、ここではマグネット340a,340bの対向間距離が長いことから、付勢力FMは図44(a)のときの付勢力FBよりもはるかに小さく、極めて小さい力として作用している。
【0143】
風力が上記の微風レベルを上回った場合には、図57(b)に示すように、遠心力FAが増大し始めて、受風面30wへの押圧力FWと付勢手段340a,340bの付勢力FMとに打ち勝ち、錘部材35が、FAと、FW及びFMとが釣り合う位置まで外方へと変位するとともに、ブレード30の角度θも初期回転用角度位置Aを離れ、風直交寄りへと位置を変える。この状態は、図44(b)と同様の状態であるが、ここでの付勢力FMは依然として付勢力FBよりもはるかに小さい。
【0144】
風力が上記の微風レベルを上回った所定の強風レベルに達した場合には、図57(c)に示すように、ブレード30は、その幅方向Wが、初期回転用角度位置Aよりも風直交寄りとなる所定の高速回転用角度位置Bに到達した状態となる。この状態は、風車3が最も高速で回転可能な状態である。この段階となると、対向するマグネット(磁性部材)340a,340bの対向間距離が小さくなってくるため、付勢力FMは、徐々に付勢力としての機能を有する程度に大きくなってくる。
【0145】
風力が所定の強風レベルをさらに上回った場合には、図58(d)に示すように、遠心力FAがさらに増大し、ブレード30の角度θは、高速回転用角度位置Bを超えた状態、風直交面Y側の位置となる。高速回転用角度位置Bを超えたブレード30の角度θの範囲(以下、回転減速用角度範囲という)Qでは、これまでプラスピッチであったブレード30がマイナスピッチとなり、ブレード30には、これまでとは逆の回転力が生じる。即ち、ブレード30は、受風方向2wからの風力を受けて回転する予め定められた一定回転方向に回転するよう構成されているが、ブレード30の角度θの変化によって高速回転用角度位置Bを超えると、その一定回転方向とは逆方向に回転しようとする逆方向回転力が生じる。この逆方向回転力は、回転減速用角度範囲Q内において高速回転用角度位置Bから離れるほど強まる。このため、回転減速用角度範囲Q内に位置するブレード30は、上記一定回転方向への回転にブレーキがかかった状態となり、回転速度が減じられ、これに伴い錘部材35の遠心力FAも低下する。一方で、付勢手段340a,340bの付勢力FMは、回転減速用角度範囲Q内に位置するブレード30が、高速回転用角度位置Bから離れていくほど増大する。このため、回転減速用角度範囲Q内に位置するブレード30は、再び高速回転用角度位置Bへと押し戻され、その時点におけるFAと、FW及びFMとが釣り合った位置となる。
【0146】
このように、角度調整機構300’は、付勢手段340a,340bと錘部材35とリンク機構37とを有することで、微風時に回転し易いようにブレード30の角度θを風平行寄りとする第一段階と、風速が増した時に高回転となり易いようにブレード30の角度θを風直交寄りとする第二段階と、強風時に過回転が防止されるようにブレード30の角度θが回転減速用角度範囲に到達する第三段階という三段階にて、ブレード30の角度θを可変させることが可能となり、この三段階のブレード30の角度変更による自律的な回転速度制御によって、風車3’は、始動性に優れ、高回転時の効率も高く、なおかつ強風時の過剰回転の抑制も可能となっている。
【0147】
なお、既に述べた図44におけるブレード30の高速回転用角度位置Bは、風直交面Yに達する手前に位置しているが、これは遠心力FAの最大値や一定の付勢力FBの大きさによって規定される可動限界角度位置であり、風車が最も高速で回転可能な状態となる真の高速回転用角度位置は、その可動限界位置よりもさらに風直交面Y側にあってもよい。ただし、図44に示すように、遠心力FAの最大値や一定の付勢力FBの大きさによって規定されるブレード30の可動限界角度位置を、風直交面Yと一致する位置Dとし、この位置Dを高速回転用角度位置とすることが、回転性能上、最も望ましい。一方で、図57及び図58で述べた実施形態においては、図58(d)のようにブレード30の角度位置が位置Bを越えていても、FAが最大とならないよう構成されている。ここでは、マグネット340a,340bの磁力(磁気的反発力)の大きさにより規定される形で、風直交面Yよりも奥側となる位置に、ブレード30の可動限界角度位置が存在している。
