説明

高圧水電解システムの制御方法

【課題】リリーフ弁の故障を容易且つ確実に検出することができ、前記リリーフ弁から水素を無駄に放出することを可及的に阻止し、経済的な電解処理を効率的に行うことを可能にする。
【解決手段】高圧水電解システム10の制御方法は、水素の圧力が、背圧弁36の設定圧力まで昇圧する昇圧時間を算出する昇圧時間算出工程と、前記背圧弁36の上流側に配置された圧力計38により前記水素の圧力を計測する圧力計測工程と、算出された前記昇圧時間が経過した後、計測された前記水素の圧力と前記背圧弁36の前記設定圧力とを比較する圧力比較工程と、比較された前記水素の圧力が前記設定圧力よりも低圧である際に、システム停止を行うシステム停止工程とを有する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、水を電気分解して酸素と該酸素よりも高圧な水素とを発生させる高圧水電解装置を備える高圧水電解システムの制御方法に関する。
【背景技術】
【0002】
例えば、固体高分子型燃料電池は、アノード側電極に燃料ガス(主に水素を含有するガス、例えば、水素ガス)が供給される一方、カソード側電極に酸化剤ガス(主に酸素を含有するガス、例えば、空気)が供給されることにより、直流の電気エネルギを得ている。
【0003】
一般的に、燃料ガスである水素ガスを製造するために、水電解装置が採用されている。この水電解装置は、水を分解して水素(及び酸素)を発生させるため、固体高分子電解質膜(イオン交換膜)を用いている。固体高分子電解質膜の両面には、電極触媒層が設けられて電解質膜・電極構造体が構成されるとともに、前記電解質膜・電極構造体の両側には、アノード側給電体とカソード側給電体とを配設してユニットが構成されている。
【0004】
そこで、複数のユニットが積層された状態で、積層方向両端に電圧が付与されるとともに、アノード側に水が供給される。このため、電解質膜・電極構造体のアノード側では、水が分解されて水素イオン(プロトン)が生成され、この水素イオンが固体高分子電解質膜を透過してカソード側に移動し、電子と結合して水素が製造される。一方、アノード側では、水素イオンと共に生成された酸素が、余剰の水を伴ってユニットから排出される。
【0005】
この種の水電解装置として、例えば、特許文献1に開示されている水素・酸素発生装置が知られている。この水素・酸素発生装置は、図6に示すように、環状の電極板1を備えており、この電極板1の両面には、電位が逆となる陰極室2及び陽極室3が形成されている。
【0006】
陽極室3には、純水供給経路3aを介して純水が供給されるとともに、前記陽極室3に連通する酸素ガス経路3bには、生成された酸素が排出されている。酸素ガス経路3bは、酸素ガス捕集室3cに連通している。一方、陰極室2には、水素ガス経路2aの一端が連通するとともに、前記水素ガス経路2aの他端には、水素ガス捕集室2bが連通している。
【0007】
酸素ガス捕集室3cの両側には、それぞれOリングからなるシール部材4a、4bが配置されるとともに、水素ガス捕集室2bの両側には、それぞれOリングからなるシール部材5a、5bが配設されている。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開平8−239786号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
ところで、通常、上記の水電解処理において、数十MPaの高圧水素を生成する場合がある。例えば、上記の特許文献1により高圧水素を生成しようとすると、水素ガス捕集室2bの下流には、生成された水素を高圧に維持するために、例えば、背圧弁を設ける必要がある。
【0010】
さらに、背圧弁や他のディバイスが故障した際、圧力の異常上昇が惹起されるおそれがある。従って、圧力を良好に逃がすために、リリーフ弁(安全弁)を設ける必要がある。リリーフ弁は、背圧弁の設定圧力よりも高い圧力で開放されるように設定されており、通常運転時に前記リリーフ弁から水素が放出されることを阻止している。
【0011】
しかしながら、リリーフ弁に故障が発生した際には、例えば、このリリーフ弁が、設定された圧力よりも低圧で水素を放出してしまうおそれがある。これにより、生成された水素を無駄に放出しながら、電解処理が遂行されるため、経済的ではないという問題がある。
【0012】
本発明はこの種の問題を解決するものであり、リリーフ弁の故障を容易且つ確実に検出することができ、前記リリーフ弁から水素を無駄に放出することを可及的に阻止し、経済的な電解処理を行うことが可能な高圧水電解システムの制御方法を提供することを目的とする。
【課題を解決するための手段】
【0013】
