説明

高電気抵抗及び高熱伝導再結晶SiC焼結体及びその製造方法

【課題】再結晶SiCセラミックスの抵抗率を大きくし、電気絶縁体的な性質を付与するとともに、熱伝導率を大幅に向上することができ、再結晶SiCの長所である強度、耐食性をそのまま維持することができる再結晶SiC焼結体及びその製造方法を提供する。
【解決手段】0.01〜2wt%のSiO2と99.99〜98wt%のSiCから実質的になる再結晶SiC焼結体であって、その抵抗率が500〜50000Ω・cmに制御されているものである。炉の有効体積(加熱域)の0.01〜10倍の不活性ガスを毎分流しながら、0.01〜2atmの圧力下で、2Hr以上かけて2000℃まで昇温し、その後0.5〜2atmの圧力下で、2000〜2500℃の温度に昇温する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、強度、耐腐食性、熱伝導率、電気絶縁性等の特性に優れた再結晶SiC焼結体およびその製造方法に関する。
【背景技術】
【0002】
技術革新が急速に進む中で、電子機器に求められる特性の高純度、高密度および高機能化が、絶え間なく急速に繰り返され続けている。
電子機器の性能を高度化させるために、同時にその製造設備、製造環境についても絶え間なく急速に改良改善されている。
特に、液晶画面製造プロセスや半導体の処理分野では、強度、耐腐食性、熱伝導率および電気絶縁性に優れた材料を用いた設備の使用が検討されており、その際、製造治具として高価な金属やファインセラミックスが検討されている。
【0003】
現在、上記特性を満たすべく、ファインセラミックスとしてアルミナ、炭化珪素、窒化珪素等の品質改善が行われてきているが、それぞれの項目のバランスとして満足できるものではない。
【0004】
また、これらファインセラミックスの特性を金属に近づけ、金属とセラミックス双方の特徴を兼ね備えるSi−SiC複合体が検討され、液晶画面プレス板治具や半導体熱処理用ラジアントチューブとしてSi−SiCが活用されるに到っている。
【0005】
更に、従来から電子機器およびその製造分野に用いるファインセラミックスや複合材(Si−SiC)は、単に原料の純度を高くしてプロセス中に拡散付着する不純物を不可避元素と取り扱っていたため、使用原料の特性に焼結体の特性が依存していた。
【0006】
このために、炭化珪素や窒化珪素のような非酸化物セラミックスの場合、取扱中に大気中の酸素や水蒸気と接触し、SiCやSi34が酸化され、シリカ成分が多くなってしまう欠点があった。
更に、全ての原料は、クリーンルーム等の清浄な状態で取り扱うこと無しに、高純度なファインセラミックスや複合材、金属材の焼結は困難であったため、非常に高価な製造設備を準備せざるを得ず、高価な製品となっていた。
【0007】
特に、焼成を行う場合には、大気雰囲気、窒素雰囲気、アルゴン雰囲気あるいは、一定の不活性混合ガス雰囲気での処理を施していたが、その雰囲気を常に清浄化する手段に欠けていた。
非酸化セラミックスや再結晶SiC複合材の焼成時には、特に焼成雰囲気に存在するC(遊離炭素)と酸素の反応、およびC(遊離炭素)とSiO2の反応によって生じるCOガスの脱離により生じる欠陥や、特異な結晶粒成長により強度が極端に低下すると共に、焼結体中に残存する気孔が多くなり、熱伝導率のバラツキが発生していた。
【0008】
また、SiO2が周囲に存在する不純物元素を溶かし込み、沈着することで、材料本来の抵抗率が変化したり、ばらつくことが多い。
特に、再結晶SiCの場合、500℃以下の低温時の電気抵抗体としては、0.1〜50Ω・cmと低い値であるとともに、バラツキがあり、更に一般的に電気絶縁体的性質を有するセラミックスの特徴を阻害しており、特に低温度環境下で用いる場合の用途を限定されていた。
【0009】
更に、その熱伝導率も30〜70W/m・Kとばらつきがあり、これは、これまでの再結晶SiC自体の気孔率が10〜25%と多く残留するが故に、この絶対値の向上が困難とされていたからである。換言すれば、SiC本来の高熱伝導性が得るためには、緻密なSiC焼結体にする必要があった。
【発明の開示】
【発明が解決しようとする課題】
【0010】
本発明は上記した従来の課題に鑑みてなされたものであり、その目的とするところは、再結晶SiCセラミックスの抵抗率を大きくし、電気絶縁体的な性質をより明確に付与することができるとともに、SiCの長所である熱伝導率を大幅に向上することができた再結晶SiC焼結体及びその製造方法を提供するものである。
【0011】
また、母原料純度に依存していた焼結体純度を、処理工程を工夫することにより高純度化させ、母原料純度以上の純度の焼結体の製造を可能にする製造方法を提供するものである。
【課題を解決するための手段】
【0012】
すなわち、本発明によれば、0.01〜2wt%のSiO2と99.99〜98wt%のSiCから実質的になる再結晶SiC焼結体であって、その抵抗率が500〜50000Ω・cmに制御されていることを特徴とする再結晶SiC焼結体が提供される。
尚、前記再結晶SiC焼結体の熱伝導率が、100〜200W/m・Kであることが好ましい。
【0013】
また、本発明によれば、SiCを主成分とする成形体母原料から作製された成形体から、再結晶SiC焼結体を製造する方法であって、炉の有効体積(加熱域)の0.01〜10倍の不活性ガスを毎分流しながら、0.01〜2atmの圧力下で、2Hr以上かけて2000℃まで昇温し、その後0.5〜2atmの圧力下で、2000〜2500℃の温度に昇温することを特徴とする再結晶SiC焼結体の製造方法が提供される。
【0014】
尚、SiCの純度が、98.0%以上に保持されていることが好ましく、成形体母原料の純度よりも、焼結体のSiC純度が高純度になることが好ましい。
