説明

Fターム[3G092HD09]の内容

機関出力の制御及び特殊形式機関の制御 (141,499) | 排気系 (4,019) | 排気絞り弁、排気制御弁、排気流路 (136)

Fターム[3G092HD09]に分類される特許

1 - 20 / 136


【課題】EGRバルブと吸気絞りバルブ又は排気絞りバルブとの制御を、簡単な構造で的確に行う。
【解決手段】EGRバルブ15は、モータ27とこれで駆動される主動プーリ29とを有する。吸気絞りバルブ13(及び/又は排気絞りバルブ)は弁体18と一緒に回転する従動プーリ30を有する。主動プーリ29と従動プーリ30とは、弛み部32aを有するワイヤー32で接続されている。モータ27が正転すると主動プーリ29は正転して弁体18は開き動する。主動プーリ29がある程度開いてから従動プーリ30に回転トルクが付与されて、吸気絞りバルブ13が閉じ始める。これにより、1つのモータ27で両バルブ13,15を的確に制御できる。 (もっと読む)


【課題】 高温燃焼を実現しつつ排気中の窒素酸化物を低減可能なエンジンシステムを提供する。
【解決手段】 エンジンシステム10では、EGR装置15から供給される排気と外気とがサージタンク23で混合され、エンジン11の気筒18に供給される。ECU17は、酸素ガス噴射弁装置49の作動を制御して酸素ガス供給装置16から第2通路36に供給する酸素ガス供給量を調整することでエンジン11の気筒18内の酸素濃度を調整する。この構成では、外気より窒素濃度が低い排気と外気とが混合され、適宜酸素ガスが付加された混合ガスをエンジン11の気筒18に取り込む。よって、エンジン11の気筒18に取り込まれるガス中の窒素量を外気より減らしつつ酸素量を増やすことが可能である。これにより、エンジン11の高温燃焼を実現しつつ排気中の窒素酸化物を低減することができる。 (もっと読む)


【課題】十分なEGRガス量の供給及びEGRガス量の増減に拘わらず吸気用過給機による排気エネルギーの有効回収を可能としつつ、EGRガス量の増減を応答性良く行う。
【解決手段】EGRラインはガス流れ方向に関し吸気用タービン及びEGR用タービンの間の排気ラインの中間部と吸気ラインのうち吸気用コンプレッサより吸気流れ方向上流側とを接続する。排気ラインの前記中間部及びEGR用タービンよりガス流れ方向下流側を接続するバイパスラインと前記バイパスラインに介挿された第1制御弁とが備えられ、EGR用タービンには可変ノズルベーンが設けられている。 (もっと読む)


【課題】十分なEGRガス量の供給及びEGRガス量の増減に拘わらず吸気用過給機による排気エネルギーの有効回収を可能としつつ、EGRガス量の増減を応答性良く行う。
【解決手段】EGRラインはガス流れ方向に関し吸気用タービン及びEGR用タービンの間の排気ラインの中間部と吸気ラインのうち吸気用コンプレッサより吸気流れ方向上流側とを接続する。排気ラインの前記中間部及びEGR用タービンよりガス流れ方向下流側を接続し且つ第1制御弁が介挿されたバイパスラインと、EGR用コンプレッサよりガス流れ方向下流側においてEGRラインに介挿された第2制御弁と、EGRラインのうちガス流れ方向に関しEGR用コンプレッサ及び第2制御弁の間と排気ラインのうちEGR用タービンよりガス流れ方向下流側とを接続し且つ第3制御弁が介挿されたEGR放出ラインとが備えられている。 (もっと読む)


【課題】排出ガス規制に適合し、エンジン燃費及び性能を最適化する排気ガス再循環制御を提供する。
【解決手段】エンジン(12)、エンジンと上流で連通する吸気サブシステム(14)、エンジンと下流で連通する排気サブシステム(16)、ターボチャージャタービン(38)の上流及びターボチャージャコンプレッサ(28)の下流の排気サブシステムと吸気サブシステムとの間の高圧EGR通路(46)、及びターボチャージャタービンの下流及びターボチャージャコンプレッサ(28)の上流の排気サブシステムと吸気サブシステムとの間の低圧EGR通路(48)を備えるターボチャージャ付き圧縮着火エンジンシステム(10)における排気ガス再循環(EGR)の制御方法。排気ガス基準に適合する目標総EGR率が決定された後、目標HP/LP EGR比が決定され、決定された目標総EGR率の制約内で他のエンジンシステム基準が最適化される。 (もっと読む)


