説明

Fターム[2G065BA11]の内容

測光及び光パルスの特性測定 (19,875) | 検出素子、受光素子、受光器 (4,668) | 光電、熱電変換素子 (3,177) | 熱電対、サーモパイル(熱電堆) (333)

Fターム[2G065BA11]に分類される特許

61 - 80 / 333


【課題】物体の温度の検出精度を向上することが可能な温度センサを提供する。
【解決手段】制御手段は、MOSトランジスタ4をオン状態とする際の第2のパッドVsel1〜Vsel8の電位VsをVon、MOSトランジスタ4をオフ状態とする際の第2のパッドVsel1〜Vsel8の電位VsをVoffとし、第2のパッドVsel1〜Vsel8の電位VsをVonとしたときに、第4のパッドVrefinの電位(Vref)と第3のパッドVchの電位(Vwell)との電位差に起因して第4のパッドVrefin−感温部(熱電変換部)30−ソース領域44−ウェル領域(チャネル形成用領域)41−第3のパッドVchを通る経路で流れるリーク電流が、A/D変換回路における入力値の分解能を感温部30の抵抗値と増幅回路の増幅率との積により除した値以下となるように予め設定されたVwell、Vrefの条件で赤外線センサ100を制御する。 (もっと読む)


【課題】S/N比の向上を図れる赤外線センサ装置を提供する。
【解決手段】第1のパッドVout1〜Vout8の電位をVout、第2のパッドVsel1〜Vsel8の電位をVs、第3のパッドVchの電位をVwell、第4のパッドの電位VrefinをVref、感温部(熱電変換部)30の出力電圧をVo、ウェル領域(チャネル形成用領域)41とソース領域44とで構成される第1の寄生ダイオードおよびウェル領域41とドレイン領域43とで構成される第2の寄生ダイオードのしきい値電圧をVthとするとき、制御手段が、nMOSトランジスタからなるMOSトランジスタ4をオン状態とする際の第2のパッドVsel1〜Vsel8の電位VsをVonとしたときに、−Vth<{Vwell−(Vref+Vo)}<Vthの関係を満たすように設定されたVref、Vwellの条件で赤外線アレイセンサ100を制御する。 (もっと読む)


【課題】ICチップの発熱に起因した赤外線センサチップの面内でのS/N比のばらつきを抑制することが可能な赤外線センサを提供する。
【解決手段】サーモパイル30aにより構成される感温部30を具備する複数の画素部2が半導体基板1の一表面側においてアレイ状に配置された赤外線センサチップ100と、赤外線センサチップ100の出力信号を信号処理するICチップ102とを備える。パッケージ103は、赤外線センサチップ100およびICチップ102が横並びで実装されたパッケージ本体104と、赤外線を透過するレンズ153を有しパッケージ本体104に気密的に接合されたパッケージ蓋105とを有する。パッケージ103内に、赤外線センサチップ100への赤外線を通す窓孔108を有しICチップ102の発熱に応じた各画素部2の温接点T1および冷接点T2の温度変化量を均一化するカバー部材106を設けてある。 (もっと読む)


【課題】熱型の赤外線検出素子において、中空構造を用いずに赤外線検出部から基板への熱伝導を抑制し、赤外線入射時に効率よく赤外線検出部を温度変化させることで、感度の向上を図る。
【解決手段】基板11と、基板上に形成され、空間部を内包する熱絶縁層12と、熱絶縁層12上に形成され、温度変化により赤外線を検出する熱型の赤外線検出層14と、を備える構成とする。 (もっと読む)


【課題】十分な測定精度を確保しつつ、測定作業が簡素化され、構成が簡単でコスト低減をはかることが可能な、赤外線センサを用いた温度測定装置およびその補正方法を提供する。
【解決手段】測定対象の温度をTb、赤外線センサ部1の出力(該出力に対応する赤外線センサ出力測定部3による測定出力)をV、赤外線センサ部1の出力に関するオフセットをc、温度係数をb、赤外線センサ部1(赤外線センサ部1自体)の温度をTr、温度の演算式における冪指数をαとするとき、Tb={(V−c)/b+Trα}1/αなる演算によって測定対象の温度Tbを算出する。この場合、温度測定装置10には、冪指数α、温度係数b、および、オフセットcの各定数を予め保持しておく。該各定数は、赤外線センサ部の出力の実測値と予測値との差を2乗してデータ取得回数N分の和をとった、ばらつきを表す既定の関数の値を最小とする条件を充足するものとして各算出される。 (もっと読む)