【発明の効果】
【0015】
以上説明したように、本発明によれば、従来、ヒーター等にも用いられてきた再結晶SiCセラミックスの抵抗率を大きくし、電気絶縁体的な性質を付与するとともに、熱伝導率を大幅に向上することができ、再結晶SiCの長所である強度、耐食性をそのまま維持することができる再結晶SiC焼結体及びその製造方法を提供することができる。
【0016】
更に、母原料純度に依存していた焼結体純度を、処理工程により高純度化させ、母原料純度以上の純度の焼結体の製造を可能にする製造方法を提供することができる。
【発明を実施するための最良の形態】
【0017】
本発明の再結晶SiC焼結体は、0.01〜2wt%のSiO2と99.99〜98wt%のSiCから実質的になる再結晶SiC焼結体であって、その抵抗率が500〜50000Ω・cm、そして、好ましくは、熱伝導率が100〜200W/m・Kに制御されてなるものである。
【0018】
これにより、従来の再結晶SiC焼結体の抵抗率0.1〜50Ω・cmと比較して、大幅に電気抵抗が増加し、且つ熱伝導率が、従来の30〜70W/m・Kと比較して、大幅に改良された再結晶SiC焼結体が提供できる。
これにより、例えばニクロム線ヒーターと接触し、間接加熱する液晶画面プレス板などに漏電の心配なく適用することができる。
また、半導体CPU用ヒートスプレッダー、サイリスタ用ヒートシンク等への適用が可能となる。
【0019】
尚、本発明の再結晶SiC焼結体は、0.01〜2wt%のSiO2と99.99〜98wt%のSiCから実質的になるものであり、その用途に応じて適宜配合を調整することにより、汎用性を向上することができる。
【0020】
次に、本発明の再結晶SiC焼結体の製造方法について説明する。
まず、成形体母原料をプレス成形した成形体、成形体母原料にバインダーを添加し、スラリーにしたものを鋳込み成形した成形体及びそれを更に仮焼し、バインダーを除いた成形体を作製する。このバインダー除去は、酸素のある雰囲気あるいは不活性ガス雰囲気中で行ってもよい。
【0021】
尚、成形体母原料に用いられるSiC粒子は、例えばスプレードライ法等で造粒された造粒粒子を使用することが好ましく、平均径30〜100ミクロンのSiC粗粒と0.1〜30ミクロンのSiC微粒の混合物であって、粗粒と微粒の比率の内、粗粒部分が40wt%以上占めることが好ましい。
【0022】
また、成形体母原料には、SiC粒子の成形性に応じ、バインダーを適宜添加することが好ましい。
【0023】
更に、成形体母原料のSiCの純度が98.0%以上に保持されていることが好ましく、成形体母原料よりも、焼結体である再結晶SiC焼結体の純度が高純度になるように製造することが好ましい。
【0024】
これにより、母原料純度に依存していた焼結体純度を、処理工程により高純度化させ、母原料純度以上の純度の焼結体を製造することができる。
【0025】
そして、得られた成形体を、炉の有効体積(加熱域)の0.01〜100倍の不活性ガスを毎分流しながら、0.01〜2atmの圧力下で、2Hr以上かけて2000℃まで昇温し、その後0.5〜2atmの圧力下で、2000〜2500℃の温度に昇温することにより、再結晶SiC焼結体を製造する。
【0026】
更に、本発明の再結晶SiC焼結体の焼成条件について詳細に説明する。前述のように、成形体を、焼結温度まで昇温し、焼結するに当り、2000℃の焼成域までを、焼成炉内圧0.01〜2atmの圧力下で2時間以上かけて昇温し、炉の有効体積(加熱域)の0.01〜10倍の不活性ガス(NL/min)を流しながら、より好ましくは0.1〜10倍、さらに好ましくは1.0〜10倍に制御した不活性ガスを流すことが望ましい。
【0027】
これにより、焼成域が不活性ガス雰囲気となり、焼成時に無機ポリマーの分解変化に伴うCOを焼成雰囲気より除去し、大気中のO2等による外部からの焼成雰囲気の汚染を防止する効果がある。
【0028】
尚、不活性ガスは、特に限定されないが、SiC系のセラミックスの場合、Arであることが好ましい。
【0029】
また、成形体を再結晶させる場合には、雰囲気温度を2000〜2500℃、好ましくは、2200℃〜2450℃に昇温することが、望ましい。
これは、個々のSiC粒子の表面に存在したSiO2等の不純物が、一定流量のガス流によって除去されるため、再結晶時に大きく成長したSiC粒子が、SiO2等のガラス質の被膜がほとんど無い状態で、隣接したSiC粒子と接触結合した状態となるために、SiC本来の高熱伝導率を発現させることができるからである。
【0030】
尚、2000℃までの昇温後、再結晶化させる2000〜2500℃の焼成の間は、一旦降温し、改めて加熱焼成しても、同一窯内で連続処理しても、どちらでも可能である。
【実施例】
【0031】
本発明を実施例を用いてさらに詳しく説明するが、本発明はこれらの実施例に限られるものではない。
【0032】
(実施例1〜9、比較例1,2)
出発原料として、SiC粗粒、SiC微粒を、表1に示すような重量%、純度(%)でそれぞれ混合した(成形体母原料)。
尚、成形体をスラリー化するため、10〜20wt%の水とバインダーを適宜添加している。
【0033】
前記の工程で作製された出発原料を所定の型に流し込み、成形し、表1に示すような成形厚(mm)、密度(g/cc)、気孔率(%)である成形体をそれぞれ作製した。
【0034】
より詳細には、前記の工程で作製された出発原料に、この出発原料100重量%に対し有機バインダを2重量%を配合し、10〜20wt%のイオン交換水に溶解させたスラリーを作製し、鋳込み成形により、表1に示すような成形厚(mm)、密度(g/cc)、気孔率(%)である成形体をそれぞれ作製した(実施例1〜9)。
【0035】
【表1】

