説明

Fターム[3G301MA22]の内容

内燃機関に供給する空気・燃料の電気的制御 (170,689) | 制御量(燃料噴射) (15,919) | 非同期噴射 (105) | 非同期噴射量 (47)

Fターム[3G301MA22]に分類される特許

1 - 20 / 47


【課題】この発明は、燃料噴射弁の噴射率を大きくしなくても、広い運転領域において燃料の微粒化を促進しつつ、片側吸気運転を実行することを目的とする。
【解決手段】エンジン10は、1つの燃焼室12に接続された吸気ポート20A,20Bと、吸気ポート20A,20Bに個別に燃料を噴射する燃料噴射弁24A,24Bと、一方の吸気ポート20Aに設けられた片側吸気用噴射弁26とを備える。そして、吸気バルブ30Bを閉弁停止した片側吸気運転を行うときに、エンジンの要求噴射量が燃料噴射弁24Aの最大噴射量を超える場合には、燃料噴射弁24Aと片側吸気用噴射弁26の両方により燃料を噴射する。これにより、燃料噴射弁24Aの噴射率を大きくしなくても、片側吸気運転を適用可能な負荷領域を高負荷側に拡大することができる。 (もっと読む)


【課題】圧縮比可変機構を備え、機械圧縮比に依存して気筒内に流入する新気の量が所望の量からずれることを抑制する内燃機関を提供する。
【解決手段】内燃機関は、圧縮比可変機構と、気筒内に燃料を噴射する燃料噴射弁を含む冷却液体供給手段とを備える。気筒内から燃焼ガスを排気して排気弁を閉弁したときには、気筒内には燃焼ガスが残留しており、気筒内に残留する燃焼ガスを冷却するための予備の燃料噴射量を機械圧縮比に基づいて設定し、排気弁が閉弁する直前の予め定められた時期に、設定した予備の燃料噴射量の燃料を気筒内に供給する。 (もっと読む)


【課題】 空燃比センサの出力が一定期間停滞する停滞故障を正確に判定することができ、且つ比較的高い頻度で故障判定を実行することができる内燃機関の空燃比制御装置を提供する。
【解決手段】 空燃比を設定振動周期で振動させる空燃比振動制御が行われ、空燃比振動制御実行中に、空燃比センサの出力から算出される検出当量比KACTの変化量検出期間当たりの変化量が検出当量比変化量DKACTとして算出される。検出当量比変化量DKACTと変化量閾値xLSBとが比較され、その比較の結果が所定の条件を満たすときに増分値RTADDを積算することにより故障判定パラメータRTが算出される。算出された故障判定パラメータRTを停滞故障判定閾値RTTHと比較し、その比較結果に応じて停滞故障が発生しているか否かが判定される。 (もっと読む)


【課題】燃料カット制御からの復帰時において、エンジンに対して確実に燃料を供給し、常に適切な燃焼状態を保つことができるエンジンの燃料噴射制御方法を提供する。
【解決手段】エンジンに対して燃料噴射を行う燃料噴射装置を備えた車両におけるエンジンの燃料噴射制御方法であって、エンジンの回転に同期したエンジンへの燃料噴射を燃料噴射装置に実行させる同期噴射制御と、エンジンの回転とは独立したエンジンへの燃料噴射を燃料噴射装置に実行させる非同期噴射制御と、車両の減速中又は停車時に同期噴射制御によるエンジンへの燃料噴射を燃料噴射装置に停止させる燃料カット制御と、を実行するステップを含み、燃料カット制御中に非同期噴射制御を実行する。 (もっと読む)


【課題】吸気圧が異なる場合の吸気通路への燃料付着量のばらつきを抑制する。
【解決手段】内燃機関の吸気通路には、燃料が噴射される噴射範囲を変更可能な燃料噴射弁を配置する。吸気通路内の圧力を検出し、検出された圧力が大きい範囲内にある場合には、その圧力が該範囲よりも小さい範囲内にある場合に比べて、燃料の噴射範囲が小さくなるよう燃料噴射が制御される。ここで例えば、燃料噴射弁は、それぞれ独立してリフトできる複数のニードルを有するものとし、リフトするニードルを変更することで噴射範囲を可変とする構成とすることができる。 (もっと読む)


【課題】加速時、前回の非同期噴射の消費状態に応じて今回の非同期噴射量を補正することにより、オーバーリッチの防止と良好な加速性能の保持を両立させる。
【解決手段】この発明によるエンジンの燃料制御装置は、スロットルセンサ16が検出したスロットルの開度変化により加速状態と判定されたとき、前回の非同期噴射の実施後から今回の非同期噴射までの点火の回数に基づいて、今回の非同期噴射により噴射する燃料の量を補正するようにしたものである。 (もっと読む)


【課題】加速時、前回の非同期噴射の消費状態に応じて今回の非同期噴射量を補正することにより、オーバーリッチの防止と良好な加速性能の保持を両立させる。
【解決手段】この発明によるエンジンの燃料制御装置は、スロットルセンサ16が検出したスロットルの開度変化により加速状態と判定されたとき、前回の非同期噴射の実施後から今回の非同期噴射までの同期噴射の回数に基づいて、今回の非同期噴射により噴射する燃料の量を補正するようにしたものである。 (もっと読む)


