説明

Fターム[4K037EA15]の内容

薄鋼板の熱処理 (55,812) | 鋼の合金成分及び不純物 (28,900) | Mn 2%以下 (1,753)

Fターム[4K037EA15]に分類される特許

81 - 100 / 1,753


【課題】フランジ加工性に優れる高強度缶用鋼板およびその製造方法を提供する。
【解決手段】質量%で、C:0.001%以上0.040%未満、Si:0.003%以上0.100%以下、Mn:0.10%以上0.60%以下、P:0.001%以上0.100%以下、S:0.001%以上0.020%以下、Al:0.005%以上0.100%以下、N:0.0130%超0.0170%以下を含有し、残部はFeおよび不可避的不純物からなる。N total−(N as AlN)(N totalとは、Nの総量であり、前記N as AlNとは、AlNとして存在するN量である)が0.0100%以上0.0160%以下であり、平均塑性ひずみ比:平均r値が1.0超である。熱間圧延を行い、630℃未満で巻取り、91.5%以上の圧延率で冷間圧延を行い、焼鈍し、20%以下の圧延率で二次冷間圧延を行うことで得られる。 (もっと読む)


【課題】 高価な元素を含有させることなく、伸びと穴広げ性が優れる高強度熱延鋼板およびその製造方法を提供する。
【解決手段】 質量%で、C:0.03〜0.10%、Mn:0.5〜2.5%、P:0.04%以下、S:0.01%以下、N:0.01%以下を含み、かつSiとAlの添加量の合計が:0.1〜2.5%であり、残部がFe及び不可避的不純物からなり、金属組織が面積率80%以上のフェライトと3〜15%のマルテンサイトを含み、パーライトが3%未満である混合組織であり、板厚の1/4厚における円相当直径3μm以上のマルテンサイト個数密度が5個/10000μm以下であり、さらにR/D>1.0[R:平均マルテンサイト間隔(μm)、D:マルテンサイト平均直径(μm)]を満たすことを特徴とする伸びと穴広げ性に優れた高強度熱延鋼板。 (もっと読む)


【課題】伸びおよび伸びフランジ性に優れ、815〜1000MPaのTSを有する安価な高強度溶融亜鉛めっき熱延鋼板およびその製造方法を提供する。
【解決手段】鋼板が、質量%で、C:0.07〜0.10%、Si+Al:0.50%以下、Mn:1.0〜1.5%、P:0.060〜0.200%、N:0.0020〜0.0045%、Ti:0.010〜0.02%、V:0.23〜0.60%を含み、残部がFeおよび不可避的不純物からなる組成を有し、フェライト単相であり、フェライト相にはサイズが10nm未満のVCがVの析出量で0.15質量%以上析出しているミクロ組織を有する高強度溶融亜鉛めっき熱延鋼板;ここで、VCのサイズとは、透過電子顕微鏡によりマトリックスであるフェライト相の[001]方位から観察される正方板状のVCにおいて、21/2×L(L:正方板の1辺の長さ)で表せるVCのサイズを複数個のVCに対して求め、算術平均した値のことである。 (もっと読む)


【課題】延性、加工硬化性、伸びフランジ性に優れた高張力冷延鋼板を製造する。
【解決手段】質量%で、C:0.020%超0.30%未満、Si:0.10%超3.00%以下、Mn:1.00%超3.50%以下、P:0.10%以下、S:0.010%以下、sol.Al:2.00%以下およびN:0.010%以下である化学組成を有するスラブに、最終1パスの圧下量が15%超でAr3点以上の温度域で圧延を完了する熱間圧延を施し、圧延完了後0.4秒間以内に780℃以下の温度域まで冷却し、400℃超の温度域で巻取り、得られた熱延鋼板に冷間圧延を施し、次いで(Ac3点−40℃)以上の温度域で均熱処理を施し、10.0℃/s未満の冷却速度で50℃以上冷却してから、500℃以下300℃以上の温度域まで冷却し、該温度域で30秒間以上保持する焼鈍を行って、主相が低温変態生成相、第二相に残留オーステナイトおよびポリゴナルフェライトを含む金属組織の冷延鋼板を製造する。 (もっと読む)