【0148】
なお、この実施形態(マグネット仕様)において採用されるブレード30は、上記実施形態(ばね仕様)における図20〜図26の形状のものを採用してもよいが、ここでは図20〜図26の形状のものとは異なる形状をなす。具体的に言えば、図25及び図26に示したブレード30の上面視(平面図)及び下面視(底面図)が、図49及び図50のように視認されるように変更される。なお、図49及び図50のように変更した場合、図20〜図24と同様の視点からブレード30を見たときにその見た目に違いが現れるが、その違いは微妙な違いにすぎず、図20〜図24とほぼ同様に視認されるため、図示を省略する。
【0149】
本発明における風力発電装置の風車に採用されるブレード30は、受風方向2wからの風力を受けて一定回転方向に回転するように、回転軸2側と先端側で流れの速度に差が生ずるよう、回転軸2側から先端側にかけてねじりを付ける形で受風面30wが形成される。既に述べた実施形態においては、図20〜図26に示したように、受風面30wは、ブレード30の幅方向Wが風直交面Y上に位置した状態でブレード30を回転方向逆側から見たときに(図26参照)、回転軸2側から先端側にかけて面幅が減少していきながらも視認することができ、逆に、ブレード30の幅方向Wが風直交面Y上に位置した状態でブレード30を回転方向側から見たときには(図25参照)視認できないようなねじり形状となっていた。この場合、ブレード30は、その角度位置が位置Aから位置Bの間で変化したとしても、ブレード30を回転方向の逆側から見たときには常に受風面30wを視認でき、回転方向側から見たときには常に受風面30wを視認できない(プラスピッチ)。したがって、ブレード30は、受風方向2wから風力を受けると、その風力が、回転方向逆側から視認される受風面30wを押し付ける形で作用して、常に一定回転方向への回転力を得て回転する。
【0150】
これに対し、この実施形態において採用されるブレード30は、その幅方向Wが風直交面Y上に位置した状態で回転方向逆側から見たときに(図50参照)、受風面30wが回転軸2側から先端側にむかう途中の中間位置までしか視認できない形状となっており、その中間位置から外側では、今度は、同じ状態でブレード30を回転方向側から見たときに(図49参照)受風面30wがブレード30の先端側で視認できるようなねじり形状となっている。この場合、ブレード30は、その幅方向Wが位置Aから風直交面Y上に位置する少し手前の位置Bに位置した状態において、ブレード30を、回転方向逆側から見たときに受風面30wが視認され、回転方向側から見たときには受風面30wが視認されないが(プラスピッチ)、位置Bを越えると、回転方向側から見たときにも受風面30wが先端側に視認されるようになる(マイナスピッチ)。このため、ブレード30は、その位置Bに位置した状態において、風車3’が最も高速で回転可能な状態となるが、その位置Bを越えた角度範囲(回転減速用角度範囲)Q内に達すると、受風方向2wから風力を受けたときに、その風力が、ブレード30を回転方向逆側から見たときに視認される受風面30wを押し付ける形で作用して、上記一定回転方向への回転力を得て回転するだけでなく、その風力は、ブレード30を回転方向側から見たときに視認される受風面30wも押し付ける形で作用するので、上記一定回転方向とは逆向きの回転力も得る。これにより、ブレード30は、ブレーキが作用しているような減速回転状態となる。ブレード30は、位置Bを越えると、回転方向側から見たときに、その先端側から受風面30wが視認できるようになり、位置Bを越えて離れていくほど、より内周側にも受風面30wが視認できるようになる形でその面積が増大し、上記の逆向きの回転力が増大していく。
【0151】
また、上記実施形態における角度調整機構300,300’は、図60及び図61に示すような形に変形することができる。
【0152】