【課題】加速時、前回の非同期噴射の消費状態に応じて今回の非同期噴射量を補正することにより、オーバーリッチの防止と良好な加速性能の保持を両立させる。
【解決手段】この発明によるエンジンの燃料制御装置は、スロットルセンサ16が検出したスロットルの開度変化により加速状態と判定されたとき、前回の非同期噴射の実施後から今回の非同期噴射までのクランク軸回転回数RCNTに応じて補正係数Krtを算出し、この補正係数Krtに基づいて今回の非同期噴射により噴射する燃料の量を補正するようにしたものである。 (もっと読む)


【課題】 通常の順次噴射と、複数の燃料噴射弁による噴射期間が重複する燃料噴射とを行い、それぞれの燃料噴射形態において、燃料噴射量を精度よく制御し、良好な排気特性及び運転性を維持することができる内燃機関の燃料供給装置を提供する。
【解決手段】 機関運転状態に応じて順次噴射における燃料噴射期間である単一モード噴射期間TOUTSを算出し、単一噴射モードでは燃料噴射期間TOUTFを単一モード噴射期間TOUTSに設定する(S13)。2気筒同時噴射モードでは、単一モード噴射期間TOUTSに応じて補正係数KPFGRを算出し、単一モード噴射期間TOUTSに補正係数KPFGRを乗算することにより、燃料噴射期間TOUTFを算出する(S15)。 (もっと読む)


【課題】本発明は、燃料切替時の燃料不足をなくして空燃比の調節を的確にしつつ内燃機関の滑らかな運転を確保すること、複数燃料の同時使用をなくし制御負荷の増大を回避することを目的としている。
【解決手段】このため、性状の異なる複数の燃料について相互に独立して設ける燃料供給系と、それぞれの燃料について内燃機関の吸気量に応じた適量の噴射量を設定可能とする制御手段とを備え、内燃機関に供給する燃料を選択的に切り替えて供給可能とする内燃機関の燃料供給装置において、一の燃料から別な燃料への切替要求時には、この切替要求時に噴射を行っている気筒の次の気筒から全気筒を一巡する間に全気筒に対して切替後燃料の通常運転時の標準噴射量に加えて切替補正量を噴射する。 (もっと読む)


【課題】内燃機関のフューエルカットからの燃料噴射復帰時に非同期噴射を実行するに際し、アフターファイヤの発生を防止しながらも、触媒のNOx浄化機能を迅速に回復させることを可能にする内燃機関の燃料噴射制御装置を提供する。
【解決手段】エンジンのフューエルカット中、三元触媒における酸素吸蔵量を算出する。フューエルカット状態から燃料噴射が復帰される際、三元触媒の酸素吸蔵量に基づいて必要非同期噴射量を算出する。この必要非同期噴射量が可燃空燃比分噴射量よりも多い場合、燃焼室内での燃焼が可能な空燃比の範囲内での最大噴射量で分割非同期噴射を実行する。その後、上記必要非同期噴射量から分割非同期噴射量を減算した値を新たな必要非同期噴射量とし、この必要非同期噴射量が「0」になるまで上記分割非同期噴射を実行していく。 (もっと読む)


【課題】本発明は、内燃機関の制御装置に関し、用いる燃料の性状に関らず失火を防止できる内燃機関の制御装置を提供することを目的とする。
【解決手段】リッチ燃焼制御を実行時に、等量比φと筒内圧力Cp(還流させる排気ガスの量)に対する着火遅れ時間IgDの関係から算出される燃焼判定指数Kcrを用い、燃焼判定指数Kcrが小さくなるようにEGR弁の開度を制御する。これにより、図中の(A)及び(B)の間の領域、即ち、着火遅れ時間IgDの延長が少ない領域で燃焼するように還流させる排気ガスの量を制御し、安定したリッチ燃焼を得ることができる。 (もっと読む)


【課題】アイドルストップ制御システムにおいて、アイドルストップ制御の燃料カット/エンジン回転降下中に再始動要求が発生したときのスタータレス始動可能な回転速度領域を従来より低回転側に拡大してスタータ始動回数の増加を抑えて耐久性を向上させる。
【解決手段】アイドルストップ制御の燃料カット中にエンジン回転速度がスタータレス始動実行可能(燃料噴射のみで再始動可能)な回転速度領域を降下する期間に再始動要求が発生したときには、直ちに最初の燃料噴射を非同期噴射で実行してから同期噴射に復帰する自立復帰制御を実行して、スタータを使用せずに燃料噴射のみでエンジンを再始動するスタータレス始動を行う。このようにすれば、再始動要求発生時に吸気行程にある気筒に非同期噴射の燃料が吸入されて次の圧縮TDC付近で点火されて最初の燃焼(初爆)が発生するため、従来より1行程分だけ早期に初爆を発生させることができる。 (もっと読む)


