説明

Fターム[4G018AA15]の内容

磁性セラミックス (3,358) | 成分 (2,180) | 酸化鉄以外の酸化物を含有するもの (2,118) | 酸化チタン (52)

Fターム[4G018AA15]に分類される特許

21 - 40 / 52


【課題】 複雑な構造上の工夫を要せずに酸素透過能に優れ比較的低い温度においても使用することのできる酸素分離膜を提供する。
【解決手段】 一般式Ba1−x、BaFe1−y、またはBa1−xFe1−y(各式中、AはLa、K、Ca、MgもしくはY、またはそれらの組合せを表し、xは0.01〜0.5であり、MはIn、Ce、Zr、Nb、Bi、Cu、Ni、TiもしくはZn、またはそれらの組合せを表し、yは0.01〜0.5である)で表されるペロブスカイト構造を有する金属酸化物からなる緻密膜を含む酸素分離膜による。 (もっと読む)


【課題】高温大気中における使用においても、出力因子などの熱電変換特性の低下を抑制することのできるn型熱電変換材料を提供する。
【解決手段】Fe、元素M(ここで、MはTi、CrおよびMnからなる群より選ばれる1種以上の元素を表す。)およびOを含有する酸化物であって、Fe:Mのモル比が、(2−x):x(ここで、xは0.01以上1以下の範囲の値である。)である酸化物からなる熱電変換材料。
前記酸化物が、以下の式(1)で表される前記の熱電変換材料。
Fe2-xxy (1)(ここで、Mおよびxは、前記と同じ意味を表し、yは2.8以上3.2以下の範囲の値である。)
MがTiである前記の熱電変換材料。
xが0.02以上0.2以下の範囲の値である前記の熱電変換材料。 (もっと読む)


【課題】 焼成は上限でも950℃以下にでき、高周波帯域でのコアロスを低値にできて少なくとも25〜80℃の温度範囲で十分な磁気特性を確保でき、透磁率を高く得られて積層チップ部品等の磁性体材料へ好ましく適用できる酸化物磁性材料を提供すること
【解決手段】 主成分はFeが45〜50mol%,ZnOが10〜32mol%,CuOが5〜15mol%であり残部をNiOとし、副成分はMgOがNiの20%以下,TiOが0.1〜0.5wt%含有する組成としてNiの一部をMgO,TiOにより置換し、上限でも950℃以下の温度により焼成する。これによる焼結体は、混合した各材料の特質を相互に作用させたものとなり、材質特性は、周波数1000kHz,飽和磁束密度30mT,温度25℃でのコアロスは400kW/m程度に小さくなり、温度80℃においてもコアロスは600kW/m程度に抑え得るものとなる。 (もっと読む)


【課題】高い残留磁束密度と高い保磁力とを有するフェライト磁石を製造する際に、焼成雰囲気中の酸素分圧の変動による磁気特性の変動を抑制する。
【解決手段】原料粉末の成形体を焼成して焼結磁石を得る焼成工程を有し、この焼成工程における雰囲気中の酸素分圧が空気中の酸素分圧よりも低く、前記焼結磁石が、Fe、元素A(Aは、Sr、Ba、CaおよびPbから選択される少なくとも1種)、元素R(Rは、希土類元素(Yを含む)およびBiから選択される少なくとも1種)、元素M(Mは、Co、Mn、NiおよびZnから選択される少なくとも1種)および元素M(Mは、Ti、V、Ge、Zr、Nb、Mo、Sn、TaおよびWから選択される少なくとも1種)を含有し、六方晶フェライトを主相として有するものであるフェライト磁石の製造方法。 (もっと読む)


【課題】 フェライトの磁気損失の低減を図ることのできるMnZn系フェライトの製造方法を提供すること
【解決手段】 主成分として、Fe23は54mol%,MnOは37mol%,ZnOは9mol%とし、これら各原料成分は所定に秤量して乾式混合し、900℃の温度で仮焼きしてMnZnフェライト粉末を得る。また、副成分として、コバルトフェライトの組成になるように酸化鉄と酸化コバルトを秤量し、混合した後、900℃で仮焼きを行なう。次いで、得られた粉末をボールミルで粉砕し、コバルトフェライト粉末を得る。上記MnZnフェライト粉末に、上述したコバルトフェライト粉末を0.18wt%添加するとともに、TiO2,CaCO3,SiO2,ZrO2,Nb25を所定量添加し、湿式粉砕をし、成形して焼成する。 (もっと読む)


【課題】温度依存性が小さく、直流磁場印加下でも広い温度範囲において高い実効透磁率を維持することができるMnCoZnフェライトと、そのMnCoZnフェライトからなるトランス磁心を提供する。
【解決手段】基本成分と添加成分と不純物とからなるフェライトであって、基本成分組成が、Fe:51.0〜53.0mol%、ZnO:13.0〜18.0mol%、CoO:0.04〜0.60mol%および残部MnOからなり、添加成分として、全フェライトに対してSiO:0.005〜0.040mass%、CaO:0.020〜0.400mass%およびTiO:0.010〜0.400mass%を含有し、さらに不純物として含有するPおよびBの量が、全フェライトに対してP:3massppm未満、B:3massppm未満であるMnCoZnフェライト。 (もっと読む)