図60は、図34〜図44にて説明した角度調整機構300の変形例である。図34〜図44において、ばね部材をなす付勢手段34は、一方の端部が、ブレード30の角度変化に連動して動作する可動構造体(ここでは連結部材)36に固定され、他方の端部が、ブレード30の角度変化に連動して動作せず、回転軸2に一体固定された固定構造体(ここでは軸固定部)221に固定された引っ張りばねであり、ブレード30が初期回転用角度位置Aから風直交よりに変位するに伴い固定構造体221から離間していく可動構造体36を引っ張る形で作用している。これに対し、図60の角度調整機構300では、ばね部材をなす付勢手段34’は、一方の端部が、上記と同様の可動構造体(ここではブレード取付部材)330に固定され、他方の端部が、同じく上記と同様の固定構造体(ここでは軸固定部)221に固定された圧縮ばねであり、ブレード30が初期回転用角度位置Aから風直交よりに変位するに伴い固定構造体221に接近していく可動構造体36を押し返す形で作用している。
【0153】
図61は、図51〜図58にて説明した角度調整機構300の変形例である。図51〜図58において、マグネットをなす付勢手段340a,340bのうち、一方のマグネット340bが、ブレード30の角度変化に連動して動作する可動構造体(ここではブレード取付部材)330に固定され、他方のマグネット340aが、ブレード30の角度変化に連動して動作せず、回転軸2に一体固定された固定構造体(ここでは軸固定部)221に固定されるとともに、それらマグネット340a,340bは、同極のもの同士が対向する形で配置されており、ブレード30が初期回転用角度位置Aから風直交よりに変位するに伴い固定構造体221に接近していく可動構造体330に対し反発力を生じ、その接近を妨げる形で作用している。これに対し、図61の角度調整機構300では、マグネットをなす付勢手段340a’,340b’のうち、一方のマグネット340b’が、上記と同様の可動構造体(ここでは連結部材)36に固定され、他方のマグネット340bが、同じく上記と同様の固定構造体(ここでは軸固定部)221に固定されるとともに、それらマグネット340a,340bは、異なる極のもの同士が対向する形で配置されており、ブレード30が初期回転用角度位置Aから風直交よりに変位するに伴い固定構造体221から離間していく可動構造体330に対し吸引力を生じ、その離間を妨げる形で作用している。
【符号の説明】
【0154】
5000 風力発電装置管理システム
1000 管理装置
1000A メイン管理装置
1000B サブ管理装置
1000C 個別管理装置(子機)
2000 通信手段(インターネット等)
3000 風力発電装置の制御部
1001 管理装置の制御部
701,703,704,705 稼働状態取得部(稼働状態取得手段)
702 風力状態取得部(風力状態取得手段)
1 風力発電装置
2 回転軸
200 ナセル
221A 軸固定部の前端部
221B 軸固定部の後端部
221h 貫通孔
22 ハブ
221 軸固定部
2x 回転軸線
2w 受風方向
3 風車
30 ブレード(翼)
30w 受風面
30v ブレードの背面
30T ブレード本体部(翼本体部)
30S ブレード先端部(翼先端部)
300 角度調整機構(翼角度調整機構)
33 ブレード固定部(翼固定部)
33A,33B 固定部
33Z 回転支軸
34 付勢手段
340a,340b 付勢手段
35 錘部材
36 連結部材
362 押付部材
37 リンク機構
371 第一リンク部材
371A 第一リンク部材の一方の端部
371B 第一リンク部材の他方の端部
371C 第一リンク部材の屈曲部
371y 回転軸線
372 第二リンク部材
372A 第二リンク部材の一方の端部
372B 第二リンク部材の他方の端部
372y 回転軸線
373y 回転軸線
38 当接部材
39 可動構造体
51,91 ロータ(発電機回転子)
52,92 磁性部材
53,93 ステータ(発電機固定子)
54,94 ステータコイル
100 発電ケース体
W ブレードの幅方向
θ ブレードの幅方向と回転軸の軸線方向とのなす角度
X 風平行方向
Y 風直交面
A 初期回転用角度位置
B 高速回転用角度位置
FW 風力によりブレードに加えられる押圧力
FA 遠心力(リンク機構37により遠心力を回転軸線2x方向に変換させた力)
FB 付勢手段(ばね部材)の付勢力
FM 付勢手段(磁性部材)の付勢力