本発明は、水を電気分解して酸素と該酸素よりも高圧な水素とを発生させる高圧水電解装置と、前記高圧水電解装置のカソード側に発生した前記水素を、水素充填部に供給するための水素供給配管と、前記水素供給配管に連通し、前記水素充填部に供給される前記水素の圧力を規制する背圧弁と、前記高圧水電解装置と前記背圧弁との間に位置して前記水素供給配管に連通し、前記背圧弁の設定圧力よりも高圧な圧力で開放されるリリーフ弁とを備える高圧水電解システムの制御方法に関するものである。
【0014】
この制御方法は、カソード側に発生した水素の圧力が、背圧弁の設定圧力まで昇圧する昇圧時間を算出する昇圧時間算出工程と、前記背圧弁の上流側に配置された圧力計により水素の圧力を計測する圧力計測工程と、算出された前記昇圧時間が経過した後、計測された前記水素の圧力と前記背圧弁の前記設定圧力とを比較する圧力比較工程と、比較された前記水素の圧力が前記設定圧力よりも低圧である際に、システム停止を行うシステム停止工程とを有している。
【0015】
また、この制御方法は、高圧水電解装置による水素製造量を算出する水素製造量算出工程と、比較された水素の圧力が設定圧力と同圧である際、水素を水素充填部に供給しながら、背圧弁より下流に配置された流量計によって水素供給配管を流通する水素流量を算出する水素流量算出工程と、前記水素製造量と前記水素流量とを比較する水素量比較工程と、比較された前記水素製造量が前記水素流量よりも所定量以上である際に、システム停止を行うシステム停止工程とを有することが好ましい。
【発明の効果】
【0016】
本発明によれば、背圧弁の上流側に配置された圧力計により水素の圧力を計測し、計測された前記水素の圧力と前記背圧弁の設定圧力とを比較することにより、リリーフ弁の故障を容易且つ確実に検出することができる。これにより、リリーフ弁から水素を無駄に放出することを可及的に阻止し、経済的な電解処理を効率的に行うことが可能になる。
【図面の簡単な説明】
【0017】
【図1】本発明の実施形態に係る制御方法が適用される高圧水電解システムの概略構成説明図である。
【図2】前記制御方法を説明するフローチャートである。
【図3】正常時の検出圧力及び平均水素流量の説明図である。
【図4】前記検出圧力が異常な場合の説明図である。
【図5】前記平均水素流量が異常な場合の説明図である。
【図6】特許文献1に開示されている水素・酸素発生装置を構成する電極板の説明図である。
【発明を実施するための形態】
【0018】
図1に示すように、本発明の実施形態に係る制御方法が適用される高圧水電解システム10は、純水供給装置12を介して市水から生成された純水が供給され、この純水を電気分解することによって高圧水素(酸素圧よりも高圧、例えば、1MPa以上)を製造する高圧水電解装置14を備える。
【0019】
高圧水電解装置14は、複数の水分解セル16が積層されており、前記水分解セル16の積層方向両端には、エンドプレート18a、18bが配設される。高圧水電解装置14には、直流電源である電解電源20が接続される。
【0020】
エンドプレート18aには、配管22aが接続されるとともに、エンドプレート18bには、配管22b、22cが接続される。配管22a、22bは、循環路24を介して純水供給装置12から純水の循環が行われる一方、水素排出口である配管22cは、水素導出路26を介して気液分離器28に接続される。
【0021】
気液分離器28には、ドレイン排出路30が接続されるとともに、前記ドレイン排出路30には、背圧弁32及び開閉弁34が配設される。このドレイン排出路30は、例えば、純水供給装置12に接続されて前記純水供給装置12に水を供給してもよい。
【0022】
水素導出路26には、気液分離器28の下流に位置して背圧弁36が配設される一方、高圧水電解装置14と前記気液分離器28との間に位置して、圧力計38及び排出配管40が接続される。この排出配管40には、リリーフ弁(安全弁)42が配設される。
【0023】
水素導出路26には、背圧弁36の下流に位置して、流量計44が配置されるとともに、前記流量計44の下流に位置して、連結部46が設けられる。連結部46は、水素充填部である燃料電池車両48の燃料タンクに、直接、あるいは、図示しない貯留タンクを介して接続可能である。
【0024】
高圧水電解システム10は、コントローラ50を介して全体的に運転制御される。背圧弁36は、水素充填部に供給される水素の圧力を規制するために、所定の設定圧力C(MPa)に設定される。リリーフ弁42は、背圧弁36の設定圧力Cよりも高圧な圧力C+α1(MPa)で開放されるように、圧力C+α1(MPa)に設定される(α1>0)。
【0025】
このように構成される高圧水電解システム10の動作について、図2に示すフローチャートに沿って以下に説明する。
【0026】
