説明

Fターム[4G062DA03]の内容

ガラス組成物 (224,797) | Si (6,054) | 1−10 (771)

Fターム[4G062DA03]に分類される特許

121 - 140 / 771


【課題】特に遷移金属であるNb成分を含有するガラスにおいて、着色の少ないガラスを得ることが可能な、光学ガラスの製造方法を提供する。
【解決手段】ガラス成形体の製造方法は、Nb成分を必須成分として含有するガラス原料を溶解し、溶解したガラス中で非酸化性ガスをバブリングする工程を有する。この製造方法は、ガラス原料Sを溶融する溶融槽11と、この溶融槽11に連通され且つ溶融ガラスGを清澄する清澄槽12と、この清澄槽12に連通され且つ溶融ガラスGを撹拌する撹拌槽13と、を用い、ガラス原料Sを溶融槽11で溶融する溶融工程、溶融したガラス原料Sを清澄槽12で清澄させる清澄工程、清澄した溶融ガラスGを撹拌槽13で撹拌する撹拌工程、撹拌した溶融ガラスGを流出させる流出工程、及び、流出したガラスを成形する成形工程を有することが好ましい。 (もっと読む)


【課題】所望結晶のみをガラス中に選択析出させた結晶化ガラスとその製法を提供する。
【解決手段】遷移金属元素あるいはリチウムを含有するガラスにマイクロ波を照射することによって、鉄、銅等の遷移金属元素あるいはリチウムから構成される所望結晶をガラス中に選択析出させる。結晶化ガラスの少なくとも一部は非晶質であり、結晶化ガラスがバナジウムあるいは、リチウムイオン,ナトリウムイオン,マグネシウムイオンのいずれかを含む。 (もっと読む)


【課題】特に遷移金属であるNb成分を含有し、且つ着色が少ないガラスを得ることが可能な、光学ガラスの製造方法を提供する。
【解決手段】Nb成分を必須成分として含有する光学ガラスを製造する方法であって、ガラス原料Sを溶融する溶融槽11と、この溶融槽11に連通され且つガラスを清澄する清澄槽12と、この清澄槽12に連通され且つガラスを撹拌する撹拌槽13と、を用い、ガラス原料Sを前記溶融槽11で溶融する工程(溶融工程)、溶融したガラス原料Sを前記清澄槽12で清澄させる工程(清澄工程)、清澄した溶融ガラスGを前記撹拌槽13で撹拌する工程(撹拌工程)、撹拌した溶融ガラスGを流出させる工程(流出工程)、及び流出したガラスを成形する工程(成形工程)を有する。 (もっと読む)


【課題】屈折率(n)が所望の範囲内にありながら低いアッベ数(ν)を有し、耐ソラリゼーションが良好であり、可視光に対する透明性が高く、部分分散比が小さく、低い温度で軟化し易く、且つ研磨加工を行い易い光学ガラスと、これを用いた光学素子及び精密プレス成形用プリフォームを得る。
【解決手段】 酸化物換算組成のガラス全物質量に対して、モル%でTeO成分を30.0〜70.0%、P成分を0%〜25.0%、Bi成分を0%〜20.0%以下含有し、ソラリゼーションが5.0%以下であることを有する。光学素子及び精密プレス成形用プリフォームは、この光学ガラスからなる。 (もっと読む)


【課題】アッベ数(ν)が所望の範囲内にありながら、レンズの色収差をより高精度に補正することができ、且つ着色の少ない光学ガラス、これを用いたプリフォーム及び光学素子を提供する。
【解決手段】光学ガラスは、酸化物換算組成のガラス全質量に対して、質量%でP成分を40.0%未満、並びに、WO成分及びTa成分からなる群から選択される1種以上を合計で75.0%未満含有し、0.62以上0.69以下の部分分散比[θg,F]を有し、15以上27以下のアッベ数(ν)を有する。 (もっと読む)


【課題】太陽光に対して高い透過率を示し、熱的な寸法安定性も有しており、集光型太陽電池装置等の部材用途に好適な低温溶融性および熱間成型性に優れたガラスを提供する。
【解決手段】酸化物基準の質量%で、B成分、Al成分を含有し、B成分の含有量が30〜65%であり、Al/Bが0.18〜0.45であるガラス。より好ましくは、粘度が102.5dPa・sを示すときの温度が1000℃以下である。 (もっと読む)


【課題】屈折率(n)及びアッベ数(ν)が所望の範囲内にありながら、脈理の少なさと失透の起こり難さとを兼ね備え、径の大きなプリフォーム材を形成することが可能な光学ガラスと、これを用いたプリフォーム材及び光学素子を得る。
【解決手段】光学ガラスは、酸化物換算組成のガラス全質量に対して、質量%でB成分を5.0〜35.0%、La成分を15.0〜50.0%、及びWO成分を1.0〜25.0%含有し、LiO成分の含量が5.0%以下である。 (もっと読む)