【特許請求の範囲】
【請求項1】
各々が異なる箇所に設置された複数の風力発電装置が、通信手段を介して管理装置と通信可能に接続されて構成された風力発電管理システムであって、
各前記風力発電装置は、
自身の予め定められた稼働状態を示す稼動状態データを所定周期で繰り返し取得する稼働状態取得手段と、
取得した稼働状態データを、前記通信手段を介して前記管理装置に逐次送信する稼動状態送信手段と、
自身に設けられた風車周辺の風力状態を示す風力状態データを所定周期で繰り返し取得する風力状態取得手段と、
取得した風力状態データを、前記通信手段を介して前記管理装置に逐次送信する風力状態送信手段と、を備え、
前記管理装置は、
各前記風力発電装置から前記稼働状態データを、前記通信手段を介して逐次受信する稼働状態受信手段と、
各前記風力発電装置から前記風力状態データを、前記通信手段を介して逐次受信する風力状態受信手段と、
受信した風力状態データに基づいて決定される正常範囲内に、受信した稼働状態データがあるか否かを逐次判定し、正常範囲内にある場合にはそれら稼働状態データ及び風力状態データの送信元の風力発電装置を正常、正常範囲内に無い場合には当該風力発電装置を異常として逐次特定する異常特定手段と、
前記異常特定手段による前記風力発電装置毎の正常/異常の特定結果を出力する出力手段と、
を備えることを特徴とする風力発電装置管理システム。
【請求項2】
前記管理装置は、受信した風力状態データに基づいて、その送信元である風力発電装置の風車周辺の風力状態を逐次特定するとともに、特定された風力状態において該風力発電装置が正常稼動中であることを規定する、前記稼働状態データの前記正常範囲を逐次決定する正常範囲決定手段を備える請求項1に記載の風力発電装置管理システム。
【請求項3】
前期管理装置は、前記稼働状態受信手段が受信した稼働状態データと共に、前記異常特定手段が特定した前記風力発電装置の正常/異常の特定結果を、予め定められた管理データ記憶部に逐次記憶し、蓄積する記憶手段を備える請求項1又は請求項2に記載の風力発電装置管理システム。
【請求項4】
前記風力発電装置は、前記風力発電装置の風車の回転を強制停止させる強制停止手段を備え、
前記管理装置は、前記異常特定手段により異常と特定された前記風力発電装置、又は強風が予測される箇所に設置された前記風力発電装置に対し風車の強制停止指令を出力し、前記強制停止手段による強制停止を実行させる強制停止指令手段を備える請求項1ないし請求項3のいずれか1項に記載の風力発電装置管理システム。
【請求項5】
前記稼働状態データには、前記風力発電装置の発電量データと、前記風力発電装置の風車の回転速度データとのいずれか又は双方が含まれる請求項1ないし請求項4のいずれか項に記載の風力発電装置管理システム。
【請求項6】
前記稼働状態データには、少なくとも前記風力発電装置の発電量データが含まれ、
前記管理装置は、
受信した前記発電量データから地球温暖化気体の削減量を換算し、その削減量の累積値を算出する地球温暖化気体削減量算出手段と、
前記地球温暖化気体の削減量の累積値、又は前記発電量データの累積値から、前記地球温暖化気体の排出権価値を算出する地球温暖化気体排出権価値算出手段と、
を備え、前記出力手段は、算出された地球温暖化気体の削減量及び地球温暖化気体の排出権価値のいずれか又は双方を出力するものである請求項5に記載の風力発電装置管理システム。
【請求項7】
前記稼働状態データには、少なくとも前記風力発電装置の発電量データと、前記風力発電装置の風車の回転速度データとが含まれ、
前記正常範囲決定手段は、前記風力状態受信手段が受信する各前記風力発電装置からの風力状態データに基づいて、送信元の風力発電装置から送信されるそれら発電量データ及び回転速度データの前記正常範囲を逐次決定し、
前記異常特定手段は、各前記風力発電装置の異常状態として、受信した発電量データが異常で、かつ受信した回転速度データが正常となる第一の異常状態と、少なくとも受信した回転速度データが異常となる第二の異常状態とを区別する形で特定し、
前記出力手段は、前記異常特定手段による前記風力発電装置毎の正常/異常の特定結果を、前記第一の異常状態と前記第二の異常状態とを識別可能な形で出力するものである請求項5又は請求項6に記載の風力発電装置管理システム。
【請求項8】
前記管理装置は、全ての前記風力発電装置から前記稼働状態データを受信してそれら風力発電装置の正常/異常を監視するメイン管理装置と、予め定められたエリア内に設けられた複数の風力発電装置から前記稼働状態データを受信してそれら風力発電装置の正常/異常を監視するサブ管理装置と、を備える請求項1ないし請求項7のいずれか1項に記載の風力発電装置管理システム。
【請求項9】
前記管理装置には、予め定められた1つの前記風力発電装置に対し、前記通信手段を介することなく、ローカルネットワークを介して接続され、当該風力発電装置のみの正常/異常を監視する個別管理装置が含まれる請求項1ないし請求項8のいずれか1項に記載の風力発電装置管理システム。
【請求項10】
前記風力発電装置は、風車の翼が、回転軸の回転軸線方向からの風力を受けて回転するよう該回転軸周りに2以上設けられ、該回転軸に対し径方向外向きに延出するとともに、その受風面の幅方向と回転軸の回転軸線方向とのなす角度が可変可能となる形で該回転軸に対し固定され、当該角度を前記風力の大きさに応じて可変させる翼角度調整機構と、当該角度を翼角度として検出する翼角度検出手段と、を備えて構成される一方、
前記稼働状態データには、前記風力発電装置における前記翼角度を示す翼角度データが含まれ、
前記正常範囲決定手段は、前記風力状態受信手段が受信する各前記風力発電装置からの風力状態データに基づいて、送信元の風力発電装置から送信される前記翼角度データの前記正常範囲を逐次決定し、
前記異常特定手段は、受信した翼角度データに基づいて、各前記風力発電装置の前記翼角度が正常であるか異常であるかを特定し、
前記出力手段は、前記異常特定手段による前記風力発電装置毎の前記翼角度の正常/異常の特定結果を出力するものである請求項1ないし請求項9のいずれか1項に記載の風力発電装置管理システム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11A】
image rotate