【課題】500kHz程度以上の高周波域で使用されるスイッチング電源などの電源トランス等に用いて好適な低損失MnZnNiフェライトを提供する。
【解決手段】主成分組成が、Fe:53〜57mol%、ZnO:4〜11mol%、NiO:0.5〜4mol%および残部が実質的にMnOであるMnZnNiフェライトであって、MnOの原料粉体として、その粒度分布での0.1〜10μmの範囲において、1μmを挟んで2つのピークを示し、かつそれらのピーク値の粒度頻度が2.5vol%以上であるものを用いたものであるMnZnNiフェライト。 (もっと読む)


【課題】1MHz以上の高周波域で、磁場劣化の少ないMn−Zn系フェライト材料を提供することを目的とする。
【解決手段】主成分として、Fe:53〜56mol%、ZnO:7mol%以下(0mol%を含む)、残部:MnOを含み、副成分として、CoをCoO換算で0.15〜0.65wt%、SiをSiO換算で0.01〜0.045wt%、CaをCaCO換算で0.05〜0.40wt%を含み、下記フェライト組成式(1)におけるδ値(陽イオン欠陥量)を、3×10−3≦δ≦7×10−3とし、平均結晶粒子径を、8μmより大きく15μm以下とする。これにより、室温から125℃における温度範囲において、励磁磁束密度50mT、測定周波数2MHzにおける電力損失が3000[kW/m]以下であり、かつ磁場劣化率を100%以下としたMn−Zn系フェライト材料を得る。 (もっと読む)


【課題】1MHz以上の高周波域で、かつ100℃近傍の損失が小さいMn−Zn系フェライト材料を提供する。
【解決手段】主成分として、Fe:53〜56mol%、ZnO:7mol%以下(0mol%を含む)、残部:MnOを含み、副成分として、CoをCoO換算で0.15〜0.65wt%、SiをSiO換算で0.01〜0.045wt%、CaをCaCO換算で0.05〜0.40wt%を含み、下記フェライト組成式(1)におけるδ値(陽イオン欠陥量)が、5×10−3≦δ≦19×10−3であることを特徴とするMn−Zn系フェライト材料。
(Zn2+,Ti4+,Mn2+,Mn3+,Fe2+,Fe3+,Co2+,Co3+4+δ…組成式(1)
ただし、a+b+c+d+e+f+g+h=3、δ=a+2b+c+(3/2)d+e+(3/2)f+g+(3/2)h−4、[g:h=1:2] (もっと読む)


【課題】Li系フェライト焼結体のΔHを低減することを課題とする。
【解決手段】Fe原料、MnO原料、ZnO原料及びTiO原料の1種又は2種を含む混合物を出発原料とし、この出発原料から第1の反応物を得る第1の仮焼工程と、第1の反応物に、LiO原料を添加した混合物を第1の仮焼工程よりも低い温度で加熱保持することにより第2の反応物を得る第2の仮焼工程と、第2の反応物を所定形状に成形する成形工程と、成形工程で得られた成形体を焼結する焼成工程と、を備えることを特徴とするLi系フェライト焼結体の製造方法。 (もっと読む)


【課題】電源用トランスやノイズ対策部品として用いられているフェライト系磁性材料が、高温で長時間保持された際に生じる磁気特性の劣化を、簡便な方法で確実に回復する方法を提案する。
【解決手段】主成分組成がFe:50〜85mol%、ZnO:0〜20mol%、CoO:0〜1mol%、NiO:0〜10mol%、残部MnOからなり、添加成分として、SiO:0.005〜0.05mass%、CaO:0.02〜0.2mass%を含有する劣化したフェライトコアを、そのコアのキュリー点以上の温度で5分〜4時間加熱することを特徴とするフェライトコアの磁気特性回復方法。 (もっと読む)


【課題】 湿式成形に比べて成形速度が速い乾式成形において、配向性を劣化させることなく高強度の成形体が得られる酸化物磁性体の製造方法を提供する。
【解決手段】 酸化物磁性体粒子とバインダーとを含む原料混合物を磁場中で乾式成形して成形体を得る乾式成形工程を有する酸化物磁性体の製造方法において、磁場中での成形操作前に、アダマンタン系化合物からなるバインダーを粉体に添加するように構成する。 (もっと読む)


【課題】500kHz程度以上の高周波領域において、損失を抑えた高特性のMnフェライトを提供することを目的とする。
【解決手段】焼成後に、Mnフェライトの損失を低減するための熱処理を行うのが好ましく、その熱処理温度は200〜350℃、熱処理継続時間は0.3〜12hrとするのが好ましい。また、熱処理は、降温時に降温速度を抑えることでも同等の効果を狙うことができる。この場合、降温速度を45℃/hr以下とし、降温速度を45℃/hr以下に抑えてMnZnフェライトを徐冷するのが良い。 (もっと読む)