【課題】赤外線センサチップの水分を低減することが可能な赤外線センサおよびその製造方法を提供する。
【解決手段】半導体基板1の上記一表面側に、サーモパイル30aが埋設された薄膜構造部たる熱型赤外線検出部3が形成されるとともに、半導体基板1の上記一表面側において熱型赤外線検出部3の一部の直下に空洞部11が形成された赤外線センサチップ100と、赤外線センサチップ100が収納されたパッケージ103とを備え、熱型赤外線検出部3においてSiO系材料により形成された部位の露出表面がCH基を含む有機材料により疎水化処理されている。 (もっと読む)


【課題】高い放射検出感度や発電時の高い起電圧を実現するために、ゼーベック係数の大きな異方性を有し、かつ異方性を有する面に沿って大きな結晶が得られる異方的熱電材料を提供すること。
【解決手段】化学式Sr2-xLaxNb2O7で表され、c軸方向に4層のNbO6八面体からなるブロック層が周期的に積層してなる層状ペロブスカイト型の結晶構造を有し、a軸方向とa軸に対して垂直方向のゼーベック係数との差の絶対値が100μV/K以上であることを特徴とする異方的熱電材料によって高い放射検出感度や発電時の高い起電圧が実現できる。 (もっと読む)


【課題】 検出素子を空洞部の上方にて支持する支持部材の反りや切断を抑制できる検出器の製造方法を提供することにある。
【解決手段】 検出器の製造方法は、固定部100に空洞部102を形成し、前記空洞部102に犠牲層150を形成する前に、形成される支持部材210に生ずる応力方向と同じ方向に外力EFを前記固定部100に付与し、前記空洞部102に形成された前記犠牲層150に前記支持部材210を形成し、前記犠牲層150を除去する前に、前記外力EFを解除する。 (もっと読む)


【課題】 熱型光検出器の小型化を、無理なく実現すること。
【解決手段】 熱型光検出器は、基板BSと、光吸収膜5を含む熱型光検出素子90と、熱型光検出素子を搭載する搭載部56と、一端が搭載部の一端に連結され、他端が基板の一端に支持される第1アーム部52と、一端が搭載部の他端に連結され、他端が基板の他端に支持される第2アーム部54と、を有する支持部材と、を含み、第1アーム部52には、熱型光検出素子90に電気的に接続される複数本の配線43a,43bが設けられ、第2アーム部54には、熱型光検出素子90に電気的に接続される配線が設けられず、かつ、前記第2アーム部54の長さは、第1アーム部52の長さよりも短く設定される。 (もっと読む)


【課題】熱源の温度を正確かつ応答性よく測定できる温度センサを提供する。
【解決手段】温度センサ100は、熱源から輻射される赤外線を吸収して発熱する赤外線吸収膜20と、赤外線吸収膜20の熱量を検知することにより熱源の温度に対応した電気信号を出力する感温素子10と、感温素子10から電気信号を出力するためのリードパターン31,32と、赤外線吸収膜20に分布する熱量を感温素子10に集熱するための集熱パターン40とを備える。 (もっと読む)


【課題】パッケージ基部にキャップを被せて封止した後でも応答速度および感度を調整可能とする。
【解決手段】赤外線を受光する受光面を片面に有するセンサエレメント(1)をパッケージの内部に気密に封止してなる熱型赤外線センサにおいて、センサエレメント(1)を搭載した搭載部(2a)の搭載面から外面までの厚さを200μm以下とする。
【効果】パッケージングを完了した後でも、搭載部(2a)の外面に熱伝導材(9)を付着させることで、応答速度および感度を調整可能となる。すなわち、熱伝導材(9)を付着させない赤外線センサを使用して、熱飽和するほど光入力が大きい場合に、搭載部(2a)の外面に熱伝導材(9)を付着させることで熱を排出させることが可能になり、熱飽和の状態を回避することが出来る。従って、応答速度および感度の種類に応じてパッケージを設計し分ける必要性を低減できる。 (もっと読む)


【課題】検出感度及び応答性が高く、製造が容易で、表面実装可能な小型の熱センサを提供する。
【解決手段】熱センサ101は、熱センサ本体となる負特性(NTC)サーミスタセラミックスで構成されるセラミック素体10、熱検知用内部電極1,2、空洞部5、温度補償用内部電極6,7、外部電極3,4及び温度補償用外部電極8を備えている。セラミック素体10内の、熱検知用内部電極1,2が形成された熱検知部と、温度補償用内部電極6,7が形成された温度補償部との間に空洞部5が形成されている。熱検知部と温度補償部との対向距離は空洞部5の中央部で小さく周辺部で大きく、且つ周辺部が温度補償部方向に延在するように空洞部5が形成されている。 (もっと読む)


