説明

高分子電解質膜の製造方法。

【課題】耐久性に優れ、高イオン伝導性、低燃料透過性の電解質膜を効率よく製造する電解質膜の製造方法を提供する。
【解決手段】脱塩重縮合で得られる、(1)、または(2)、何れかの高分子電解質の重合溶液から、遠心分離および/またはフィルター濾過で、重縮合時に生成した塩分の一部を除去して塗液を得る工程、該塗液を基材上に流延塗工し、溶媒の一部を除去して、基材上に膜状物を得る工程、該基材上の膜状物を水および/または酸性水溶液と接触させ、重縮合時に生成した塩分を除去する工程を有する製造方法からなる。(1)加水分解性可溶性付与基およびイオン性基を含有する高分子電解質(2)イオン性基密度が1.0mmol/g以上の高分子電解質

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、高耐久性と高イオン伝導度、低燃料透過性を有する燃料電池用高分子電解質膜の製造方法に関するものである。
【背景技術】
【0002】
燃料電池は、水素、メタノールなどの燃料を電気化学的に酸化することによって、電気エネルギーを取り出す一種の発電装置であり、近年、クリーンなエネルギー供給源として注目されている。なかでも高分子電解質型燃料電池は、標準的な作動温度が100℃前後と低く、かつ、エネルギー密度が高いことから、比較的小規模の分散型発電施設、自動車や船舶など移動体の発電装置として幅広い応用が期待されている。また、小型移動機器、携帯機器の電源としても注目されており、ニッケル水素電池やリチウムイオン電池などの二次電池に替わり、携帯電話やパソコンなどへの搭載が期待されている。
【0003】
高分子電解質型燃料電池においては、水素ガスを燃料とする従来の高分子電解質型燃料電池(以下、PEFCと記載する)に加えて、メタノールを直接供給するダイレクトメタノール型燃料電池(以下、DMFCと記載する)も注目されている。DMFCは燃料が液体で改質器を用いないために、エネルギー密度が高くなり一充填あたりの携帯機器の使用時間が長時間になるという利点がある。
【0004】
燃料電池は通常、発電を担う反応の起こるアノードとカソードの電極と、アノードとカソード間のプロトン伝導体となる高分子電解質膜とが、膜電極複合体(以降、MEAと略称することがある。)を構成し、このMEAがセパレータによって挟まれたセルをユニットとして構成されている。高分子電解質膜は高分子電解質材料を主として構成される。高分子電解質材料は電極触媒層のバインダー等にも用いられる。
【0005】
高分子電解質膜の要求特性としては、第一に高いプロトン伝導性が挙げられる。また、高分子電解質膜は、燃料と酸素の直接反応を防止するバリアとしての機能を担うため、燃料の低透過性が要求される。特に、メタノールなどの有機溶媒を燃料とするDMFC用高分子電解質膜においては、メタノール透過はメタノールクロスオーバー(以降、MCOと略称することがある。)と呼ばれ、電池出力およびエネルギー効率の低下という問題を引き起こす。その他の要求特性としては、燃料電池運転中の強い酸化雰囲気に耐えるための化学的安定性、薄膜化や膨潤乾燥の繰り返しに耐えうる機械強度などを挙げることができる。
【0006】
これまで高分子電解質膜には、パーフルオロスルホン酸系ポリマーであるナフィオン(登録商標)(Nafion(登録商標):デュポン社製)が広く用いられてきた。ナフィオン(登録商標)は多段階合成を経て製造されるため非常に高価であり、かつ、クラスター構造を形成するために燃料クロスオーバーが大きいという課題があった。また、耐熱水性や耐熱メタノール性が不足するため、膨潤乾燥によって作成した膜の機械強度が低下するという問題や軟化点が低く高温で使用できないという問題、さらに、使用後の廃棄処理の問題や材料のリサイクルが困難といった課題もあった。パーフルオロスルホン酸系膜は高分子電解質膜として概ねバランスのとれた特性を有するが、当該電池の実用化が進むにつれて、さらなる特性の改善が要求されるようになってきた。
【0007】
このような欠点を克服するために非パーフルオロ系ポリマーの炭化水素系ポリマーをベースとした高分子電解質材料についても既にいくつかの取り組みがなされている。ポリマー骨格としては、耐熱性、化学的安定性の点から芳香族ポリエーテルケトンや芳香族ポリエーテルスルホンについて特に活発に検討がなされてきた。
【0008】
例えば、芳香族ポリエーテルケトンである、難溶性の芳香族ポリエーテルエーテルケトン(ビクトレックス(登録商標)PEEK(登録商標)(ビクトレックス社製)等があげられる。)のスルホン化物(例えば、非特許文献1参照。)、芳香族ポリエーテルスルホンである狭義のポリスルホン(以降、PSFと略称することがある。)(UDELP−1700(アモコ社製)等があげられる)や狭義のポリエーテルスルホン(以降、PESと略称することがある。)(スミカエクセル(登録商標)PES(住友化学社製)等があげられる)のスルホン化物(例えば、非特許文献2)等が報告されたが、プロトン伝導性を高めるためにイオン性基の含有量を増加すると作製した膜が膨潤し、メタノールなどの燃料クロスオーバーが大きいという問題があり、またポリマー分子鎖の凝集力が低いために、高次構造の安定性に乏しく、作成した膜の機械強度や物理的耐久性が不十分という問題があった。
【0009】
また、芳香族ポリエーテルケトン(以降、PEKと略称することがある。)(ビクトレックスPEEK−HT(ビクトレックス製)等が挙げられる)のスルホン化物(例えば、特許文献1および2)においては、その高い結晶性ゆえに低いスルホン酸基密度の組成を有するポリマーは、結晶が残存することにより溶剤に不溶で加工性不良となる問題、逆に加工性を高めるためにスルホン酸基密度を増加させるとポリマーは結晶性でなくなることにより水中で著しく膨潤し、ポリマーの精製が非常に困難となり、製造が容易ではかった。
【0010】
スルホン酸基量を制御する方法として、芳香族ポリエーテルスルホン系においては、スルホン酸基を導入したモノマーを用いて重合し、スルホン酸基量が制御されたスルホン化芳香族ポリエーテルスルホンの報告がなされている(例えば、特許文献3参照)。しかしながら、ここにおいても高温高湿下で作成した膜が膨潤する問題は改善されず、特にメタノールなど燃料水溶液中やスルホン酸基密度が高くなる組成においてはその傾向が顕著で、このような耐熱水性や耐熱メタノール性に劣る高分子電解質膜ではメタノールなどの燃料クロスオーバーを十分に抑制すること、膨潤乾燥サイクルに耐えうる機械強度を付与することは困難であった。
【0011】
このように、従来技術による高分子電解質材料は経済性、加工性、プロトン伝導性、燃料クロスオーバー、機械強度、ひいては長期耐久性を向上する手段としては不十分であり、産業上有用な燃料電池用高分子電解質材料とはなり得ていなかった。
【0012】
これらを解決する発明として特許文献4では、イオン性基を有する高分子電解質に保護基(加水分解性可溶性付与基)を導入した結晶化能を有するポリマーの溶液化に成功し、溶液製膜後、脱保護(加水分解)する方法が提案され、機械特性評価、化学構造と耐熱水性、耐熱メタノール性および加工性等との関係改善し、プロトン伝導性に優れ、かつ、燃料遮断性、機械強度、耐熱水性、耐熱メタノール性、加工性、化学的安定性に優れた電解質膜を提供できるとしている。
【先行技術文献】
【特許文献】
【0013】
【特許文献1】特開平6−93114号公報
【特許文献2】特表2004−528683号公報
【特許文献3】米国特許出願公開第2002/0091225号明細書
【特許文献4】特開2007−261103号公報
【非特許文献】
【0014】
【非特許文献1】「ポリマー」(Polymer), 1987, vol. 28, 1009.