【課題】Si、MnおよびCrを含む高強度鋼板を母材としためっき密着性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法を提供する。
【解決手段】Si、MnおよびCrを含有する鋼に対して、酸化炉において出側温度Tで酸化処理を行い、次いで、還元焼鈍、溶融亜鉛めっき処理を行う。または、更に460〜600℃の温度で10〜60秒間加熱して合金化処理を行う。なお、前記出側温度Tは下記を満足する。
A=0.015T−7.6 (T≧507℃)
A=0 (T≦506℃)
B=0.0063T−2.8(T≧445℃)
B=0 (T≦444℃)
[Si]+A×[Cr]≦B
[Si]:鋼中のSi質量%
[Cr]:鋼中のCr質量% (もっと読む)


【課題】延性、加工硬化性、伸びフランジ性に優れた高張力冷延鋼板を実現する。
【解決手段】質量%で、C:0.020%超0.30%未満、Si:0.10%超3.00%以下、Mn:1.00%超3.50%以下を含有し、場合によりさらに、Ti:0.050%未満、Nb:0.050%未満、V:0.50%以下、Cr:1.0%以下、Mo:0.50%以下、B:0.010%以下、Ca:0.010%以下、Mg:0.010%以下、REM:0.050%以下およびBi:0.050%以下から選択される1種または2種以上を含有し、主相が低温変態生成相で、第二相に残留オーステナイトを含む金属組織を有する冷延鋼板。残留オーステナイトは全組織に対する体積率が4.0%超25.0%未満、平均粒径が0.80μm未満であり、粒径が1.2μm以上である残留オーステナイト粒の数密度が3.0×10−2個/μm2以下である。 (もっと読む)


【課題】延性、加工硬化性、伸びフランジ性に優れ、引張強度が750 MPa以上の高張力溶融めっき冷延鋼板の提供。
【解決手段】冷延鋼板が、質量%で、C:0.10%超0.25%未満、Si:0.50%超2.0%未満、Mn:1.50%超3.0%以下を含有し、場合によりさらに適量のTi、Nb、V、Cr、Mo、B、Ca、Mg、REMおよびBiの1種又は2種以上を含有し、P:0.050%未満、S:0.010%以下、sol. Al:0.50%以下およびN:0.010%以下である化学組成と、主相が低温変態生成相で、第二相に残留オーステナイトを含む金属組織とを有する。前記残留オーステナイトは全組織に対する体積率が4.0%超25.0%未満、平均粒径が0.80μm未満であり、前記残留オーステナイトの内、粒径が1.2μm以上である残留オーステナイト粒の数密度が3.0×10−2個/μm2以下である。 (もっと読む)


【課題】延性、加工硬化性、伸びフランジ性に優れ、引張強度が780 MPa以上の高張力冷延鋼板を製造する。
【解決手段】質量%で、C:0.020%超0.30%未満、Si:0.10%超3.00%以下、Mn:1.00%超3.50%以下を含有し、場合によりさらに、適量のTi、Nb、V、Cr、Mo、B、Ca、Mg、REMおよびBiの1種又は2種以上を含有し、P:0.10%以下、S:0.010%以下、sol.Al:2.00%以下およびN:0.010%以下である化学組成を有し、方位差15゜以上の粒界で囲まれたbccまたはbct構造を有する粒の平均粒径が6.0μm以下である熱延鋼板に、冷間圧延を施し、得られた冷延鋼板に(Ac点−40℃)以上の温度域で均熱処理を施した後、500℃以下300℃以上の温度域まで冷却し、該温度域で30秒間以上保持して焼鈍を行う。 (もっと読む)