先ず、コントローラ50では、高圧水電解システム10の高圧水素系、具体的には、高圧水電解装置14内のカソード側から背圧弁36までの容積A(L)、前記高圧水電解装置14に印加される電解電流B(アンペア)及び前記背圧弁36の設定圧力C(MPa)が設定される(ステップS1)。
【0027】
次いで、ステップS2に進んで、高圧水電解システム10による電解処理が開始される。高圧水電解システム10の始動時には、純水供給装置12を介して市水から生成された純水が高圧水電解装置14に供給される。この高圧水電解装置14では、電解電源20から通電されることにより、純水が電気分解されてアノード側に酸素が生成される一方、カソード側に水素が生成される。
【0028】
高圧水電解装置14内に生成された水素は、水素導出路26を介して気液分離器28に送られる。この気液分離器28では、水素に含まれる水蒸気が、この水素から分離されるとともに、水蒸気が除去された前記水素は、背圧弁36を介して昇圧される。
【0029】
一方、コントローラ50では、電解電流B(アンペア)から高圧水電解装置14による水素製造量D(L)が算出される(ステップS3)。具体的には、Q=mFzから理論水素流量が算出される。ここで、Qは電荷量(クーロン)、mはモル数(mol)、Fはファラデー定数、zはイオン価数である。
【0030】
さらに、水素製造量D(L)及び容積A(L)に基づいて、水素の昇圧速度E(MPa/s)が算出される(ステップS4)。そして、ステップS5に進んで、設定圧力C(MPa)及び昇圧速度E(MPa/s)に基づいて、前記設定圧力C(MPa)に到達する予想昇圧時間G(s)が算出される。
【0031】
コントローラ50には、圧力計38による検出圧力が入力されており、この検出圧力が設定圧力C(MPa)に到達したか否かが判断される(ステップS6)。図3に示すように、圧力計38により検出された検出圧力が、設定圧力C(MPa)に到達したと判断されると(ステップS6中、YES)、ステップS7に進んで、予想昇圧時間G(s)から所定の時間H(s)が経過したか否かが判断される。
【0032】
この所定の時間H(s)は、例えば、気液分離器28による排水処理が行われる場合に、前記排水処理の完了後に平均水素流量I(NLM)を算出するために設定されている。従って、気液分離器28による排水処理が行われない場合には、所定の時間H(s)を不要にすることも可能である。
【0033】
予想昇圧時間G(s)から所定の時間H(s)が経過したと判断されると(ステップS7中、YES)、ステップS8に進む。このステップS8では、図1に示すように、連結部46が燃料電池車両48の燃料タンクに接続され、前記燃料タンクに高圧水素の供給が行われている。そして、流量計44は、燃料タンクに供給される高圧水素の流量を検出するとともに、コントローラ50では、検出された流量から平均水素流量I(NLM)を算出する。
【0034】
なお、平均水素流量I(NLM)に代えて、積算水素流量を求めてもよい。また、予想昇圧時間G(s)から所定の時間H(s)が経過したか否かの判断を行うことなく、前記予想昇圧時間G(s)が経過した後、平均水素流量I(NLM)の算出を行ってもよい。
【0035】
平均水素流量I(NLM)が算出された後、ステップS9に進んで、前記平均水素流量I(NLM)が水素製造量D×α2(L)以上であるか否かが判断される。ここで、一般的に、流量計44で平均化された平均水素流量I(NLM)は、電解電流B(アンペア)から求められる水素製造量D(L)の80%程度になることがあり、α2は、例えば、0.6程度、すなわち、水素製造量D(L)の60%程度に設定されることが望ましい。
【0036】
図3に示すように、平均水素流量I(NLM)が水素製造量D×α2(L)以上であると判断されると(ステップS9中、YES)、ステップS10に進んで、システム停止要求がなされるか否かが判断される。システム停止要求がなされると(ステップS10中、YES)、高圧水電解システム10が正常停止される(ステップS11)。
【0037】
一方、図4に示すように、検出圧力が設定圧力C(MPa)に到達しないと判断されると(ステップS6中、NO)、ステップS12に進む。ここで、設定圧力C(MPa)が、例えば、35(MPa)である際には、実際上、検出圧力は33(MPa)を超えていればよい。従って、設定圧力C(MPa)に一定の圧力幅を持たせておくことができ、例えば、検出圧力が33(MPa)以下である場合に、前記検出圧力は設定圧力C(MPa)に到達しないと判断されるように制御してもよい。
【0038】
ステップS12では、電解処理を開始した後、昇圧時間G×α3(s)が経過したか否かが判断される。ここで、α3は、例えば、1.2に設定されているが、必要に応じて0〜所定の値に設定可能である。
【0039】