【非特許文献2】「ジャーナルオブメンブレンサイエンス」(Journalof MembraneScience), 83 (1993) 211-220.
【発明の概要】
【発明が解決しようとする課題】
【0015】
しかし、特許文献4に開示されている芳香族炭化水素系電解質ポリマーは脱塩重縮合で合成され、副生成物である塩を除去するため、重合溶液を多量の水に投入し、沈殿精製を行い、乾燥後、再溶解して溶液製膜用塗液としている。
【0016】
その際、多量水と接触しても、保護基(加水分解性可溶性付与基)の大部分は水のみとの接触だけでは加水分解されにくく、ポリマーの可溶性を維持するレベルの保護基(加水分解性可溶性付与基)は残存するが、どうしても部分的に、脱保護(加水分解)が進行し、溶解性に劣るポリマーユニットが生成し、その部分が製膜性に悪影響をあたえたり、製膜後でも膜の濁りや機械的特性ひいては長期耐久性を低下させたりする課題があった。
【0017】
また、イオン性基を有するポリマーのため大量の水との接触による膨潤が大きく、ポリマーの乾燥・単離工程の効率が悪く生産性が劣るといった課題があり、特にイオン性基を1.0mmol/g以上有する電解質膜は吸水が大きく精製が極めて困難であった。
【課題を解決するための手段】
【0018】
本発明は、かかる課題を解決するために、次のような手段を採用するものである。すなわち、本発明の高分子電解質膜の製造方法は、脱塩重縮合で得られる、下記から選択される何れか高分子電解質の重合溶液から、直接、遠心分離および/またはフィルター濾過で、重縮合時に生成した塩分の一部を除去して塗液を得る工程、該塗液を基材上に流延塗工し、溶媒の一部を除去して、基材上に膜状物を得る工程、該基材上の膜状物を水および/または酸性水溶液と接触させ、重縮合時に生成した塩分を除去する工程を有することを特徴とするものである。
(1)加水分解性可溶性付与基およびイオン性基を含有する高分子電解質
(2)イオン性基密度が1.0mmol/g以上の高分子電解質
【発明の効果】
【0019】
本発明によれば、膜の品位と生産性に優れ、かつプロトン伝導性、燃料遮断性、機械強度、耐熱水性、耐熱メタノール性、加工性、化学的安定性に優れ、さらに燃料電池とした場合に高温・低加湿発電性能の向上が図れる高分子電解質膜の製造が可能となる。
【発明を実施するための形態】
【0020】
以下、本発明の好ましい実施形態を説明する。
【0021】
本発明の脱塩重縮合は高分子合成で一般的に用いられる方法であり、例えばジオールを有するモノマーのジオール末端をアルカリ金属で置換し、ジハライド末端を有するモノマーと反応させ、脱塩とともに重合する方法が挙げられる。
【0022】
また、加水分解性可溶性付与基およびイオン性基を含有する高分子電解質やイオン性基密度が1.0mmol/g以上の高分子電解質の重合溶液から、直接、遠心分離および/またはフィルター濾過重縮合時に生成した塩分の一部を除去して塗液を得る必要があるが、ここでの「直接」の意味は、塩分が可溶でポリマーが不溶な多量の溶剤、例えば水と接触させ水中にポリマーを析出させる方法をとらずに、重合液をそのまま遠心分離および/またはフィルター濾過により生成した溶剤に不溶の塩分等を固液分離するという意味である。
【0023】
この際、重合溶液は高分子電解質が可溶の溶媒等で希釈しても差し支えなく、重合溶液の粘度を遠心分離やフィルター濾過作業の効率を考慮し調整することが好ましい。
【0024】
また、イオン性基を有する高分子電解質は、脱塩重縮合で生成する塩類が可溶で安価なことから、工業的に利用される水と親和性が高く、溶解しないまでも膨潤が大きくなり、イオン性基密度が大きい場合は水との接触後の高分子電解質の回収が極めて困難である。本発明は、特に、イオン性基密度が1.0mmol/g以上の高分子電解質膜の製造に適しており、2.0mmol/g以上の高分子電解質の製造に必須の技術である。
【0025】
また、加水分解性可溶性付与基も通常の水のみでは簡単に加水分解は起こりにくいが、一部加水分解が発生し、ポリマー単離後、溶媒に再溶解し塗液化する工程で、加水分解性可溶性付与基が不足し、一部完全に溶解できずフィルター濾過速度を著しく低下させたり、すり抜けたゲル化物が原因で製膜時に異物が発生したり、縦筋が発生したりして、不良品の発生率が高くなるだけでなく、良品に見えても、フィルター濾過の目をくぐり抜けたゲルにより、電解質膜が海島構造のような不均一な構造となり、引っ張り伸度や引き裂き強度の低下を引き起こし、膜の濁りなど膜品位を損なうことが多い。
【0026】
本発明の加水分解性可溶性付与基とは、加水分解性可溶性付与基が導入されていない場合に溶媒に溶解困難なポリマーに導入し、後の工程で加水分解によって除去することを前提に、溶液製膜や濾過が容易に実施できるように一時的に導入される置換基である。加水分解性可溶性付与基は反応性や収率、加水分解性可溶性付与基含有状態の安定性、製造コスト等を考慮して適宜選択することが可能である。また、重合反応において加水分解性可溶性付与基を導入する段階としては、モノマー段階からでも、オリゴマー段階からでも、ポリマー段階でもよく、適宜選択することが可能である。
【0027】
加水分解性可溶性付与基の具体例を挙げるとすれば、最終的にはケトンとなる部位をアセタールまたはケタール部位に変形し加水分解性可溶性付与基とし、溶液製膜後にこの部位を加水分解しケトン部位に変化させる。また、ケトン部位をアセタールまたはケタール部位のヘテロ原子類似体、例えばチオアセタールやチオケタールとする方法が挙げられる。また、スルホン酸を可溶性エステル誘導体とする方法、芳香環に可溶性基としてt−ブチル基を導入し、酸で脱t−ブチル化する方法等が挙げられる。
【0028】
加水分解性可溶性付与基は、一般的な溶剤に対する溶解性を向上させ、結晶性を低減する観点から、立体障害が大きいという点で脂肪族基、特に環状部分を含む脂肪族基が好ましく用いられる。
【0029】
加水分解性可溶性付与基を導入する官能基の位置としては、ポリマーの主鎖であることがより好ましい。主鎖に導入すること加水分解性可溶性付与基導入時と加水分解後に安定な基に変化させた後の状態の差が大きく、ポリマー鎖のパッキングが強くなり、溶媒可溶性から不溶性に変化し、機械的強度が強くなる傾向にある。ここで、ポリマーの主鎖に存在する官能基とは、その官能基を削除した場合にポリマー鎖が切れてしまう官能基と定義する。例えば、芳香族ポリエーテルケトンのケトン基を削除するとベンゼン環とベンゼン環が切れてしまうことを意味するものである。