【課題】屈折率(n)が所望の範囲内にありながら低いアッベ数(ν)を有し、低い温度で軟化し易く、且つ研磨加工を行い易く、さらに高透過率と良好な化学的耐久性を兼ね備える光学ガラスと、これを用いた光学素子及び精密プレス成形用プリフォームを得る
【解決手段】酸化物換算組成のガラス全物質量に対して、モル%でTeO成分を20.0〜70.0%、P成分を0%〜25.0%、B成分を0%〜40.0%、Nb成分を0%〜20.0%、La成分を0%〜30.0%含有し、TeO/(P+B)が1.0以上、B+Nb+Laが0%より多く60%以下であり、摩耗度が200以上800以下、ヌープ硬度が250以上650以下、粉末法耐水性クラス(RW)が1以上3以下、粉末法耐酸性クラス(RA)が1以上3以下である光学ガラス。 (もっと読む)


【課題】従来よりも低い温度で焼成することができ、かつ高い反射率を有するLTCC基板を得ることが可能なガラスセラミックス組成物を提供する。
【解決手段】25〜60質量%のガラス粉末と15〜50質量%のアルミナ粉末および10〜40質量%の高屈折率フィラーを含み、前記ガラス粉末が、酸化物換算で、SiOを0〜50質量%、Bを15〜50質量%、Alを0〜10質量%、ZnO、CaO、SrOおよびBaOから選ばれる1種以上を合計で3〜65質量%、LiO、NaOおよびKOから選ばれる1種以上を合計で0〜20質量%、Biを0〜50質量%含有し、「(B+Biの含有量)の3倍」+「(ZnO+CaO+SrO+BaOの含有量)の2倍」+「(LiO+NaO+KOの含有量)の10倍」の値が200を超えることを特徴とするガラスセラミックス組成物を提供する。 (もっと読む)


【課題】低膨張のガラス基板上に亀裂や崩れを生じさせることなく高さの高い隔壁を形成することが可能な隔壁形成用ガラスセラミックス複合材料を提供することである。
【解決手段】本発明の隔壁形成用ガラスセラミックス複合材料は、ガラス粉末とフィラー粉末を含む隔壁形成用ガラスセラミックス複合材料であって、質量%で、ガラス粉末が30〜60%、フィラー粉末が40〜70%からなり、ガラス粉末がZnO−B−SiO系結晶性ガラスからなり、フィラー粉末が球状シリカからなることを特徴とする。 (もっと読む)


【課題】特にランタン系ガラスを成形する際に、成形されたガラスに割れや曇りを生じ難い成形型及びその製造方法を提供する。
【解決手段】成形型10は、成形面211、311を有する型母材21、31と、成形面211、311上に設けられた保護膜23、33と、を備える成形型10であって、保護膜23、33は、Ir及びReを、Irの含量に対するReの含量のモル比が2.5倍以下になる含量で含有し、成形型10は、ランタン系ガラスの成形に用いられる。 (もっと読む)


【課題】高品質の光学素子を安定生産可能にする高屈折率低分散光学ガラスを提供する。
【解決手段】屈折率ndが1.89以上、アッベ数νdが28〜36であり、組成にB,Zn,La,Si,Gd,Ti,Wを必須として含み、さらに、アルカリ金属元素、アルカリ土類金属元素、Y,Yb,Zr,Nb,Ta,Te,Ge,Bi,Alを0〜5%含んでおり、これら成分のカチオン比が、(B3+/(B3++Si4+))が0.70〜0.96、(B3+/(La3++Gd3++Y3+))が1.0〜2.0、((B3++Si4+)/(La3++Gd3++Y3+))が1.0〜3.0、(B3+/(Ti4++Nb5++Ta5++W6+))が0.8〜4.0、、((B3++Si4+)/(Ti4++Nb5++Ta5++W6+))が1.5〜5.0、等となる光学ガラスとする。 (もっと読む)


【課題】レーザ封着に好適な封着材料、具体的にはレーザ光を吸収しやすく、且つ軟化点が低い封着材料を創案することにより、有機ELディスプレイ等の信頼性を高めること。
【解決手段】本発明の封着材料は、SnO含有ガラス粉末を含む無機粉末 80〜99.7質量%と、顔料 0.3〜20質量%とを含有し、且つレーザ封着に用いることを特徴とする。 (もっと読む)


【課題】優れた光触媒活性を有するとともに、耐久性にも優れた光触媒機能性素材を提供する。
【解決手段】 亜鉛成分を含む結晶相を有し、光触媒活性を有するガラスセラミックスが提供される。このガラスセラミックスは、酸化物換算組成の全物質量に対して、モル%でZnO成分を10〜70%含有してもよく、さらにSiO成分、GeO成分、B成分、及びP成分からなる群より選択される1種以上の成分30〜80%を含有してもよい。このガラスセラミックスは、粉粒状、ファイバー状、スラリー状混合物、焼結体、基材との複合体などの形態をとることが出来る。 (もっと読む)