【課題】圧縮開放ブレーキと同程度のエンジンブレーキ効果を実現でき、しかも、簡素な可変動弁システムで高いエンジンブレーキ力を確保できるエンジンブレーキ方法及びエンジンブレーキ装置を提供する。
【解決手段】内燃機関を搭載した車両における、圧縮行程で排気弁を開弁するブレーキ方法であって、ブレーキ力発生時に、排気通路に設けた排気ブレーキ弁を絞ると共に、エンジンブレーキ力を発生させるための前記排気弁の開弁期間を、クランク角度で圧縮行程の下死点40度前から膨張行程の上死点後40度の間の期間の50%以上かつ100%以下の範囲とすると共に、膨張行程では、この膨張行程の50%以上かつ100%以下の範囲で閉弁する。 (もっと読む)


【課題】触媒の反応熱を利用して過給率を高めることと、触媒の耐熱制約によるエンジンの運転制約の緩和を図ることを両立する。
【解決手段】エンジン1の排気エネルギーが低い時は、第1、第2四方弁6、7を「低温モード」に設定し、排気ガスをエンジン1→触媒5→排気タービン2の順で流す。これにより、排気エネルギーが触媒5の反応熱により上昇してターボ効率が高まり、エンジントルクの上昇を図ることができる。逆に、エンジン1の排気エネルギーが高い時は、第1、第2四方弁6、7を「高温モード」に設定し、排気ガスをエンジン1→排気タービン2→触媒5の順で流す。これにより、排気エネルギーの一部が、排気タービン2で消費された後に触媒5に導かれため、触媒5の温度上昇を抑えることができる。その結果、熱劣化を抑制できるとともに、エンジン1の運転制限を緩和することができる。 (もっと読む)


【課題】メタンを主成分に含む燃料ガスを用いたガスエンジンにおいて、未燃成分として排出されるメタン成分を効率的に吸着するとともにエンジンに再循環させてエンジンの熱効率の改善と排ガス浄化性能の向上を図ることを目的とする。
【解決手段】メタンを主成分に含む燃料ガスを用いたガスエンジンの排ガス浄化装置において、メイン排ガス通路11と、バイパス排ガス通路15と、分岐制御弁17と、メタン吸着触媒21、23と、メタン吸着に適する排ガス温度に冷却する排ガス冷却手段19と、メタン脱着に適した温度に加熱する放出ガス加熱手段29と、入口側制御弁37と、循環通路33と、出口側制御弁39と、排ガス冷却手段19、放出ガス加熱手段29、入口側制御弁37、出口側制御弁39、および分岐制御弁17を制御して、第1系統のメタン吸着触媒21と第2系統のメタン吸着触媒23の吸着と脱着を切換える制御装置41とを備えたことを特徴とする。 (もっと読む)


【課題】EGR装置を有するターボ過給機付き内燃機関に関し、EGRの停止時にEGR弁より排気通路側に配置されたEGR触媒が過熱により損傷することを防止する。
【解決手段】EGRの停止時であっても背圧より吸気圧が高い運転条件下ではEGR弁を開弁し、吸気通路からEGR通路内に空気を取り入れてEGR触媒付近への未燃混合気の流入を抑制する。その際、タービンに流入する排気ガスの一部がタービンをバイパスするようにWGVを開くことによって、EGR通路からの空気の流入に伴うタービン流量の増加を抑制する。 (もっと読む)


【課題】簡単な構成でエンジン出力をより高めることのできる多気筒エンジンの吸排気装置を提供する。
【解決手段】排気ポート18に接続されて低速側通路54と高速側通路53とに分離する独立排気通路52と、低速側通路54および高速側通路53に接続される低速側集合部56aおよび高速側集合部57と、高速側通路53を開閉する流路面積可変バルブ58とを設け、低速側通路54および低速側集合部56aを低速側集合部56aに排気が排出されるに伴いエゼクタ効果によって他の低速側通路54が負圧とされる形状とし、低速領域では一方の気筒12のオーバーラップ期間と他方の気筒12の排気バルブ20の開弁開始時期とを重複させかつ流路面積可変バルブ58を閉じ側とし、高速領域では流路面積可変バルブ58を全開とし、各高速側通路53の下流端の軸心の交差角度βを、各低速側通路54の下流端の軸心の交差角度αよりも大きくする。 (もっと読む)