【0030】
本発明は、特に結晶化可能な性質(結晶能)を有するポリマーへの適用が効果的である。これらポリマーの結晶性の有無、結晶と非晶の状態については、広角X線回折(XRD)における結晶由来のピークや示差走査熱量分析法(DSC)における結晶化ピーク等によって評価することができる。結晶能を有することにより、高温水中、高温メタノール中での寸法変化(膨潤)が小さい、すなわち耐熱水性、耐熱メタノール性に優れた電解質膜が得られる。この寸法変化が小さい場合には、電解質膜として使用している途中に膜が破損しにくく、また、膨潤で電極触媒層と剥離しにくいため発電性能が良好となる。
【0031】
従って高いプロトン伝導性とこれら耐熱水性、耐熱メタノール性の特性のバランスは高分子電解質形燃料電池に使用される電解質膜に要求される重要な特性であり、本発明の電解質膜の製造方法によりはじめて工業的な製造が可能となる。
【0032】
本発明では、得られた電解質膜の構造規則性を芳香族のメインピークである133ppmのピークの半値幅(Hz)で判断する。この値が小さい(ピークがシャープ)程、構造規則性が高いと判断し、800Hzであることが好ましく、700Hz以下がより好ましい。800Hz以下であれば、芳香族のスタッキングが良好と判断でき、耐久性の向上が図れる。特に、本発明の電解質膜の製造方法では、133ppmの半値幅(Hz)が800Hz以下でかつ、イオン性基密度が高い電解質膜の製造に好適である。本発明の電解質膜の製造方法で得られる電解質膜は、固体13C DD/MAS NMRにより構造規則性を評価できる。例えば、電解質膜を5mm幅に裁断し、ジルコニア製固体NMR試料管に充填して下記条件で測定できる。
1)装置:Chemagnetics社製CMX−300
Bruker社製AVANCE400
2)測定:DD/MAS法 緩和時間モード
3)測定角:13
4)観測周波数:75.497791MHz、100.6248425MHz
5)パルス幅:4.2μs、3.3μs
6)観測幅:30.03kHz、40.00kHz
7)ポイント数:観測ポイント1024、データポイント8192
8)パルス繰り返し時間:PD:150s、10s
9)化学シフト基準:シリコーンゴム(内部基準1.56ppm)
10)試料回転数:9kHz、14kHz
11)測定温度:室温
また、本発明のイオン性基とは、負電荷を有する原子団であれば特に限定されるものではないが、プロトン交換能を有するものが好ましい。このような官能基としては、スルホン酸基、スルホンイミド基、硫酸基、ホスホン酸基、リン酸基、カルボン酸基が好ましく用いられる。かかるイオン性基は塩となっている場合を含むものとする。前記塩を形成するカチオンとしては、任意の金属カチオン、NR4+(Rは任意の有機基)等を例として挙げることができる。金属カチオンの場合、その価数等特に限定されるものではなく、使用することができる。好ましい金属イオンの具体例を挙げるとすれば、Li、Na、K、Rh、Mg、Ca、Sr、Ti、Al、Fe、Pt、Rh、Ru、Ir、Pd等が挙げられる。中でも、安価で、溶解性に悪影響を与えず、容易にプロトン置換可能なNa、Kがより好ましく使用される。
【0033】
これらのイオン性基は前記高分子電解質材料中に2種類以上含むことができ、組み合わせることにより好ましくなる場合がある。組み合わせはポリマーの構造などにより適宜決められる。中でも、高プロトン伝導度の点から少なくともスルホン酸基、スルホンイミド基、硫酸基を有することがより好ましく、耐加水分解性の点から少なくともスルホン酸基を有することが最も好ましい。
【0034】
本発明が活用できるイオン性基の量は例えばスルホン酸基とした場合、スルホン酸基密度(mmol/g)の値として示すことができる。特に本発明では、加水分解性可溶性付与基およびイオン性基を含有する高分子電解質の重合溶液から、直接、遠心分離および/またはフィルター濾過で、重縮合時に生成した塩分の一部を除去することから、高スルホン酸基密度の電解質膜の製造に好適であり、スルホン酸基密度1.0mmol/g以上、さらには2.0mmol/g以上の電解質膜が工業的に製造可能となる。また、低スルホン酸基密度の電荷質膜にも適用可能である。
【0035】
ここで、イオン性基密度とは、乾燥した高分子電解質材料1グラムあたりに導入されたイオン性基のモル数であり、値が大きいほどイオン性基の量が多いことを示す。イオン性基密度は、元素分析、中和滴定により求めることが可能である。これらの中でも測定の容易さから、元素分析法を用い、S/C比から算出することが好ましいが、中和滴定法によりイオン交換容量を求めることもできる。本発明の高分子電解質材料は、後述するようにイオン性基を有するポリマーとそれ以外の成分からなる複合体である態様を含むが、その場合もイオン性基密度は複合体の全体量を基準として求めるものとする。
【0036】
ここでイオン性基がスルホン酸の場合を例として中和滴定で測定する手順を示す。測定は3回以上行ってその平均をとるものとする。
(1) 試料をミルにより粉砕し、粒径を揃えるため、目50メッシュの網ふるいにかけ、ふるいを通過したものを測定試料とする。
(2) サンプル管(蓋付き)を精密天秤で秤量する。
(3) 前記(1)の試料 約0.1gをサンプル管に入れ、40℃で16時間、真空乾燥する。
(4) 試料入りのサンプル管を秤量し、試料の乾燥重量を求める。
(5) 塩化ナトリウムを30重量%メタノール水溶液に溶かし、飽和食塩溶液を調製する。
(6) 試料に前記(5)の飽和食塩溶液を25mL加え、24時間撹拌してイオン交換する。
(7) 生じた塩酸を0.02mol/L水酸化ナトリウム水溶液で滴定する。指示薬として市販の滴定用フェノールフタレイン溶液(0.1体積%)を2滴加え、薄い赤紫色になった点を終点とする。
(8) スルホン酸基密度は下記の式により求める。
スルホン酸基密度(mmol/g)=
〔水酸化ナトリウム水溶液の濃度(mmol/ml)×滴下量(ml)〕/試料の乾燥重量(g)