【課題】高品質の光学素子を安定生産可能にする高屈折率低分散光学ガラス、前記光学ガラスからなる精密プレス成形用プリフォームおよび光学素子と、前記光学素子の製造方法を提供する。
【解決手段】前記光学ガラスは、屈折率ndが1.86以上、アッベ数νdが28〜36、液相温度が1000℃以下であり、カチオン%表示で、
Si4+ 0〜5%
3+ 25〜45%、
Li+ 0〜20%、
Na+ 0〜5%、
+ 0〜5%、
Mg2+ 0〜5%、
Ca2+ 0〜5%、
Sr2+ 0〜5%、
Ba2+ 0〜5%、
Zn2+ 5〜40%、
La3+ 5〜25%、
Gd3+ 1〜15%、
3+ 0〜5%、
Yb3+ 0〜5%、
Zr4+ 0〜3%、
Ti4+ 1〜15%、
Nb5+ 0〜5%、
Ta5+ 0〜5%、
6+ 1〜30%、
Te4+ 0〜5%、
Ge4+ 0〜5%、
Bi3+ 0〜5%、
Al3+ 0〜5%、
を含む。以下のカチオン比を有する。(B3+/(B3++Si4+))が0.85〜1.00、(B3+/(La3++Gd3++Y3+))が1.0〜3.0、(B3+/(Ti4++Nb5++Ta5++W6+))が0.5〜4.0、(Zn2+/(Zn2++Mg2++Ca2++Sr2++Ba2+))が0.8〜1.0、((La3++Gd3++Y3+)/(Ti4++Nb5++Ta5++W6+))が0.3〜2.5、Ti4+/W6+が0.1〜1.5、((Ti4++W6+)(Ti4++Nb5++Ta5++W6+))が0.8〜1.0。 (もっと読む)


【課題】屈折率が1.9以上で、アッベ数が19〜22の光学恒数を有し、しかも光透過特性に優れたリン酸塩系光学ガラスの提供。
【解決手段】酸化物基準のmol%で、酸化物基準のmol%で、P20.0−30.0B3.5−10.0SiO0−5.0BaO 0−5.0NaO 16.2−25.0KO 0−8.0 Bi 10.0−20.0TiO 3.0−15.0Nb 10.0−20.0WO 5.0−15.0ZnO 0−5.0を含有し、かつ、LiOを実質的に含まず、液相粘性(ηTL)が7dPa・s以上で、屈折率n:1.90以上、である光学ガラス。 (もっと読む)


【課題】分光透過率の経時的な劣化が抑制された光学ガラスを提供する。
【解決手段】光学ガラスは、酸化物換算組成のガラス全質量に対して、質量%で、P成分、SiO成分及びB成分からなる群より選択される1種以上を合計で5.0%以上40.0%以下、Nb成分を10.0%以上60.0%以下含有し、ソラリゼーション(波長450nmにおける分光透過率の劣化量)が5.0%以下である。光学素子は、この光学ガラスからなる。また、ガラス成形体の製造方法は、この光学ガラスを用い、軟化した前記光学ガラスに対して金型内でプレス成形を行う。 (もっと読む)


【課題】焼成後にガラス膜内に発生する気孔を抑制ないしは防止できるガラス組成物を提供する。
【解決手段】重量平均分子量10万以上の有機高分子及びガラス粉末を含み、前記有機高分子及びガラス粉末の総重量を100重量%としたときの有機高分子の含有量が0.052〜0.25重量%であることを特徴とするガラス組成物に係る。 (もっと読む)


【課題】有機発光層から発生した光を効率良く外部に取り出せると共に、高いガスバリア性を有する基板材料を創案し、有機EL照明等の光の取り出し効率および信頼性を高めるガラス板を提供する。
【解決手段】板厚が2mm以下であり、且つ屈折率ndが1.55以上の板ガラス。ガラス組成としてBaO、Ti↓2O、Nb↓2O↓5、La↓2O↓3、ZnO、ZrO↓2を合わせて10〜60%含み、あるいはBaO、Ti↓2O、Nb↓2O↓5、La↓2O↓3、Gd↓2O↓3、WO↓3、Ta↓2O↓5、ZrO↓2を合わせて10〜70%含む。 (もっと読む)


【課題】
結晶Si太陽電池用の導電性ペーストにおいて、高い集電効率を得られるような無鉛導電性ペースト材料用の低融点ガラス組成物が望まれている。
【解決手段】質量%でSiOを1〜15、Bを18〜30、Alを0〜10、ZnOを25〜43、RO(MgO+CaO+SrO+BaO)を8〜30、RO(LiO+NaO+KO)を6〜17含むSiO−B−ZnO−RO−RO系無鉛低融点ガラスを含むことを特徴とする低融点ガラス組成物及びそれを用いた導電性ペースト材料である。 (もっと読む)


121 - 140 / 771