【課題】 飽和磁束密度の顕著な減少を伴うことなく、従来よりもコアロスが小さい低損失Ni−Cu−Zn系フェライトの焼成体を提供すること。
【解決手段】 化学組成がx(Ni(1-a)Cua)O・yZnO・zFe23で表されるNi−Cu−Zn系フェライトにおいて、x+y+z=100、47.0≦z≦49.7、18.0≦y≦28.0、0.05≦a≦0.40であり、副成分としてV25を0.02〜0.50重量%、およびTiO2を0.02〜0.60重量%含む原材料を焼成してなることを特徴とする低損失Ni−Cu−Zn系フェライトにおいて、V25、TiO2無添加の場合と比較して10〜20%程度のコアロス低減を可能とする。 (もっと読む)


【課題】 広温度帯域においてコアロスが小さく、さらに高温度下(高温貯蔵試験)においてもコアロスの劣化が少なく、コアロスの劣化率のバラツキが小さく、磁気的安定性に優れ、高い信頼性を有するMnZn系フェライトを製造する方法を提供すること。
【解決手段】 所定の基本成分中に、副成分としてCo酸化物を含むMnZn系フェライトを製造する方法において、焼成時の降温工程における雰囲気ガスを、酸素分圧を制御した雰囲気から、窒素雰囲気に切り替える際の雰囲気切り替え温度α1(℃)とし、窒素を切り替えた後の冷却速度α2(℃/hrs.)とした場合に、前記α1を、900≦α1≦1175とし、前記α1とα2との関係を、3.8≦α1/α2≦200とする。 (もっと読む)


【課題】 2MHz以上の周波数であっても、広い温度範囲で低電力損失とするMnZnNi系フェライトとこれを用いた電子部品を提供する。
【解決手段】 主成分としてFe、Mn、Zn、Niを有し、副成分としてCa及びSiと、Va族酸化物のうちの少なくとも一種を有し、Fe、Mn、Zn、NiをFe、MnO、ZnO、NiO換算で総量を100モル%としたとき、Feが57.0〜59.5モル%、NiOが3.5〜6.0モル%、ZnOが12.0モル%以下(0を含まない)、残部がMnOであって、結晶粒の平均結晶粒径が2.0μm以下で、周波数2MHz、磁束密度75mTの条件において、40℃〜120℃に電力損失Pcvの最小値を有し、かつ100℃における電力損失Pcvが4500kW/m以下とした。 (もっと読む)


【課題】 数十kHzから数百kHzの周波数帯域における損失が低く、かつ100℃近傍における飽和磁束密度の高いMnZn系フェライトを提供する。
【解決手段】 比表面積(BET法による)が2.0〜5.0m2/g、50%粒径が0.7〜2.0μmである成形用粉末を所定形状の成形体に成形する工程と、成形体を焼成して焼成体を得る工程と、を備え、焼成の工程における安定温度Tが1250〜1450℃であり、安定温度Tにおける雰囲気の酸素濃度(PO2)が、Log(PO2)=a−(11900/T(K))、ただしa≦8…式(1)を満足する。 (もっと読む)


【課題】 2MHz以上の高周波数域で損失が少なく、かつ広い温度範囲で損失の温度特性の良好なMn−Zn系フェライト材料を提供する。
【解決手段】 主成分として、Fe23:53.8〜56.2mol%、ZnO:2mol%以下(0mol%を含まず)、残部:Mn酸化物を含み、副成分として、CoをCoO換算で0.18〜0.62wt%、TiをTiO2換算で0.04〜0.52wt%、TaをTa25換算で0.0075〜0.21wt%、SiをSiO2換算で0.004〜0.052wt%、CaをCaCO3換算で0.018〜0.32wt%を含むことを特徴とするMn−Zn系フェライト材料。 (もっと読む)


【課題】 小型でかつ脚部を有するコアの焼成時の変形を抑制することのできるMn−Zn系フェライトコアの製造方法を提供する。
【解決手段】 所定のコア形状を有するMn−Zn系フェライト成形体を所定温度まで昇温する昇温過程と、昇温過程に続く保持過程と、保持過程に続く降温過程と、を備え、昇温過程において、焼成雰囲気における酸素分圧(PO2)に基づいて定められる昇温速度で昇温することを特徴とする。昇温速度は、焼成雰囲気におけるPO2と、当該PO2について予め求められている当該コア形状の変形量に基づいて定めることが好ましい。 (もっと読む)


【課題】 従来の磁石を用いた健康器具は、放射線ホルミシスやマイナスイオンの効果も付与するには、磁石以外の構成を組み合わせる必要があった。
【解決手段】 低線量放射線とマイナスイオンを放出する放射性鉱物の粉末と、磁性材料の粉末を混合する混合工程1aと、所要の形状の成形体を得るプレス成形工程1bと、前記成形体を焼結して焼結体を得る焼結工程1cと、前記焼結体を着磁する着磁工程1eとを少なくとも含む本発明の磁石の製造方法を用いる。
【効果】 磁石自体に、放射線ホルミシス効果とマイナスイオン効果が付与される。例えば、寝具に用いた場合、磁力によって筋肉のコリや疲れを取ることができる上、放射線ホルミシスによる免疫機能の活性や、マイナスイオンによる休息効果も得られる。 (もっと読む)


21 - 40 / 52