本発明のイオン性基を有する電解質には本発明の目的を阻害しない範囲において、他の成分、例えば導電性若しくはイオン伝導性を有さない不活性なポリマーや有機あるいは無機の化合物が含有されていても構わない。
【0037】
これら芳香族炭化水素系ポリマーに対してイオン性基を導入する方法は、イオン性基を有するモノマーを用いて重合する方法と、高分子反応でイオン性基を導入する方法が挙げられる。
【0038】
イオン性基を有するモノマーを用いて重合する方法としては、繰り返し単位中にイオン性基を有したモノマーを用いれば良く、必要により適当な加水分解性可溶性付与基を導入して重合後脱加水分解により加水分解性可溶性付与基を除去すればよい。
【0039】
高分子反応でイオン性基を導入する方法について例を挙げて説明すると、芳香族系高分子をスルホン化する方法、すなわちスルホン酸基を導入する方法としては、たとえば特開平2−16126号公報あるいは特開平2−208322号公報等に記載の方法が公知である。具体的には、例えば、芳香族系高分子をクロロホルム等の溶媒中でクロロスルホン酸のようなスルホン化剤と反応させたり、濃硫酸や発煙硫酸中で反応したりすることによりスルホン化することができる。スルホン化剤には芳香族系高分子をスルホン化するものであれば特に制限はなく、上記以外にも三酸化硫黄等を使用することができる。この方法により芳香族系高分子をスルホン化する場合には、スルホン化の度合いはスルホン化剤の使用量、反応温度および反応時間により、容易に制御できる。芳香族系高分子へのスルホンイミド基の導入は、例えばスルホン酸基とスルホンアミド基を反応させる方法によって可能である。
【0040】
また、イオン性基は例えばスルホン酸基を例に挙げると−SO3H型でも−SO3M型(Mは金属)でもよいが、溶媒の一部を除去して、基材上に膜状物を得る工程好ましい。溶媒乾燥時に熱安定性の点と、製造設備のコスト低減が可能となる。前記の金属Mはスルホン酸と塩を形成しうるものであればよいが、価格および環境負荷の点からはLi、Na、K、Rb、Cs、Mg、Ca、Sr、Ba、Ti、V、Mn、Fe、Co、Ni、Cu、Zn、Zr、Mo、Wなどが好ましく、これらの中でもLi、Na、K、Ca、Sr、Baがより好ましく、Li、Na、Kがさらに好ましい。
【0041】
本発明の遠心分離とは、遠心機を使ってサンプルに遠心力をかけることにより、液体(高分子電解質溶液)と固体(塩、塩基性化合物、残存モノマー等)を分離する方法であり、通常公知の方法が適用できる。塩分の除去の効率化の観点から重合溶液の粘度を調整することが好ましい。遠心分離を行う場合、重合溶液濃度は100ポイズ以下が好ましく、より好ましくは50ポイズ、さらに好ましくは10ポイズ以下である。100ポイズを越えると遠心効果が低く、長時間、高遠心力が必要で工業的な装置では遠心分離が困難である。遠心力は発生する塩とポリマー溶液の比重差や重合液の粘度、固形分、使用する装置など適宜実験的に決定できる。遠心力としては5000G以上、好ましくは10000G以上、より好ましくは20000G以上であり、ケーキの除去時以外は連続的に運転できる装置が工業的に好適である。
【0042】
本発明のフィルター濾過とは、液体(高分子電解質溶液)に固体(塩、塩基性化合物、残存モノマー等)が混ざっている混合物(重合溶液)を、細かい穴がたくさんあいた多孔質(ろ材)に通して、穴よりも大きな固体の粒子を液体から分離する操作のことである。フィルター濾過も通常公知の方法が適用でき、重合溶液中から除きたい塩の大きさ、重合溶液の粘度などで条件を適宜決定でき、自然濾過、遠心濾過、減圧濾過、加圧濾過等通常公知の方法が採用でき、濾過対象液を加熱してもよい。フィルターについても特に制限はなく、金属メッシュ、セルロース系フィルター、ガラス繊維フィルター、メンブレンフィルター、濾布、濾過板など重合溶液の処理量や濾過装置に合わせて適宜選択できる。
また、フィルター濾過単独より、遠心分離とフィルター濾過を組み合わせるのが最も効率的である。
【0043】
また、塗工工程前に塗工用に適した粘度、固形分に調整するため、重合溶液を減圧蒸留や限外濾過により濃縮することも有用である。特に、遠心分離やフィルター濾過の効率化のために重合溶液の粘度調整を実施した場合は、濃縮することが好ましい。また、重合溶液を濃縮することにより塗工性が向上することもある。この濃縮は通常公知の方法が適用でき、攪拌機などを具備し溶媒が揮発することによる被膜発生を防止できる濃縮装置がより好ましく使用できる。また、濃縮により回収した溶媒は再利用することが生産性や環境保護の観点から好ましい。
【0044】
次に重合原液を直接、遠心分離および/またはフィルター濾過で固液分離して得られた塗液を基材上に流延塗工し、溶媒の一部を除去して、基材上に膜状物を得る工程について説明する。
【0045】
本発明で使用する溶媒は重合条件や合成する電解質等で適宜実験的に選択できるが、例えば、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、N−メチル−2−ピロリドン、ジメチルスルホキシド、スルホラン、1,3−ジメチル−2−イミダゾリジノン、ヘキサメチルホスホントリアミド等の非プロトン性極性溶媒、γ−ブチロラクトン、酢酸ブチルなどのエステル系溶媒、エチレンカーボネート、プロピレンカーボネートなどのカーボネート系溶媒、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル等のアルキレングリコールモノアルキルエーテルが好適に用いられ、単独でも二種以上の混合物でもよい。また、電解質溶液の粘度調整にメタノール、イソプロパノールなどのアルコール系溶媒、アセトン、メチルエチルケトン等のケトン系溶媒、酢酸エチル、酢酸ブチル、乳酸エチル等のエステル系溶媒、ヘキサン、シクロヘキサンなどの炭化水素系溶媒、ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒、クロロホルム、ジクロロメタン、1,2−ジクロロエタン、ジクロロメタン、パークロロエチレン、クロロベンゼン、ジクロロベンゼンなどのハロゲン化炭化水素系溶媒、ジエチルエーテル、テトラヒドロフラン、1,4−ジオキサンなどのエーテル系溶媒、アセトニトリルなどのニトリル系溶媒、ニトロメタン、ニトロエタン等のニトロ化炭化水素系溶媒、などの各種低沸点溶剤も混合して使用できる。