【課題】延性、加工硬化性、伸びフランジ性に優れた高張力冷延鋼板を製造する。
【解決手段】質量%で、C:0.020%超0.30%未満、Si:0.10%超3.00%以下、Mn:1.00%超3.50%以下、P:0.10%以下、S:0.010%以下、sol.Al:2.00%以下およびN:0.010%以下である化学組成を有するスラブに、Ar3点以上の温度域で圧延を完了する熱間圧延を施し、圧延完了後0.4秒間以内に780℃以下の温度域まで冷却し、400℃未満の温度域で巻取って得た熱延鋼板に300℃以上の温度域に加熱する熱延板焼鈍を施した後、冷間圧延し、次いで(Ac3点−40℃)以上の温度域で均熱処理した後、500℃以下300℃以上の温度域まで冷却し(その際、好ましくは10.0℃/s未満の冷却速度で50℃以上冷却し)、該温度域で30秒間以上保持する焼鈍を行って、主相が低温変態生成相で第二相に残留オーステナイトおよびポリゴナルフェライトを含む金属組織を持つ冷延鋼板を製造する。 (もっと読む)


【課題】延性、加工硬化性、伸びフランジ性に優れた高張力冷延鋼板の実現。
【解決手段】質量%で、C:0.020%超0.30%未満、Si:0.10%超3.00%以下、Mn:1.00%超3.50%以下、場合によりさらに適量のTi、Nb、V、Cr、Mo、B、Ca、Mg、REMおよびBiの1種又は2種以上を含有し、主相が低温変態生成相で第二相に残留オーステナイトおよびポリゴナルフェライトを含む金属組織を備え、前記残留オーステナイトは体積率が4.0%超25.0%未満、平均粒径0.80μm未満であり、前記残留オーステナイトの内、粒径1.2μm以上の残留オーステナイト粒の数密度が3.0×10−2個/μm2以下、前記ポリゴナルフェライトは体積率が2.0%超27.0%未満、平均粒径5.0μm未満である。 (もっと読む)


【課題】延性、加工硬化性、伸びフランジ性に優れ、引張強度が750 MPa以上の高張力冷延鋼板を製造する。
【解決手段】質量%で、C:0.10%超0.25%未満、Si:0.50%超2.0%未満、Mn:1.50%超3.0%以下、P:0.050%未満、S:0.010%以下、sol. Al:0.50%以下およびN:0.010%以下である化学組成を有するスラブに、最終1パスの圧下量が15%超で(Ar3点+30℃)以上かつ810℃以上の温度域で圧延を完了する熱間圧延を施し、圧延完了後0.6秒以内に720℃以下まで冷却し、400℃超の温度域で巻取るか、400℃以下の温度域で巻取って300℃以上Ac1点未満で焼鈍を施す。得られた熱延鋼板を冷間圧延後、(Ac3点−40℃)以上で均熱し、550℃以下300℃以上まで冷却し、30秒以上保持して焼鈍し、溶融めっきを施し、主相が低温変態生成相で第二相に残留オーステナイトを含む金属組織を鋼板が有する溶融めっき冷延鋼板を製造する。 (もっと読む)


【課題】電気伝導性に優れた固体高分子型燃料電池セパレータ用ステンレス鋼、その製造方法、および固体高分子型燃料電池セパレータを提供する。
【解決手段】質量%で、C:0.001〜0.10%、Si:0.001〜1.0%、Mn:0.001〜1.2%、Al:0.001〜0.5%、Cr:15.0〜35.0%、N:0.001〜0.10%を含有し、残部がFeおよび不可避的不純物からなり、表面の酸化皮膜の厚さが20〜600nmであることを特徴とするステンレス鋼及びこの鋼板を、冷間圧延後または冷間圧延材焼鈍後に、水素濃度が30容積%以上であり残部が不活性ガス及び不可避的不純物からなり、露点が−40〜0℃である雰囲気下で、温度が800〜1200℃の熱処理を行なうことで製造する方法。 (もっと読む)


