説明

Fターム[3G384FA06]の内容

内燃機関の複合的制御 (199,785) | 入力パラメータ、センサ (66,899) | アクセル操作、アクセル開度 (4,869)

Fターム[3G384FA06]の下位に属するFターム

Fターム[3G384FA06]に分類される特許

4,701 - 4,713 / 4,713


吸気通路におけるスロットルより上流側に配在されたモータ駆動のコンプレッサを有する電動過給機を備え、アイドル時や減速時等に、前記電動過給機により吸気を加圧して圧縮し、この加圧された圧縮空気を前記吸気通路における前記コンプレッサと前記スロットルとの間に形成される蓄圧部に蓄えておき、加速時等の大きなトルクが必要とされるとき、前記蓄えられている圧縮空気を用いて過給を行うようになし、もって、小排気量であっても大きな出力を得るとともに、特に低回転時のターボラグを無くして、運転性、応答性、燃費等を向上させる。 (もっと読む)


実際のエンジン速度及び所望のエンジン速度のデータ値を処理してエンジン速度誤差のデータ値を生成し、エンジン速度誤差のデータ値をガバナーアルゴリズムに従って処理(22)してエンジンに調整された燃料を供給するための質量燃料レートでのデータ値を生成し、c)エンジンに調整された燃料を供給するための質量燃料レートでのデータ値及び実際のエンジン速度のデータ値を処理(24)してシリンダ内のピストンの次のストローク中にエンジンシリンダ内へ噴射される燃料の量のデータ値を生成し、そしてd)その燃料の量をそのストローク中にそのシリンダ内へ噴射させる(30)ことによって、圧縮点火エンジンのアイドリング速度に安定性を与える。
(もっと読む)


手動変速機付き自動車において、走行開始段階の間のエンジン回転数を制限するため自動車の走行状態に応じたエンジントルクの少なくとも1つの許容基準を満たす場合に、自動車のアクセルペダルの位置によって要求される設定エンジントルクに対して減少可能であって、少なくともエンジン特性量に応じて決められた設定エンジントルクが予め定められる。 (もっと読む)


燃焼領域として、燃焼に供される混合気の空燃比で規定される第一、第二、及び第三燃焼領域を使用するようにされ、第一燃焼領域→第三燃焼領域及び第三燃焼領域→第一燃焼領域への燃焼領域切換時、つまり、第二燃焼領域通過時における
排気浄化装置下流のNOx排出量をオンラインで推定するとともに、第二燃焼領域通過時におけるトルク変動量をオンラインで推定し、それらのNOx排出量推定値及びトルク変動量推定値に基づいて、第二燃焼領域通過時における排気浄化装置下流のNOx排出量を所定値以下、かつ、第二燃焼領域通過時におけるトルク変動量を所定値以下とすべく、燃焼室に吸入される吸入空気量を、通常時とは異なる態様、例えば、吸気弁のリフト量を変えることにより調整し、前記燃焼領域切換時の排気エミッションの悪化と運転性の悪化を防止するようにされる。 (もっと読む)


【課題】惰性運転において燃料消費量を低減させる、車両駆動ユニットの運転方法および装置を提供する。
【解決手段】駆動ユニット(180)の惰性運転において、駆動ユニット(180)の出力変数が事前設定走行方式により設定される、車両駆動ユニット(180)の運転方法において、駆動ユニット(180)の惰性運転に対して少なくとも2つの事前設定走行方式が設定され、惰性運転において、事前設定走行方式のいずれかが走行状況の関数として選択される。 (もっと読む)


自動車(20)が、ディーゼルエンジン(22)と、自動車の作動に関連したデータ(CAN_TSC_OCM,CAN_TSC_OCM_SA11)を提供する1つ以上のソース(30,36)とを有し、これらソースは、エンジン(22)の外部に位置するが、エンジン(22)の燃料供給に潜在的に影響を及ぼす。エンジン制御システム(24)は、エンジン燃料供給(66)の制御のためにオールスピード調速方式(52)に従ってデータを処理してオールスピード調速燃料供給データ(MFGOV)を作成し、このオールスピード調速燃料供給データ(MFGOV)は、1つ以上のソースからのエンジン制御システム(24)へのデータ入力が、エンジン燃料供給(66)に影響を及ぼす必要がないことを示すと、エンジン燃料供給(66)をセットする。かかる1つ以上のソースからのデータ入力が、エンジン燃料供給(66)に影響を及ぼす必要のあることを示すと、このデータ入力は、エンジン燃料供給(66)をオールスピード調速方式(52)とは別の方式、特に、トルク速度制御方式(54)によって設定する。
(もっと読む)


本発明は、自動車の排気ラインに組み込まれた汚染制御手段を再生させるための外部システムに関する。該システムにおいて、前記汚染制御手段(1)は、酸化触媒形成手段(2)と関連付けられ、エンジン(4)は、少なくとも1回の燃料のシリンダへの後噴射によって再生手法を実行する、共通燃料供給マニフォールドを有する手段(7)と関連付けられる。該システムは、エンジンの減速段階を検出する手段(9)と、触媒形成手段の下流の温度を測定する手段(11)と、温度値に基づいて、減速段階期間に後噴射される燃料の最大量を決定する手段(8)と、噴射された燃料量が最大量に達するとすぐに後噴射を次第に減少させる手段(7、8)とを備えることを特徴とする。
(もっと読む)