【0046】
本発明で使用する基材としては通常公知の材料が使用できるが、ステンレスなどの金属からなるエンドレスベルトやドラム、ポリエチレンフタレート、ポリイミド、ポリスルホンなどのポリマーからなるフィルム、硝子、剥離紙などが挙げられる。金属などは表面に鏡面処理を施したり、ポリマーフィルムなどは塗工面にコロナ処理を施したり、剥離処理をしたり、ロール状に連続塗工する場合は塗工面の裏に剥離処理を施し、巻き取った後に電解質膜と塗工基材の裏側が接着したりするのを防止することもできる。フィルム基材の場合、厚みは特に限定がないが、30μm〜200μmがハンドリングの観点から好ましい。
【0047】
流延塗工方法としては、ナイフコート、ダイレクトロールコート、グラビアコート、スプレーコート、刷毛塗り、ディップコート、ダイコート、バキュームダイコート、カーテンコート、フローコート、スピンコート、リバースコート、スクリーン印刷などの手法が適用できる。
【0048】
本発明の電解質膜の製造方法において、溶媒の一部を除去して、基材上に膜状物を生成する方法としては、基板上に流延塗工された塗工膜を加熱し溶媒を蒸発させる方法が好ましい。蒸発方法は基材の加熱、熱風、赤外線ヒーター等の公知の方法が選択できる。
【0049】
塗工膜の乾燥時間や温度は適宜実験的に決めることができるが、少なくとも基材から剥離しても自立膜になる程度に乾燥することが好ましい。
【0050】
次に、該基材上の膜状物を水および/または酸性水溶液と接触させ、重縮合時に生成した塩分を除去する工程について説明する。
【0051】
本発明では、膜状物を、水や酸性水溶液に接触させることにより、遠心分離やフィルター濾過で除去できない微細な塩を除去することが必須である。塩が残存した場合、塩の部分が基点となり電解質膜の耐久性が低下する傾向にある。また、この工程により、膜中の水溶性の不純物、残存モノマー、溶媒なども除去可能であり、加水分解性可溶性基の加水分解も同じ工程で達成できる。さらに、酸性水溶液を選択した場合は、イオン性基が金属塩の場合にはプロトン交換も達成できるため、生産効率の向上が可能である。水、酸性水溶液は反応促進のために加熱してもよい。酸性水溶液は硫酸、塩酸、硝酸、酢酸など特に限定されず、温度、濃度等は適宜実験的に選択可能である。生産性の観点から80℃以下の30重量%以下の硫酸水溶液を使用することが好ましい。
【0052】
本発明で得られる電解質膜の膜厚としては特に制限がないが、通常3〜500μmのものが好適に使用される。実用に耐える膜の強度を得るには3μmより厚い方が好ましく、膜抵抗の低減つまり発電性能の向上のためには500μmより薄い方が好ましい。膜厚のより好ましい範囲は5〜200μm、さらに好ましい範囲は8〜200μmである。この膜厚は、塗工方法により種々の方法で制御できる。例えば、コンマコーターやダイレクトコーターで塗工する場合は、溶液濃度あるいは基板上への塗布厚により制御することができ、スリットダイコートでは吐出圧や口金のクリアランス、口金と基材のギャップなどで制御することができる。
【0053】
また、本発明の塗液中には遠心分離および/またはフィルター濾過後の塗液に、電解質膜の機械的強度の向上およびイオン性基の熱安定性向上、耐ラジカル性向上、塗液の塗工性の向上、保存安定性向上などの目的のために、フィラーや無機微粒子を添加したり、保存安定剤、ポリマーや金属酸化物からなるネットワーク形成剤を添加したりしても差し支えない。また、通常の高分子化合物に使用される結晶化核剤、可塑剤、安定剤あるいは離型剤、酸化防止剤等の添加剤を、本発明の目的に反しない範囲内で添加することができる。
【0054】
また、本発明の高分子電解質膜は、流延塗工時に微多孔膜、不織布、メッシュ等に含浸して膜の補強を行うこともできる。
【0055】
本発明の電解質膜の製造方法によって得られた電解質膜は、種々の用途に適用可能である。例えば、体外循環カラム、人工皮膚などの医療用途、ろ過用用途、イオン交換樹脂用途、各種構造材用途、電気化学用途に適用可能である。また、人工筋肉としても好適である。中でも種々の電気化学用途により好ましく利用できる。電気化学用途としては、例えば、燃料電池、レドックスフロー電池、水電解装置、クロロアルカリ電解装置等が挙げられるが、中でも燃料電池が最も好ましい。さらに燃料電池のなかでも高分子電解質形燃料電池に好適である。
【実施例】
【0056】
以下、実施例により本発明をさらに詳しく説明するが、本発明はこれらに限定されるものではない。なお、各物性の測定条件は次の通りである。
【0057】
(1)スルホン酸基密度
検体となる膜の試料を25℃の純水に24時間浸漬し、40℃で24時間真空乾燥した後、元素分析により測定した。炭素、水素、窒素の分析は全自動元素分析装置varioEL、硫黄の分析はフラスコ燃焼法・酢酸バリウム滴定、フッ素の分析はフラスコ燃焼・イオンクロマトグラフ法で実施した。ポリマーの組成比から単位グラムあたりのスルホン酸基密度(mmol/g)を算出した。
【0058】
(2)プロトン伝導度
前処理として膜の試料を25℃の純水に24時間浸漬し、定電位交流インピーダンス法でプロトン伝導度を測定した。
【0059】
測定装置としては、Solartron製電気化学測定システム(Solartron 1287 Electrochemical InterfaceおよびSolartron 1255B Frequency ResponseAnalyzer)を使用した。サンプルは、φ2mmおよびφ10mmの2枚の円形電極(ステンレス製)間に加重1kgをかけて挟持した。有効電極面積は0.0314cmである。サンプルと電極の界面には、ポリ(2−アクリルアミド−2−メチルプロパンスルホン酸)の15%水溶液を塗布した。25℃において、交流振幅50mVの定電位インピーダンス測定を行い、膜厚方向のプロトン伝導度を求めた。
【0060】
(3)重量平均分子量