【課題】延性、加工硬化性、伸びフランジ性に優れた高張力冷延鋼板を製造する。
【解決手段】質量%で、C:0.020%超0.30%未満、Si:0.10%超3.00%以下、Mn:1.00%超3.50%以下を含有し、場合によりさらに、適量のTi、Nb、V、Cr、Mo、B、Ca、Mg、REMおよびBiの1種又は2種以上を含有し、P:0.10%以下、S:0.010%以下、sol.Al:2.00%以下およびN:0.010%以下である化学組成を有し、方位差15゜以上の粒界で囲まれたbccまたはbct構造を有する粒の平均粒径が6.0μm以下であり、さらに金属組織中に存在する鉄炭化物の平均数密度が1.0×10-1個/m2以上である熱延鋼板に、冷間圧延を施し、得られた冷延鋼板に(Ac点−40℃)以上の温度域で均熱処理を施した後、500℃以下300℃以上の温度域まで冷却し、該温度域で30秒間以上保持して焼鈍を行う。 (もっと読む)


【課題】延性、加工硬化性、伸びフランジ性に優れた高張力冷延鋼板を実現する。
【解決手段】質量%で、C:0.020%超0.30%未満、Si:0.10%超3.00%以下、Mn:1.00%超3.50%以下を含有し、場合によりさらに、Ti、Nb、V、Cr、Mo、B、Ca、Mg、REMおよびBiから選択される1種または2種以上を含有し、主相が低温変態生成相で、第二相に残留オーステナイトを含む金属組織とを有する冷延鋼板。前記残留オーステナイトは全組織に対する体積率が4.0%超25.0%未満、平均粒径が0.80μm未満であり、粒径1.2μm以上の残留オーステナイト粒の数密度NRが3.0×10−2個/μm2以下、方位差15゜以上の粒界で囲まれたbcc構造を有する粒およびbct構造を有する粒の平均粒径が7.0μm以下である。 (もっと読む)


【課題】引張強さ590MPa以上を有し、化成処理性に優れた、高Si含有高張力冷延鋼帯の製造方法を提供する。
【解決手段】質量%で、C:0.03〜0.20%、Si:0.5〜1.8%、Mn:1.5〜3.5%、P:0.1%以下、S:0.01%以下、Al:0.02〜0.1%、N:0.005%以下を含む組成の鋼素材に、粗圧延、仕上圧延からなる熱間圧延を施し、540〜640℃で巻取る熱延工程を施し、ついで、溶解量を80〜200g/mとする酸洗処理を行う酸洗工程を施し、さらに冷間圧延工程、焼鈍工程、さらに焼鈍工程後酸洗工程とを順次施す。このような工程とすることにより、表層の粒界腐食層、さらには酸化物濃化層を除去でき、冷間圧延性に優れ、かつ化成処理性、および塗膜密着性に優れた高Si含有高張力熱延鋼帯を、容易にしかも安定して製造することができる。 (もっと読む)


【課題】レアメタルに頼らず、リサイクルした鉄源中のSnを利用して、一般耐久消費材への適用が可能な省合金型の熱間加工性と耐銹性に優れたフェライト系ステンレス鋼板を提供する。
【解決手段】質量%で、C:0.001〜0.3%、Si:0.01〜1.0%、Mn:0.01〜2.0%、P:0.005〜0.05%、S:0.0001〜0.01%、Cr:11.0〜13.0%、N:0.001〜0.1%、Al:0.0001〜1.0%、Sn:0.05〜1.0%、残部Fe及び不可避的不純物からなるフェライト系ステンレス鋼板において、式(2)で定義するγpが式(1)を満たすことを特徴とする。10≦γp≦65(1) γp=420C+470N+23Ni+7Mn+9Cu−11.5Cr−11.5Si−52Al−69Sn+189(2) ここで、C、N、Ni、Mn、Cu、Cr、Si、Al、及び、Snは、各元素の含有量。 (もっと読む)


【課題】レアメタルに頼らず、リサイクルした鉄源中のSnを利用して、一般耐久消費材への適用が可能な省合金型の熱間加工性と耐銹性に優れたフェライト系ステンレス鋼板を提供する。
【解決手段】質量%で、C:0.001〜0.3%、Si:0.01〜1.0%、Mn:0.01〜2.0%、P:0.005〜0.05%、S:0.0001〜0.02%、Cr:13.0超〜22.0%、N:0.001〜0.1%、Al:0.0001〜1.0%、Sn:0.05〜1.0%、残部Fe及び不可避的不純物からなるフェライト系ステンレス鋼板において、式(2)で定義するγpが式(1)を満たすことを特徴とする。5≦γp≦55(1)γp=420C+470N+23Ni+7Mn+9Cu−11.5Cr−11.5Si−52Al−57.5Sn+189(2) ここで、C、N、Ni、Mn、Cu、Cr、Si、Al、及び、Snは、各元素の含有量。 (もっと読む)