【0036】
そして、それぞれ作製された成形体を、炉体体積:1000L(断熱材層を含む)、有効体積:200L(カーボン製サヤ体積)である焼成炉を用いて、表2に示すようなArガス流量(NL/min)を流しながら、0.01〜2atmの圧力下で、2〜24時間かけて2000℃まで昇温し、その後0.5〜2atmの圧力下で、2000〜2500℃の温度に昇温することにより、再結晶SiC焼結体を作製した(実施例1〜9)。
【0037】
ここで、2〜24時間かけて2000℃まで昇温するとは、例えば2000℃までを350℃/Hrで昇温する場合であったり、1400℃を12Hr保持し、それに加え2000℃までを700℃/Hrで昇温する等の種々のケースを表すものである。
【0038】
また、本発明の再結晶SiC焼結体の製造方法における焼成条件の比較のために、実施例1と実施例2で用いた成形体を、炉体体積:1000L(断熱材層を含む)、有効体積:200L(カーボン製サヤ体積)である焼成炉を用いて、焼成炉内圧0.01〜2atmの圧力下で1〜1.5時間かけて2000℃まで昇温し、且つ炉内雰囲気は、圧力調整用の僅かな不活性ガスでバランスさせるのみとし、その後、2000〜2500℃の温度に昇温することにより、再結晶SiC焼結体を作製した(比較例1,2)。
以上、得られた再結晶SiC焼結体の特性を表2に示す。
【0039】
【表2】


【特許請求の範囲】
【請求項1】
0.01〜2wt%のSiO2と99.99〜98wt%のSiCから実質的になる再結晶SiC焼結体であって、その抵抗率が500〜50000Ω・cmに制御されていることを特徴とする再結晶SiC焼結体。
【請求項2】
熱伝導率が、100〜200W/m・Kである請求項1記載の再結晶SiC焼結体。
【請求項3】
SiCを主成分とする成形体母原料から作製された成形体から、再結晶SiC焼結体を製造する方法であって、
炉の有効体積(加熱域)の0.01〜10倍の不活性ガスを毎分流しながら、0.01〜2atmの圧力下で、2Hr以上かけて2000℃まで昇温し、その後0.5〜2atmの圧力下で、2000〜2500℃の温度に昇温することを特徴とする再結晶SiC焼結体の製造方法。
【請求項4】
SiCの純度が98.0%以上に保持されてなる請求項3記載の再結晶SiC焼結体の製造方法。
【請求項5】
成形体母原料の純度よりも、焼結体のSiC純度が高純度になることを特徴とする請求項3又は4に記載の再結晶SiC焼結体の製造方法。

【公開番号】特開2007−91592(P2007−91592A)
【公開日】平成19年4月12日(2007.4.12)
【国際特許分類】
【出願番号】特願2006−320997(P2006−320997)
【出願日】平成18年11月29日(2006.11.29)
【分割の表示】特願平10−72644の分割
【原出願日】平成10年3月20日(1998.3.20)
【出願人】(000004064)日本碍子株式会社 (2,325)
【Fターム(参考)】