テストすべき制御プロセスに応答するシミュレーションモデルを有し,シミュレーションモデルの上位には実験ソフトウェアが配され,実験ソフトウェアと制御プロセスを作動させるコンポーネントとの間には信号パスが形成され,信号パスは,少なくとも2つの介入点において少なくとも2つの信号に区分され,かつ少なくとも1つの識別子が設けられることにより,識別子が信号パスに対する信号の対応付けを可能とする,車両用の制御プロセスをテストするシステムと方法。

(もっと読む)


動作する気体燃料式内燃機関のピストン・シリンダ内にパイロット燃料を導入し、1組のエンジン・パラメータを監視し、1組のエンジン・パラメータから機関負荷および機関速度を決定し、気体燃料の第1の部分をシリンダ内に導入する方法および装置であって、気体燃料の第1の部分は、燃焼前に気体燃料と空気を含む実質的に均一の混合気を形成し、機関に関する過剰なノッキングを回避するため、パイロット燃料を導入する。第2の量の気体燃料が実質的に拡散燃料モードで燃焼するように加えられることも可能である。
(もっと読む)


本開示は、直接噴射内燃エンジンを制御して、直接噴射内燃エンジンの挙動を予測する方法を教示する。初期シリンダ圧力、空気流れ、EGR流れ(適用可能である場合)の推定が、制動トルクとパワー、空気流れ、EGR流れ、シリンダ圧力、制動特有燃料消費、燃焼の開始、熱放出率、ターボ・チャージャ速度、他の変数など、エンジンの挙動を表すデータを提供するように、噴射モジュール、燃焼モジュール、エンジン制御モジュールを統合することによってエンジン挙動を提供するシステムを確立するために使用される。次いで、これらの値は、オペレータの要求を満たすように、噴射の開始、コマンド・パルス幅、レール圧力などのコマンド変数を調節するために使用する。また、出力データは、概念化されたエンジン設計がどのように振る舞うかを決定する器具として使用する。これは、レール圧力とシリンダ圧力が一般に同様の大きさであるということを考慮すると、シリンダ圧力が噴射気体の挙動に影響を与える気体燃料内燃エンジンには特に有用である。
(もっと読む)


クラッチ−独立動力取出装置(32)における回転速度を調整する方法である。動力取出装置(32)は、車両に設けられているエンジン(1)によって駆動される。エンジン(1)は自動ステージギア変速機(9)に自動車両クラッチ(3)を介して連結されている。変速機(9)、車両クラッチ(3)及びエンジン(1)を制御するために少なくとも一つの制御ユニット(45)が設けられている。制御ユニット(45)は、エンジン(1)の回転速度をスロットルレバー(61)の位置の関数として制御し、ギアセレクタ(46)の位置の関数として変速機(9)を制御する。動力取出装置(32)が係合され、ギアセレクタ(46)によってドライブポジションが選択されているときは、エンジン(1)の回転速度は、制御装置(60)によって制御され、車両クラッチ(3)の係合の程度はスロットルレバー(61)により制御される。動力取出装置(32)に係合している装置が制限位置に近づくと、エンジン(1)の回転速度は自動的に減速される。 (もっと読む)


ブーストを調整すると共に、シリンダ内の酸素濃度レベルを厳密に制御し調整して、遅延型直接シリンダ燃料噴射を利用するエンジンにおける過渡状態の間の有害物質の放出を最小にするための方法が提供される。過渡状態の間のブースト圧の変化と共に閉ループにリンクする方式においてEGR流量が調整され、吸入給気酸素濃度およびブーストレベルが制御温度・低放出の燃焼のための臨界範囲内で維持される。シリンダ内への燃料供給の変化が、燃焼用シリンダ内への給気のブーストレベルの変化を待つように、あるいはこれに続くようにしてある。給気のブーストのレベルが燃焼用シリンダ内に取り込まれるのに応答して燃料供給を制御することにより、過渡状態の間、一時的な燃料レベルが所望の燃料/酸素比を超えることは許容されない。
(もっと読む)


以下のステップ:すなわち、
内燃機関10の開始回転数の超過を含む予め規定された開始条件が満たされた場合に、内燃機関10の出力調整部材18;28;30に対する制御信号の監視を開始し、開始後、
内燃機関10の出力調整部材18;28;30に対する制御信号を閾値と比較し、制御信号が閾値を上回った場合に欠陥反応をトリガして、エンジンブレーキ運転における内燃機関10を運転するための方法が提案される。この方法は、開始回転数を、制御信号の形成へのアイドリング運転調整部50の介入の関数として変化させることによって特徴付けられている。さらに、このような方法を制御する制御装置20が提案される。
(もっと読む)


4,701 - 4,713 / 4,713