ポリマーの重量平均分子量をGPCにより測定した。紫外検出器と示差屈折計の一体型装置として東ソー製HLC−8022GPCを、またGPCカラムとして東ソー製TSKgel SuperHM−H(内径6.0mm、長さ15cm)2本を用い、N−メチル−2−ピロリドン溶媒(臭化リチウムを10mmol/L含有するN−メチル−2−ピロリドン溶媒)にて、流量0.2mL/minで測定し、標準ポリスチレン換算により重量平均分子量を求めた。
【0061】
(4)膜厚
ミツトヨ製グラナイトコンパレータスタンドBSG−20にセットしたミツトヨ製ID−C112型を用いて測定した。
【0062】
(5)粘度測定
回転型粘度計(レオテック社製レオメータRC20型)を用いて剪断速度100(s−1)の条件で温度25℃の粘度を測定した。
ジオメトリーは(試料を充填するアタッチメント)コーン&プレートを使用して、RHEO2000ソフトウェアで得られた値を採用した。
コーンはC25−1(2.5cmφ)を使用し、測定困難な場合は(10poise未満)C50−1(5.0cmφ)に変更した。
【0063】
(6)電解質膜の疲労試験
島津製作所社製 電磁力式微少試験機“MMT−101N”を使用し、下記条件で電解質膜が破断するまでのサイクル数を調べた。
試験雰囲気;25℃ 50%RH
試験片幅;5mm
波形種別;正弦波
最大応力;20MPa
最小応力; 2MPa
周波数 ;100Hz
(7)発電耐久性評価
A.水素透過電流の測定
市販の電極、BASF社製燃料電池用ガス拡散電極“ELAT(登録商標)LT120ENSI”5g/mPtを5cm角にカットしたものを1対準備し、燃料極、酸化極として電解質膜を挟むように対向して重ね合わせ、150℃、5MPaで3分間加熱プレスを行い、評価用膜電極複合体を得た。
【0064】
この膜電極複合体を英和(株)製 JARI標準セル“Ex−1”(電極面積25cm)にセットし、セル温度:80℃、一方の電極に燃料ガスとして水素、もう一方の電極に窒素ガスを供給し、加湿条件:水素ガス90%RH、窒素ガス:90%RHで試験を行った。OCVで0.2V以下になるまで保持し、0.2〜0.7Vまで1mV/secで電圧を掃引し電流値の変化を調べた。本実施例においては下記の起動停止試験の前後で測定し0.6V時の値を調べた。膜が破損した場合、水素透過量が多くなり透過電流が大きくなる。また、この評価はSolartron製電気化学測定システム(Solartron 1480 Electrochemical InterfaceおよびSolartron 1255B Frequency ResponseAnalyzer)を使用して実施した。
【0065】
B.起動停止試験
上記セルを使用し、セル温度:80℃、燃料ガス:水素、酸化ガス:空気、ガス利用率:水素70%/酸素40%、加湿条件:水素ガス60%RH、空気:50%RHの条件で試験を行った。条件としては、OCVで1分間保持し、1A/cmの電流密度で2分間発電し、最後に水素ガスおよび空気の供給を停止して2分間発電を停止し、これを1サイクルとして起動停止を繰り返した。起動停止評価前と3000サイクル後に上記水素透過電流の測定を実施しその差を調べた。また、この試験の負荷変動は菊水電子工業社製の電子負荷装置“PLZ664WA”を使用して行った。
【0066】
(8)電解質膜の構造規則性測定
固体13C DD/MAS NMRにより電解質膜の構造規則を測定した。試料は5mm幅に裁断し、ジルコニア製固体NMR試料管に充填して測定した。測定条件は下記する。
芳香族のメインピークである133ppmのピークの半値幅(Hz)で判断し、この値が小さい(ピークがシャープ)程、構造規則性が高いと判断した。
1)装置:Chemagnetics社製CMX−300
Bruker社製AVANCE400
2)測定:DD/MAS法 緩和時間モード
3)測定角:13
4)観測周波数:75.497791MHz、100.6248425MHz
5)パルス幅:4.2μs、3.3μs
6)観測幅:30.03kHz、40.00kHz
7)ポイント数:観測ポイント1024、データポイント8192
8)パルス繰り返し時間:PD:150s、10s
9)化学シフト基準:シリコーンゴム(内部基準1.56ppm)
10)試料回転数:9kHz、14kHz
11)測定温度:室温
重合原液の作製例1(加水分解性可溶性付与基およびイオン性基を含有する高分子電解質の重合原液)
テフロン(登録商標)製攪拌羽根、温度計を備えた3Lフラスコに4,4’−ジヒドロキシベンゾフェノン(495g、DHBP、東京化成試薬)、およびモンモリロナイトクレイK10(750g、アルドリッチ試薬)を入れ、窒素置換後、エチレングリコール(1200mL、和光純薬試薬)/オルトギ酸トリメチル(500mL、和光純薬試薬)を追加した。攪拌しながらバス温110℃/内温74℃/蒸気温52℃で、メタノール、ギ酸メチルをオルトギ酸トリメチルとともに徐々に蒸留させながら8時間反応させた。次に、オルトギ酸トリメチル500mLを追加し、さらに8時間反応させた。
【0067】
酢酸エチル1Lで希釈後、濾過によりクレイを除去し、酢酸エチル500mL×3の洗液も加えた。2%NaHCO水溶液1Lで4回、飽和食塩水1Lで1回抽出し、NaSOで脱水後、濃縮した。得られた白色スラリー溶液へジクロロメタン500mL追加し、濾過・ジクロロメタン250mL×3で洗浄することにより、目的の加水分解性可溶性付与基を含むモノマーである2,2−ビス(4−ヒドロキシフェニル)−1,3−ジオキソラン(K−DHBP)/DHBP混合物を淡黄色固体として得た(収量:347g、K−DHBP/DHBP=94/6(mol%))。構造はH−NMRで確認し、K−DHBP/DHBPの比を算出した。その他不純物はガスクロマトグラフィーで認められなかった。
【0068】
次に撹拌機、窒素導入管、Dean−Starkトラップを備えた500mL三口フラスコに、炭酸カリウム13.82g(アルドリッチ試薬、100mmol)、前記で得たK−DHBP/DHBP=94/6(mol%)混合物20.4g(80mmol)、4,4’−ジフルオロベンゾフェノン12.2g(アルドリッチ試薬、56mmol)、およびイオン性基を含有するモノマーであるジソジウム3,3’−ジスルホネート−4,4’−ジフルオロベンゾフェノン10.1g(24mmol)を入れ、窒素置換後、N−メチルピロリドン(NMP)110mL、トルエン55mLを加え、環流しながら180℃で脱水後、昇温してトルエン除去し、230℃で5時間脱塩重縮合を行った。重量平均分子量は21万であった。
