説明

Fターム[2G046DB03]の内容

流体の吸着、反応による材料の調査、分析 (10,319) | ヒータに関する回路 (289) | クリーニングに関するもの (31) | クリーニング温度に関するもの (6)

Fターム[2G046DB03]に分類される特許

1 - 6 / 6


【構成】 MEMSガスセンサを用いてガスを検出する。ガスセンサのヒータへの電力を、低レベルと、検出対象ガスの検出に適した高レベルと、0レベルとの間で変化させることにより、低レベルで被毒ガスを蒸発もしくは酸化し、高レベルで検出対象ガスを検出する。
【効果】 MEMSガスセンサの被毒を防止する。 (もっと読む)


【課題】本発明は、メタン及び水素に対する選択性が良く、かつ、十分なCO濃度勾配をもつことにより、高い精度で検知対象を検知することができる半導体ガスセンサの間欠駆動方法を提供する。
【解決手段】ガス感知膜に吸着した雑ガスをクリーニングするために、センサをヒータにより高温状態(High)まで加熱し、該高温状態で保持し、ガスを検知し、一酸化炭素の濃度を求めるために、前記センサを第一の低温状態(Low1)まで下げ、該第一の低温状態で保持し、一酸化炭素のみを更に前記ガス感知膜へ吸着させるために、前記センサを一旦オフ(Off)にし、該オフ状態で保持し、一酸化炭素に対するメタン及び水素の選択性を測定するために、前記センサを第二の低温状態(Low2)まで上げ、該第二の低温状態で保持することを特徴とする半導体ガスセンサの間欠駆動方法を提供する。 (もっと読む)


【課題】ヒータへの通電開始後に電源出力電圧が変動した場合であっても、ヒータへの供給電力量に誤差が生じ難く、ガス検出精度の低下を抑制できるガス検出装置を提供する。
【解決手段】ガス検出装置150は、PWM制御の1周期のうちヒータへの通電時間帯(電圧印加実行時間Ton)において、複数回にわたりバッテリ電圧VBを検出し、検出したバッテリ電圧VBに基づいてヒータ4に供給した供給済み電力量ΣWiを演算している。つまり、ガス検出装置150は、ヒータ4への通電開始後にバッテリ電圧VBが変動した場合でも、ヒータ4に対して実際に供給された電力量を判定できることから、ヒータ4への供給電力量を精度良く目標電力量に近づけることができる。ガス検出装置150は、ヒータ4によるガスセンサ素子の温度制御が良好となり、温度変動によるガスセンサ素子の活性化状態の変化を抑制でき、ガス検出精度の低下を抑制することができる。 (もっと読む)


【課題】 従来のものに比べてより一層低消費電力化を図り、感度の向上を図る。
【解決手段】半導体ガスセンサのヒーターを駆動するに当たり、前以てクリーニングするために、−200〜0msの期間(30mWで約450℃に加熱する状態)を経た後、ガス検知するための低温の状態、ここでは約50〜400msの期間(4.5mWで約100℃に維持する状態)に移行するとき、センサへのパワー供給を一定値以下、例えば150msだけ停止することにより、この時間分だけパワー消費を低減させ、感度も向上させる。 (もっと読む)


【課題】 センサ素子を加熱するヒータへの印加電圧の制御を行うための構成を簡易化することができるセンサのヒータ制御装置を提供することを目的とする。
【解決手段】 ワンチップマイコンの出力ポート(P1,P2,P3,P4)のそれぞれに、抵抗値がそれぞれ140,140,430,430(Ω)の各抵抗器31,32,33,34の一端を接続する。抵抗器31〜34の他端は、一端が接地された抵抗値Rzのヒータ30の他端に接続する。ガスセンサを駆動させてから30秒間、すべての出力ポート(P1〜P4)からHiレベル(5V)の信号出力を行うと、抵抗器31〜34の合成抵抗値とヒータ30の抵抗値との分圧として4.2Vの電圧がヒータ30に印加される。その後、出力ポート(P3,P4)をLoレベル(GND)に切り替えると、ヒータ30には分圧として3.2Vの電圧が印加される。 (もっと読む)


【課題】感ガス体を小型化しても特に一酸化炭素を検知するにあたっての検知感度の経時安定性を高く維持することが可能であり、消費電力を抑制すると共に高い信頼性を確保することができる半導体ガスセンサを提供する。
【解決手段】金属酸化物半導体として酸化スズを含有する感ガス体Aを備える。感ガス体Aは、その表面から深さ60μmまでの表層領域2に第一添加物としてパラジウムを含有すると共に、第二添加物としてタングステン、モリブデン、バナジウムから選択される少なくとも一種の金属を含有する。前記表層領域2における第二添加物の含有量は、表層領域2におけるスズ原子の総量に対して0.2〜6.0質量%の範囲である。 (もっと読む)


1 - 6 / 6