【課題】空燃比センサが活性温度に達していない場合に、燃料カット運転からの復帰する場合にも、必要な燃料を供給してドライバビリティーの改善及び排気エミッションの改善を図る。
【解決手段】この内燃機関の制御装置は、車両の減速時に、内燃機関への燃料供給を停止して燃料カット運転を行なう。また、燃料カット運転から通常運転への復帰時に空燃比センサが活性状態となっていない場合であって、かつ、その復帰が、加速要求が出されたことを契機とする強制復帰である場合、燃料噴射を吸気行程中に行なう同期噴射とする。一方、空燃比センサが活性状態になっていない場合であって、かつ、その復帰が、機関回転数が所定値以下にまで低下したことを契機とする自然復帰である場合には、燃料噴射を吸気行程前に行なう非同期噴射とする。 (もっと読む)


【課題】本発明は、内燃機関の制御装置に関し、低速域や減速後の立ち上がりにおける排気エネルギーを増大させることができ、大容量タービンの使用を可能とするとともに、エミッションの悪化を確実に回避することを目的とする。
【解決手段】本発明の内燃機関の制御装置は、タービン26bとコンプレッサ26aとを有するターボ過給機26と、タービン26bの上流側と、コンプレッサ26aの下流側とを接続するEGR通路46と、EGR弁50と、コンプレッサ26aの下流側の圧力がタービン26bの上流側の圧力より大きいときにEGR弁50を開くことにより、吸気通路22内の空気をEGR通路46を通してタービン26bの上流側の排気通路24に流入させる空気供給手段と、空気がタービン26bの上流側の排気通路24に供給されるときに、その量に応じて、タービン26bの上流側の排気通路24に燃料を供給する燃料供給手段と、を備える。 (もっと読む)


【課題】二重噴射方式内燃機関の低温始動において、炭化水素エミッションを低減させ且つノッキングおよび自己点火傾向を低下させる内燃機関の運転方法および装置を提供する。
【解決手段】特に内燃機関(1)の始動において、噴射されるべき目標燃料量が、内燃機関(1)の運転を表わす温度の関数として、内燃機関(1)の吸気管(5)内に噴射されるべき第1の燃料量と、内燃機関(1)の燃焼室(10)内に直接噴射されるべき第2の燃料量とに分配される内燃機関(1)の運転方法および装置が提案される。前記第1の燃料量と前記第2の燃料量との間の比が温度の関数として連続的に変化される。 (もっと読む)


【課題】エンジンECUが交換されるなどして学習値が消失した場合であっても、早急に最新の学習値を取得できる燃料噴射量学習制御装置を提供する。
【解決手段】ECUが交換されることで燃料噴射量の学習値が消失した場合、ECUにツールを接続して強制学習指令信号を送信して強制的に燃料噴射量学習モードに移行させる。その後、作業者が1回のアクセルペダル踏み込み操作を行うのみで複数回のレーシングを実施し、個々のレーシング毎に10個程度の学習値を取得する。所定回数の学習値を取得して学習が完了すると、レーシングを終了させる。これにより、ECUの交換後、早期に学習動作を完了でき、燃料噴射量にズレを生じさせることがない。 (もっと読む)


【課題】燃料の低残量状態時に内燃機関の運転状態を燃費優先モードに切り替えることを実行しつつも、ドライバビリティ向上及び機関回転速度の安定性向上を図った内燃機関制御装置を提供する。
【解決手段】エンジンの運転状態を、通常走行モードと、該通常走行モードに比べて燃費を向上させるエコモードとに切り替えるモード切替手段S17,S18と、燃料タンク内の燃料残量が予め設定された所定値以下となる低残量状態であるか否かを判定する残量判定手段S11と、車両走行状態が予め設定された燃費優先許可走行状態であるか否かを判定する走行状態判定手段S12,S13,S14,S15,S16と、を備える。そして、低残量状態かつ燃費優先許可走行状態であると判定された場合に、エコモードに切り替える。 (もっと読む)


【課題】タービンホイールシャフトに隣接するターボチャージャのための軸受けハウジングに機関の燃料の形態で炭化水素を導入するためのコンパクトなシステムを提供すること。
【解決手段】炭化水素は、遠心力によって外側に向けられ、タービンの熱によって気化する。その結果、炭化水素が、ディーゼル・パティキュレート・フィルタの再生処理のために排気流の温度を上昇させるように、触媒と相互作用するタービンの実質上すぐ後で利用可能である。 (もっと読む)


【課題】火花点火式内燃機関の冷間始動後のアイドル運転時において、内燃機関からの未燃燃料成分の排出を抑制し、エミッションの悪化を抑制する。
【解決手段】内燃機関のアイドル回転数を点火時期によってフィードバック制御する場合に、内燃機関の燃焼室が点火時期切換温度TC未満の低温の状態においては(S101で肯定判定)、内燃機関の点火時期をMBTより進角側として前記フィードバック制御を行い(S102)、燃焼室の壁温が点火時期切換温度TC以上の高温の場合には(S101で否定判定)、内燃機関の点火時期をMBTより遅角側として前記フィードバック制御を行う(S103)。 (もっと読む)


1 - 20 / 47