【0069】
次に重合原液の粘度が5poiseになるようにN−メチル−2−ピロリドンを添加し重合原液Aを得た。
【0070】
重合原液の作製例2(イオン性基密度が1.0mmol/g以上の高分子電解質の重合原液)
重合原液の作製例1のK−DHBP/DHBP=94/6(mol%)混合物20.4g(80mmol)を4,4’−ジヒドロキシテトラフェニルメタン27.2g(80mmol)に変更し脱塩重縮合温度を190℃にした以外は重合原液の作製例1塗同様に脱塩重縮合を行った。次に重合原液の粘度が5poiseになるようにN−メチル−2−ピロリドンを添加し重合原液Bを得た。
【0071】
実施例1
重合原液Aを久保田製作所製インバーター・コンパクト高速冷却遠心機 型番6930 にアングルローターRA−800をセットし、25℃、30分間、遠心力20000Gで固液分離を行った。ケーキと上澄み液(塗液)がきれいに分離できたので、上澄み液を回収した。上澄み液のみを1μmのポリテトラフルオロエチレン(PTFE)製フィルターで加圧濾過して、セパラブルフラスコに移した。次に、撹拌しながら80℃で減圧蒸留し、上澄み液の粘度が20poiseになるまでNMPを除去し、塗液Aを得た。
【0072】
塗液Aを基材として125μmのPETフィルム(東レ製“ルミラー(登録商標)”)を用い、スリットダイで流延塗工し、150℃で15分間乾燥した。次に、乾燥膜をPETから剥離し、25℃の純水10分間浸漬し残存塩、残存モノマー、残存炭酸カリウム、残存NMP等を洗浄した後、60℃の10重量%の硫酸に30分間浸漬し、加水分解性可溶性基の加水分解とイオン性基のプロトン交換を実施した。次にこの膜を洗浄液が中性になるまで純水で洗浄し、60℃で30分間乾燥し膜厚 30μmの電解質膜Aを得た。電解質膜Aは膜全体がほぼ無色透明で、水に浸漬しても僅かに白濁する程度であった。また、この電解質膜のイオン性基密度は1.3mmol/g、固体13C−NMRスペクトルにおいて、膜の構造規則性を判定する133ppmのピークの半値幅は580Hzであった。
【0073】
この電解質膜Aを使用し疲労試験を行ったところ2500000回であった。
【0074】
また、発電耐久性評価を実施し試験前後の水素透過電流を測定したところ、評価前が0.40mA/cmで評価後は0.41mA/cmであり耐久性が良好であった。
【0075】
比較例1
重合原液Aを大過剰の水に徐々に添加し沈殿精製を行った。この際、析出ポリマーの膨潤が大きく十分な洗浄ができず、作業性が顕著に悪かった。沈殿ポリマーの一部を濾布で濾過して水切り後、80℃で一晩減圧乾燥を行なった後、NMPに再溶解した後、粘度が100poiseの塗液とした後、1μmのポリテトラフルオロエチレン(PTFE)製フィルターで加圧濾過を実施したが、溶媒不溶のゲル分により、濾過が困難であったため、3μmのフィルターに変更し加圧濾過を行い、塗液Bを得た。
【0076】
塗液Bを基材として125μmのPETフィルム(東レ製“ルミラー(登録商標)”)を用い、スリットダイで流延塗工し、150℃で15分間乾燥した。この際もゲルが原因の異物により縦筋が入りやすかった。
【0077】
次に、乾燥膜をPETから剥離し、25℃の純水10分間浸漬し残存NMP等を洗浄した後、60℃の10重量%の硫酸に30分間浸漬し、加水分解性可溶性基の加水分解とイオン性基のプロトン交換を実施した。次にこの膜を洗浄液が中性になるまで純水で洗浄し、60℃で30分間乾燥し膜厚 30μmの電解質膜Bを得た。電解質膜Bは膜全体が薄く白濁し、水に浸漬すると顕著に白濁し半透明となった。また、固体13C−NMRスペクトルにおいて、膜の構造規則性を判定する133ppmのピークの半値幅は780Hzであった。
【0078】
この電解質膜Bを使用し疲労試験を行ったところ50000回であった。
【0079】
また、発電耐久性評価を実施し試験前後の水素透過電流を測定したところ、評価前が0.40mA/cmで評価後は2.51mA/cmであり耐久性が劣っていた。
【0080】
実施例2
実施例1の重合原液Aを重合原液Bに変更した以外は実施例1と同様に固液分離した。
ケーキと上澄み液(塗液)がきれいに分離できたので、上澄み液を回収した。上澄み液のみを1μmのポリテトラフルオロエチレン(PTFE)製フィルターで加圧濾過して、セパラブルフラスコに移した。次に、撹拌しながら80℃で減圧蒸留し、上澄み液の粘度が20poiseになるまでNMPを除去し、塗液Aを得た。
【0081】
塗液Aを基材として125μmのPETフィルム(東レ製“ルミラー(登録商標)”)を用い、スリットダイで流延塗工し、150℃で15分間乾燥した。次に、乾燥膜をPETから剥離し、25℃の純水10分間浸漬し残存塩、残存モノマー、残存炭酸カリウム、残存NMP等を洗浄した後、60℃の10重量%の硫酸に30分間浸漬し、加水分解性可溶性基の加水分解とイオン性基のプロトン交換を実施した。次にこの膜を洗浄液が中性になるまで純水で洗浄し、60℃で30分間乾燥し膜厚 30μmの電解質膜Aを得た。電解質膜Aは膜全体がほぼ無色透明で、水に浸漬しても僅かに白濁する程度であった。また、固体13C−NMRスペクトルにおいて、膜の構造規則性を判定する133ppmのピークの半値幅は680Hzであった。
【0082】
この電解質膜Aを使用し疲労試験を行ったところ2100000回であった。
【0083】
また、発電耐久性評価を実施し試験前後の水素透過電流を測定したところ、評価前が0.3mA/cmで評価後は0.42mA/cmであり耐久性が良好であった。
【0084】
比較例2
比較例1の重合原液Aを重合原液Bに変更した以外は比較例1と同様に沈殿精製した。
この際、析出ポリマーの膨潤が非常に大きく、水を切るため濾布で濾過をしたが水に膨潤したポリマーが濾布をすり抜けほとんどポリマーが回収できなかった。
【0085】
実施例3