【図11B】
image rotate

【図12A】
image rotate

【図12B】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate

【図28】
image rotate

【図29】
image rotate

【図30】
image rotate

【図31】
image rotate

【図32】
image rotate

【図33】
image rotate

【図34】
image rotate

【図35】
image rotate

【図36】
image rotate

【図37】
image rotate

【図38】
image rotate

【図39】
image rotate

【図40】
image rotate

【図41】
image rotate

【図42】
image rotate

【図43】
image rotate

【図44】
image rotate

【図45】
image rotate

【図46A】
image rotate

【図46B】
image rotate

【図47】
image rotate

【図48】
image rotate

【図49】
image rotate

【図50】
image rotate

【図51】
image rotate

【図52】
image rotate

【図53】
image rotate

【図54】
image rotate

【図55】
image rotate

【図56】
image rotate

【図57】
image rotate

【図58】
image rotate

【図59】
image rotate

【図60】
image rotate

【図61】
image rotate


【公開番号】特開2012−246817(P2012−246817A)
【公開日】平成24年12月13日(2012.12.13)
【国際特許分類】
【出願番号】特願2011−118391(P2011−118391)
【出願日】平成23年5月26日(2011.5.26)
【出願人】(501443238)株式会社ビルメン鹿児島 (18)
【Fターム(参考)】