【課題】機関中速回転域から機関高速回転域の範囲で最大吸収トルクを増加させることができる内燃機関のエンジンブレーキシステム及びその制御方法を提供する。
【解決手段】内燃機関10の吸気通路12の吸気スロットル24と機械式過給機21と排気通路16の排気ブレーキバルブ25を備えると共に、前記機械式過給機21を迂回するバイパス通路22を設けて、該バイパス通路22に流量制御バルブ23を備えた内燃機関のエンジンブレーキシステム20において、エンジンブレーキ作動の際に、前記機械式過給機21の作動圧力比が限界を超えないように、前記流量制御バルブ23の弁開度を制御して前記機械式過給機21の駆動損失を増加させる過給運転を行い、前記吸気スロットル24の弁開度をポンプ損失が最大となる吸排気圧力差となる過給圧になるように調整制御する。 (もっと読む)


【課題】エンジンブレーキ中に十分なブースト圧を確保でき、圧縮開放ブレーキの制動力を向上可能なエンジンシステムを提供する。
【解決手段】エンジンブレーキ時に、エンジンEの圧縮上死点付近で排気弁24を強制的に開動作し圧縮圧力を開放することで制動力を得る圧縮開放ブレーキを作動させる圧縮開放ブレーキ装置19と、エンジンEの排気通路6に配置されて排気により駆動されるタービン3と、吸気通路7に配置されてタービン3の回転トルクにより駆動されるコンプレッサ4と、コンプレッサ4の駆動力をアシストする電気モータ5と、を有する電動アシストターボチャージャ2と、圧縮開放ブレーキの作動中に、電気モータ5を駆動する電気モータ制御部22と、を備えたものである。 (もっと読む)


【課題】ターボチャージャ付きエンジンシステムにける排気ガス再循環方式に高圧/低圧の両EGRシステムを備えるシステムにおいて、効率良く排気ガスを低減する制御方法の提供。
【解決手段】排気ガス基準に適合する目標総EGR率を決定するステップ330、及び目標総EGR率の制約内で吸気温度を低下させるための目標高圧/低圧EGR比を決定するステップ335を含みEGRを制御する方法とする。また、エンジンノックを制御するための目標高圧/低圧EGR比を決定するステップを含んだEGRの制御方法とする。 (もっと読む)


【課題】この発明は、燃料カットからの復帰時にEGRの応答遅れによるNOxスパイクを抑制し、排気エミッションを向上させることを目的とする。
【解決手段】エンジン10は、バルブオーバーラップ量を可変に設定するためのVVT30と、可変容量型の過給機36とを備える。ECU60は、エンジン10が燃料カット状態から復帰したときに、燃焼の再開により生じた排気ガスがEGR通路32を介して筒内に到達するのに必要な応答遅れ期間tの間のみ、過給機36のノズル開度を減少させ、かつ、バルブオーバーラップ量を増加させる。これにより、内部EGRの量を一時的に効率よく増加させることができ、燃料カットからの復帰時に生じる外部EGRの応答遅れを補償することができる。 (もっと読む)


【課題】エゼクタ効果を利用してエンジン出力を高めることができるとともに、触媒をより早期に活性させることができる多気筒エンジンの排気装置を提供する。
【解決手段】各排気ポート18にそれぞれ接続される独立排気通路53と、独立排気通路53の流路面積を変更可能な流路面積可変バルブ58と、流路面積可変バルブ駆動手段58bとを設け、低速領域R1において、吸気バルブ19と排気バルブ20のオーバーラップ期間中に排気バルブ20を開弁させ、かつ、高速側通路53の流路面積を絞るとともに、この低速領域R1において触媒の未活性時は吸気が気筒12を通過して排気ポート18に吹き抜けるように吸気バルブ19と排気バルブ20とをオーバーラップさせる一方、触媒の活性時はこの未活性時よりもオーバーラップ期間を小さくする。 (もっと読む)