【課題】衝撃荷重負荷時における衝撃吸収部材の割れ発生を抑制でき、さらに有効流動応力の高い衝撃吸収部材を得ることが可能な鋼材を提供する。
【解決手段】C:0.05〜0.18%、Mn:1〜3%、Si+Al:0.5%以上2.5%未満およびN:0.001〜0.015%を含有し、残部Feおよび不純物からなる化学組成を有し、平均間隔1μm以下のラス組織から成るベイナイトの面積率が70%以上、マルテンサイトの面積率が5〜30%であるともに、式(1)および(2)を満足する鋼組織を有する鋼材である。HM0はマルテンサイトの初期平均ナノ硬さ、HB0はベイナイトの初期平均ナノ硬さ、HM10は10%引張変形後のマルテンサイトの平均ナノ硬さ、HB10は10%引張変形後のベイナイトの平均ナノ硬さである。1.2≦HM0/HB0≦1.6・・・(1)0.90≦{(HM10/HM0)/(HB10/HB0)}≦1.3・・・(2) (もっと読む)


【課題】塗装後耐食性に優れた表面処理鋼板、その製造方法、及びそれを用いて製造された自動車部品を提供する。
【解決手段】鋼成分として、質量%で、C:0.05〜0.5%、Mn:0.3〜4%、P:0.001〜0.1%、S:0.001〜0.05%、N:0.001〜0.03%、Si:0.01〜4%、Al:0.01〜4%を含有し、更にTi:0.01〜0.2%、Nb:0.01〜0.1%、B:0.0001〜0.01%、Mo:0.01〜1%、Cr:0.01〜25%から選ばれる元素の1種または2種以上を含有し、更にSi+Alが0.3〜5%以下、またはCr:2〜25%となるように含有し、残部が鉄及び不可避的不純物である鋼板の表面に質量%でFe:35〜60%を含有し、更にSi:2%以下(0を含む)、アルカリ土類金属元素:合計で0.3%〜3%を含有し、残部Al及び不可避的不純物からなるめっき層を鋼板表面に有し、めっき層厚(両面の合計)の板厚に対する比率が0.5〜3%であることを特徴とする塗装後耐食性に優れた表面処理鋼板。あるいは鋼中Siの替わりに鋼中Alを含有する鋼板。より好ましくはアルカリ土類金属はMgで、0.3〜1.9%、めっき層厚(両面の合計)の板厚に対する比率は0.5〜2.5%である。この鋼板を製造するため、連続溶融めっきラインでAlめっきした後、300℃以下まで冷却することなく、650〜780℃に再加熱して表面まで合金化させるものとする。 (もっと読む)


【課題】強度、伸び、疲労強度に優れた高強度合金化溶融亜鉛めっき鋼板を提供する。
【解決手段】質量%で、C:0.05〜0.2%、Si:1.0〜2.0%、Mn:0.5〜2.5%、Cr:0.1〜2.0%を含有し、残部がFe及び不可避的不純物からなる鋼板の表面に、Feを7〜11%含有し、更に、SiO2、MnO、Mn2SiO4、Cr2O3、Cr2SiO4、(Mn、Cr)2SiO4の1種又は2種以上の酸化物粒子を含有するFe−Zn合金めっき層を備える合金化溶融亜鉛めっき鋼板であって、Cが0.01質量%以下の脱炭層の深さが、上記めっき層と鋼板の界面から0μmを含む1μm以下で、粒界が酸化されている領域の深さが、上記めっき層と鋼板の界面から0μmを含む1μm以下であり、引張強度が800〜1200MPa、伸びが30〜38%で、疲労強度σ×107が引張強度の0.4倍以上である。 (もっと読む)


81 - 100 / 1,753