検出圧力が設定圧力C(MPa)に到達しない状態で、昇圧時間G×α3(s)が経過したと判断されると(ステップS12中、YES)、ステップS13に進んで、高圧水電解システム10が異常停止される。すなわち、リリーフ弁42に故障が発生しており、このリリーフ弁42を通って排出配管40から水素導出路26外に水素が放出されていることが検出される。
【0040】
このように、本実施形態では、背圧弁36の上流側に配置された圧力計38により圧力を検出し、検出された検出圧力と前記背圧弁36の設定圧力C(MPa)とを比較することにより、リリーフ弁42の故障を容易且つ確実に検出することができる。これにより、リリーフ弁42から水素を無駄に放出することを可及的に阻止し、経済的な電解処理を効率的に行うことが可能になるという効果が得られる。
【0041】
また、圧力計38により検出された検出圧力が設定圧力C(MPa)に到達したと判断されると(ステップS6中、YES)、ステップS7〜ステップS9に進む。その際、ステップS9において、燃料タンクに高圧水素の供給が行われている間に、平均水素流量I(NLM)が水素製造量D×α2(L)未満であると判断されると(ステップS9中、NO)、ステップS13に進んで、高圧水電解システム10が異常停止される(図5参照)。
【0042】
このように、本実施形態では、圧力計38を介して高圧水素系内が設定圧力C(MPa)に維持されていると判断された後、さらに流量計44を介して燃料タンクに供給されている高圧水素の流量である平均水素流量I(NLM)が、算出された水素量である水素製造量D×α2(L)と比較されている。
【0043】
従って、背圧弁36の設定圧力C(MPa)の近傍で、リリーフ弁42から微少な水素漏れが惹起している際、この水素漏れを確実に検出することができる。このため、リリーフ弁42の故障の有無が、2段階の検知処理で容易且つ確実に検出されるという利点が得られる。
【0044】
さらにまた、平均水素流量I(NLM)が算出され(ステップS8)、前記平均水素流量I(NLM)が水素製造量D×α2(L)以上であるか否かの判断(ステップS9)は、システム停止要求がなされるまで継続されている(ステップS10)。これにより、リリーフ弁42からの水素漏れを可及的に阻止することが可能になる。
【符号の説明】
【0045】
10…高圧水電解システム 12…純水供給装置
14…高圧水電解装置 16…水分解セル
20…電解電源 22a、22b、22c…配管
24…循環路 26…水素導出路
28…気液分離器 30…ドレイン排出路
36…背圧弁 38…圧力計
40…排出配管 42…リリーフ弁
44…流量計 46…連結部
48…燃料電池車両 50…コントローラ

【特許請求の範囲】
【請求項1】
水を電気分解して酸素と該酸素よりも高圧な水素とを発生させる高圧水電解装置と、
前記高圧水電解装置のカソード側に発生した前記水素を、水素充填部に供給するための水素供給配管と、
前記水素供給配管に連通し、前記水素充填部に供給される前記水素の圧力を規制する背圧弁と、
前記高圧水電解装置と前記背圧弁との間に位置して前記水素供給配管に連通し、前記背圧弁の設定圧力よりも高圧な圧力で開放されるリリーフ弁と、
を備える高圧水電解システムの制御方法であって、
前記カソード側に発生した前記水素の圧力が、前記背圧弁の設定圧力まで昇圧する昇圧時間を算出する昇圧時間算出工程と、
前記背圧弁の上流側に配置された圧力計により前記水素の圧力を計測する圧力計測工程と、
算出された前記昇圧時間が経過した後、計測された前記水素の圧力と前記背圧弁の前記設定圧力とを比較する圧力比較工程と、
比較された前記水素の圧力が前記設定圧力よりも低圧である際に、システム停止を行うシステム停止工程と、
を有することを特徴とする高圧水電解システムの制御方法。
【請求項2】
請求項1記載の制御方法において、前記高圧水電解装置による水素製造量を算出する水素製造量算出工程と、
比較された前記水素の圧力が前記設定圧力と同圧である際、前記水素を前記水素充填部に供給しながら、前記背圧弁より下流に配置された流量計によって前記水素供給配管を流通する水素流量を算出する水素流量算出工程と、
前記水素製造量と前記水素流量とを比較する水素量比較工程と、
比較された前記水素製造量が前記水素流量よりも所定量以上である際に、システム停止を行うシステム停止工程と、
を有することを特徴とする高圧水電解システムの制御方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2012−87396(P2012−87396A)
【公開日】平成24年5月10日(2012.5.10)
【国際特許分類】
【出願番号】特願2010−237410(P2010−237410)
【出願日】平成22年10月22日(2010.10.22)
【出願人】(000005326)本田技研工業株式会社 (23,863)
【Fターム(参考)】