モンモリロナイトクレイK10(150g)、ジヒドロキシベンゾフェノン99gをエチレングリコール242mL/オルトギ酸トリメチル99mL中、生成する副生成物を蒸留させながら110℃で反応させた。18h後、オルトギ酸トリメチルを66g追加し、合成48h反応させた。反応溶液に酢酸エチル300mLを追加し、濾過後、2%炭酸水素ナトリウム水溶液で4回抽出を行った。さらに、濃縮後、ジクロロエタンで再結晶する事により目的の加水分解性可溶性付与基を有する2,2−ビス(4−ヒドロキシフェニル)−1,3−ジオキソランを得た。
【0086】
次に4,4’−ジフルオロベンゾフェノン109.1g(アルドリッチ試薬)を発煙硫酸(50%SO3)150mL(和光純薬試薬)中、100℃で10h反応させた。その後、多量の水中に少しずつ投入し、NaOHで中和した後、食塩200gを加え合成物を沈殿させた。得られた沈殿を濾別し、エタノール水溶液で再結晶し、イオン性基を有するジソジウム 3,3’−ジスルホネート−4,4’−ジフルオロベンゾフェノンを得た。純度は99.3%であった。
【0087】
次に 撹拌機、窒素導入管、滴下漏斗、Dean−Starkトラップを備えた4L反応容器に、2,2−ビス(4−ヒドロキシフェニル)−1,3−ジオキサン144.6g、4,4’−ジヒドロキシベンゾフェノン30g、4,4’−ジフルオロベンゾフェノン47gを仕込み、NMP1000g、トルエン350gを加え、撹拌溶解後、炭酸カリウム145gを添加した。
【0088】
別の容器にジソジウム 3,3’−ジスルホネート−4,4’−ジフルオロベンゾフェノン211g、NMP1500g、1,4,7,10,13,17-ヘキサオキサシクロオクタデカン100gを入れ均一に溶解した後、上記滴下漏斗より滴下し混合した。
【0089】
次ぎにこの溶液を撹拌しながら加熱して反応液温度150℃でトルエンと水の共沸物を還流させながら、水が留出しないようになるまで脱水を実施した。その後、200℃に温度を上げ8hr重合を行った。この重合液中のポリマーの重量平均分子量は25万であった。
【0090】
次に粘度が5poiseになるようにN−メチル−2−ピロリドンを添加し重合原液Cを得た。
【0091】
重合液Cを関西遠心分離社製超高速遠心分離機VHF1001型を使用し、重合液Cを100g/分の速度で供給し、20000Gの遠心力で連続的に遠心分離を行った。透過液を回収し、セパラブルフラスコに移して撹拌しながら120℃で減圧蒸留し、上澄み液の粘度が120poiseになるまでNMPを除去した。この液を3μmのポリテトラフルオロエチレン(PTFE)製フィルターで加圧濾過し塗液Cを得た。
【0092】
塗液Cを、基材として125μmのPETフィルム(東レ製“ルミラー(登録商標)”)を用い、スリットダイで流延塗工し、150℃で15分間乾燥した。次に、乾燥膜をPETごと、25℃の純水10分間浸漬し残存塩、残存モノマー、残存炭酸カリウム、残存NMP等を洗浄した後、60℃の10重量%の硫酸に30分間浸漬し、加水分解性可溶性基の加水分解とイオン性基のプロトン交換を実施した。次にこの膜を洗浄液が中性になるまで純水で洗浄し、60℃で30分間乾燥し膜厚 15μmの電解質膜Cを得た。電解質膜Cは膜全体がほぼ無色透明で、水に浸漬しても僅かに白濁する程度であった。また、この電解質膜のイオン性基密度は2.5mmol/g、固体13C−NMRスペクトルにおいて、膜の構造規則性を判定する133ppmのピークの半値幅は670Hzであった。
【0093】
この電解質膜Cを使用し疲労試験を行ったところ1500000回であった。
【0094】
また、発電耐久性評価を実施し試験前後の水素透過電流を測定したところ、評価前が0.35mA/cmで評価後は0.40mA/cmであり耐久性が良好であった。
【産業上の利用可能性】
【0095】
本発明の製造方法は、高耐久性と高イオン伝導度、低燃料透過性を高いレベルで兼ね備えた電解質膜の製造を可能とし、得られた電解質膜は、種々の電気化学装置(例えば、燃料電池、水電解装置、クロロアルカリ電解装置等)に適用可能である。これら装置の中でも、燃料電池用に好適であり、特に水素やメタノール水溶液を燃料とする燃料電池に好適であり、携帯電話、パソコン、PDA、ビデオカメラ(カムコーダー)、デジタルカメラ、ハンディターミナル、RFIDリーダー、デジタルオーディオプレーヤー、各種ディスプレー類などの携帯機器、電動シェーバー、掃除機等の家電、電動工具、家庭用電力供給機、乗用車、バスおよびトラックなどの自動車、二輪車、電動アシスト付自転車、電動カート、電動車椅子や船舶および鉄道などの移動体、各種ロボット、サイボーグなどの電力供給源として好ましく用いられる。特に携帯用機器では、電力供給源だけではなく、携帯機器に搭載した二次電池の充電用にも使用され、さらには二次電池やキャパシタ、太陽電池と併用するハイブリッド型電力供給源としても好適に利用できる。

【特許請求の範囲】
【請求項1】
脱塩重縮合で得られる、下記から選択される何れかの高分子電解質の重合溶液から、直接、遠心分離および/またはフィルター濾過で、重縮合時に生成した塩分の一部を除去して塗液を得る工程、該塗液を基材上に流延塗工し、溶媒の一部を除去して、基材上に膜状物を得る工程、該基材上の膜状物を水および/または酸性水溶液と接触させ、重縮合時に生成した塩分を除去する工程を有することを特徴とする高分子電解質膜の製造方法。
(1)加水分解性可溶性付与基およびイオン性基を含有する高分子電解質
(2)イオン性基密度が1.0mmol/g以上の高分子電解質
【請求項2】
請求項1の製造方法で得られた、固体13C DD/MAS NMRにより測定した133ppmのピークの半値幅が700Hz以下であることを特徴とする高分子電解質膜。

【公開番号】特開2010−86953(P2010−86953A)
【公開日】平成22年4月15日(2010.4.15)
【国際特許分類】
【出願番号】特願2009−201351(P2009−201351)
【出願日】平成21年9月1日(2009.9.1)
【国等の委託研究の成果に係る記載事項】(出願人による申告)平成21年度独立行政法人新エネルギー・産業技術総合開発機構 燃料電池・水素技術開発部 委託研究「固体高分子形燃料電池実用化戦略技術開発 要素技術開発 高性能炭化水素系電解質膜の研究開発」、産業技術力強化法第19条の適用を受ける特許出願
【出願人】(000003159)東レ株式会社 (7,677)
【Fターム(参考)】