説明

Fターム[4K037EC02]の内容

薄鋼板の熱処理 (55,812) | 圧延素材(鋳片、鋼片)の製造 (747) | 連続鋳造方法 (494) | 薄鋳片、薄鋳帯 (96)

Fターム[4K037EC02]に分類される特許

61 - 80 / 96


【課題】 テーラードブランク用熱延鋼板およびテーラードブランクを提供する。
【解決手段】フェライトを主相とし、マルテンサイトの体積率が5%以下の炭素鋼または低合金鋼からなる鋼板であって、鋼板表面から板厚の1/4の深さにおけるフェライトの平均結晶粒径D(μm)が下記の(1)式および(2)式を満足するとともに、鋼板表面から板厚の1/4の深さ位置におけるフェライトの平均結晶粒径の700℃における増加速度X(μm/min)と前記平均結晶粒径D(μm)が下記の(3)式を満足し、下記の(4)式で定義されるC当量(Ceq)が0.10〜0.33であるテーラードブランク用熱延鋼板及びテーラードブランク。 1.2≦D≦7 (1)式 D≦2.7+5000/(5+350・C+40・Mn) (2)式 D・X≦0.1 (3)式 Ceq=C+Mn/9+Si/24+Cr/5+Mo/4+Ni/40+V/14 (4)式 (もっと読む)


【課題】強度−延性バランス、伸びフランジ性、耐衝突特性、更には剛性に優れた高強度冷延鋼板及びその製造方法を提供する。
【解決手段】C、Si、Mn、P、S、Al、Nを含有し、更に、質量%で、Nb:0.005〜0.100%、Ti:0.005〜0.100%の一方又は双方を合計で0.130%未満含有し、Ac1[℃]が700℃以上であり、未再結晶フェライトの面積率が10〜70%であり、硬質第2相の面積率が1〜30%であり、好ましくは板厚1/2層における{112}<110>方位の極密度が6以上であることを特徴とする高強度冷延鋼板。鋼片を熱間圧延し、酸洗後、冷間圧延を施した後、(Ac1[℃]−100℃)からAc1[℃]までの昇温速度を20℃/s以下、Ac1[℃]〜{Ac1[℃]+2/3×(Ac3[℃]−Ac1[℃])}の温度範囲内での滞留時間を10〜200sとして焼鈍する製造方法。 (もっと読む)


【課題】形状を損なうことなく板幅方向の材質の均質性を確保することが可能な、延性及び耐常温時効性に優れた焼付硬化性冷延鋼板の製造方法を提供する。
【解決手段】上下のロールアセンブリーの一方又は双方が、軸方向に3以上に分割された分割バックアップロールによって、直径30〜300mmのワークロールを支持する支持機構を有し、分割バックアップロールのそれぞれに負荷される荷重を検出する荷重検出装置と前記分割バックアップロールを独立して昇降させる圧下装置を設けた圧延機により、固溶Cと固溶Nの量の合計が0.0005%超0.0050%以下であり、板厚が0.3〜2.0mm、板幅が600〜2000mmである冷延鋼鈑に、圧延率が0.1以上0.8%未満の調質圧延を施す。 (もっと読む)


本発明は、高張力フラット鋼生成物を、少ない労力で、幾何学的寸法の広い範囲で、製造する方法に関する。このために、本発明によると、以下の組成(重量%で表示)
C: 0.10 〜 0.15 %
Mn: 0.80 〜 1.20 %
P: ≦ 0.030 %
S: ≦ 0.004 %
Si: 1.10 〜 1.30 %
Al: 0.0 〜 0.05 %
N: ≦ 0.0060 %
Cr: 0.30 〜 0.60 %
Ti: 0.080 〜 0.120 %
Nb: 0.040 〜 0.060 %
Mo: 0.150 〜 0.250 %
残余鉄及び不可避の不純物
を有し、そして、多相組織を形成する鋼を、厚さ1〜4mmを有する鋳造ストリップへ鋳造して;
850〜1000℃の範囲にある最終熱間圧延温度、20%を超える変形度で、前記鋳造ストリップを連続圧延中にインラインで、0.5〜3.2mmの範囲にある厚さを有する熱間圧延ストリップへ熱間圧延して;
前記熱間圧延ストリップを、450〜700℃の範囲にある巻き取り温度で巻き取り;そして、
5%の最小破断伸びA80での、880MPaの最小引張強さRを有する熱間圧延ストリップを得る。 (もっと読む)