【課題】気密性を確保しつつ、光学フィルタ膜の割れや剥れを抑制できる赤外線センサの製造方法を提供する。
【解決手段】赤外線検出素子1およびIC素子2をパッケージ本体4に実装する。その後、赤外線透過部材6の周部とパッケージ3における開口部5aの周部との間に介在させた低融点ガラス7aをレーザ光LBにより加熱して溶融させることで赤外線透過部材6とパッケージ3における開口部5aの周部とを低融点ガラス7aからなる第1の接合部7を介して気密的に接合する接合工程を行う。この接合工程では、レーザ光LBを赤外線透過部材6側から照射して低融点ガラス7aを加熱して溶融させる。 (もっと読む)


【課題】応答速度の高速化を図れ、且つ、温度検知部の受光効率および感度の低下を抑制することができる赤外線センサを提供する。
【解決手段】ベース基板1と、赤外線を吸収するとともに該吸収による温度変化を検知する温度検知部3と、温度検知部3がベース基板1の一表面から離間して配置されるように温度検知部3を支持して温度検知部3とベース基板1とを熱絶縁する断熱部4と、温度検知部3におけるベース基板1側とは反対側に配置された受光レンズ20とを備える。温度検知部3は、ベース基板1の厚み方向に直交する面内で2次元アレイ状に配列された複数のボロメータ形のセンシングエレメントからなる温度検知素子3aを有し、全ての温度検知素子3aを直列接続してある。受光レンズ20は、各温度検知素子3aに各別に赤外線を収束させるように2次元アレイ状に配列された複数のレンズ小体21を有する。 (もっと読む)



【課題】周囲環境の温度変化やIC素子の発熱による検出精度の低下を抑制できる赤外線センサモジュールを提供する。
【解決手段】熱型赤外線センサ100と温度補償素子101とは同一構造であり、IC素子102は、熱型赤外線センサ100の出力信号と温度補償素子101の出力信号とを差動増幅する。パッケージ103内に、パッケージ103の外部から内部へ入射した第1の赤外線、IC素子102の発熱に起因してIC素子102から放射された第2の赤外線、およびパッケージ蓋105から放射された第3の赤外線が温度補償素子101へ到達するのを阻止する赤外線遮断構造部106を有し、赤外線遮断構造部106は、赤外線遮断構造部106の内側の第1の空間K1と赤外線遮蔽構造部106の外側の第2の空間K2とを連通させる連通部165が設けられてなる。 (もっと読む)


【課題】温度測定精度の向上が可能な赤外線センサモジュールを提供する。
【解決手段】熱型赤外線センサ100は、サーモパイル30aを有する熱型赤外線検出部3を備えた画素部2がシリコン基板(支持基板)1aの一表面側でアレイ状に設けられている。パッケージ103は、熱型赤外線センサ100およびIC素子102が実装されたパッケージ本体104を備える。熱型赤外線センサ100は、シリコン基板1aの上記一表面側において熱型赤外線検出部3それぞれの一部の直下に空洞部11が形成され、サーモパイル30aの温接点T1が、熱型赤外線検出部3において空洞部11に重なる領域に形成され、冷接点T2が熱型赤外線検出部3において空洞部11に重ならない領域に形成されている。シリコン基板1aの他表面側に、IC素子102からパッケージ本体104に伝熱された熱が冷接点T2に伝わるのを抑制する掘り込み部12が形成されている。 (もっと読む)


【課題】感度の向上を図れ、且つ、サーモパイルにかかる応力を低減することが可能な赤外線センサおよびその製造方法を提供する。
【解決手段】熱型赤外線検出部3が、半導体基板1の一表面側で空洞部11の周部に形成された支持部3dと、半導体基板1の上記一表面側で空洞部11を覆う第1の薄膜構造部3aとを備え、第1の薄膜構造部3aが、空洞部11の周方向に沿って並設され支持部3dに支持された複数の第2の薄膜構造部3aaと、互いに対向する第2の薄膜構造部3aa,3aa同士を連結し第2の薄膜構造部3aaにかかる応力を緩和する応力緩和構造部3cとを有し、第2の薄膜構造部3aaごとに第2の薄膜構造部3aaと支持部3dとに跨ってサーモパイル30aが設けられるとともに、サーモパイル30aごとに出力を取り出す場合に比べて温度変化に対する出力変化が大きくなる接続関係で全てのサーモパイル30aが電気的に接続されている。 (もっと読む)




61 - 80 / 333