【課題】簡単な構成でより吸気量をより増大させてエンジン出力を高めることのできる多気筒エンジンの排気装置を提供する。
【解決手段】低速側通路54と高速側通路53と低速側集合部56と最終集合部62aと触媒装置6と、各高速側通路53の流路面積を変更可能な流路面積可変バルブ58とを設け、低速側通路54のうち排気順序が連続する気筒12に接続された低速側通路54の下流端を互いに隣り合う位置に配置し、低速側集合部54を、下流側の方がその流路面積が小さくなる形状とし、最終集合部62aを、上流端の流路面積が低速側集合部54の下流端と各高速側通路53の下流端の流路面積の合計面積以上となる形状とし、低速領域R1において、吸気バルブ19と排気バルブ20のオーバーラップ期間中に排気バルブ20を開弁させるとともに高速側通路53の流路面積を絞る一方、高速領域R3において、高速側通路53の流路面積を最大面積とする。 (もっと読む)


【課題】ターボチャージャとスーパーチャージャとを備えた過給内燃機関において、燃費改善の観点から総合的に優れた構成を備えた内燃機関の制御装置を提供する。
【解決手段】低中速域つまり常用域における運転領域でターボチャージャ40を用いて過給を行うことで、スーパーチャージャを用いる場合に生ずる駆動ロス発生を回避し、燃費悪化を抑制することができる。一方、高速域は、スーパーチャージャ46で過給を行うことで、ターボチャージャ40は小型で済ませることができ、大型のターボチャージャを用いる場合に問題となるレスポンス悪化を抑制することができる。 (もっと読む)


【課題】エンジンの自動停止後の再始動時の着火性を向上させる。
【解決手段】排気ガス還流通路50は、EGRクーラ52が設けられた主通路51と、EGRクーラ52が設けられていないクーラバイパス通路53とを有すると共に、排気ガスに主通路51を流通させる状態とクーラバイパス通路53を流通させる状態とを切り替える排気ガス還流弁51a及びクーラバイパス弁53aが設けられている。PCM10は、自動停止条件が成立してから燃料供給を停止させるまでの間においては、燃料を主噴射した後にポスト噴射を行い、燃料供給を停止させてからディーゼルエンジン1が停止するまでの間においては、排気ガスにクーラバイパス通路53を流通させるように排気ガス還流弁51a及びクーラバイパス弁53aを制御すると共にスロットル弁36を絞る。 (もっと読む)


【課題】簡単な構成で吸気量をより増大させてエンジン出力を高めることのできる多気筒エンジンの排気装置を提供する。
【解決手段】低速側通路54と高速側通路53と低速側集合部56と高速側集合部57と、各高速側通路53の流路面積を変更可能な流路面積可変バルブ58とを設け、低速側通路54の下流端の流路面積と同じ面積を有する真円の直径a1と、低速側集合部56の下流端の流路面積と同じ面積を有する真円の直径D1と、高速側通路53の下流端の流路面積と同じ面積を有する真円の直径a2と、高速側集合部57の下流端の流路面積と同じ面積を有する真円の直径D2との関係をa1/D1≧a2/D2として、低速領域R1において、吸気バルブ19と排気バルブ20のオーバーラップ期間中に排気バルブ20を開弁させるとともに高速側通路53の流路面積を絞る一方、高速領域R2において、高速側通路53の流路面積を最大面積とする。 (もっと読む)


【課題】減筒制御の際に熱利用要求に即した廃熱制御を実施する。
【解決手段】エンジン10は、複数の気筒12を有するシリンダブロック11を備え、そのうち少なくとも2つの気筒が気筒連通通路19で接続されるとともに、気筒連通通路19に設けられた開閉手段として排気バルブ29を有する。ECU50は、一部の気筒12の燃焼を休止する減筒制御の実施時において、開閉手段を開放することにより気筒連通通路19を通じて燃焼気筒から休止気筒に燃焼気筒の排ガスを供給する排ガス供給制御を実施する。この排ガス供給制御に際し、ECU50は、エンジン10の廃熱利用における熱利用要求があったことを検出し、熱利用要求があったことが検出された場合、その熱利用要求に基づいて排ガス供給制御を実施する。 (もっと読む)


1 - 20 / 136