本発明は、高張力フラット鋼生成物を、少ない労力で、幾何学的寸法の広い範囲で、製造する方法に関する。このために、本発明によると、以下の組成(重量%で表示)
C: 0.08 〜 0.12%
Mn: 1.70 〜 2.00%
P: ≦ 0.030%
S: ≦ 0.004%
Si: ≦ 0.20%
Al: 0.01 〜 0.06%
N: ≦ 0.0060%
Cr: 0.20 〜 0.50%
Ti: 0.010 〜 0.050%
B: 0.0010 〜 0.0045%
残余鉄及び不可避の不純物
を有し、そして、多相組織を形成する鋼を、厚さ1〜4mmを有する鋳造ストリップへ鋳造して;
800〜1100℃の範囲にある最終熱間圧延温度、20%を超える変形度で、前記鋳造ストリップを連続圧延中にインラインで、0.5〜3.2mmの範囲にある厚さを有する熱間圧延ストリップへ熱間圧延して;
前記熱間圧延ストリップを、250〜570℃の範囲にある巻き取り温度で巻き取り;そして、
5%の最小破断伸びA80での、800MPaの最小引張強さRを有する熱間圧延ストリップを得る。 (もっと読む)


【課題】高強度冷延鋼板及びその製造方法を提供する。
【解決手段】高強度冷延鋼板を、質量%で、C:0.05〜0.25%、Si:1.00%以下、Mn:0.5〜3.5%、P:0.150%以下、S:0.0150%以下、Al:0.200%以下、N:0.0100%以下を含有し、残部が鉄及び不可避的不純物からなり、金属組織が、面積率で、10〜70%の未再結晶フェライト及び1〜30%の硬質第2相からなり、好ましくは硬質第2相におけるパーライトの割合が面積率で80%以上であるものとし、その高強度冷延鋼板の製造方法を、鋼片を熱間圧延し、酸洗後、冷間圧延を施した後、(Ac1[℃]−100℃)からAc1[℃]までの昇温速度を10℃/s以上、Ac1[℃]〜{Ac1[℃]+2/3×(Ac3[℃]−Ac1[℃])}の温度範囲内での滞留時間を10〜200sとして焼鈍する方法とする。 (もっと読む)


本発明は、高張力フラット鋼生成物を、少ない労力で、幾何学的寸法の広い範囲で、製造する方法に関する。このために、本発明によると、以下の組成(重量%で表示)
C: 0.08 〜 0.11%
Mn: 1.00 〜 1.30%
P: ≦ 0.030%
S: ≦ 0.004%
Si: 0.60 〜 0.80%
Al: ≦ 0.05%
N: ≦ 0.0060%
Cr: 0.30 〜 0.80%
Ti: 0.060〜 0.120%
残余鉄及び不可避の不純物
を有し、そして、複合相ミクロ組織を形成する鋼を、厚さ1〜4mmを有する鋳造ストリップへ鋳造して;
900〜1100℃の範囲にある最終熱間圧延温度、20%を超える変形度で、前記鋳造ストリップを連続圧延中にインラインで、0.5〜3.2mmの範囲にある厚さを有する熱間圧延ストリップへ熱間圧延して;
前記熱間圧延ストリップを、550〜620℃の範囲にある巻き取り温度で巻き取り;
10%の最小破断伸びA80での、800MPaの最小引張強さRを有する熱間圧延ストリップを得る。 (もっと読む)


本発明は、高張力フラット鋼生成物を、少ない労力で、幾何学的寸法の広い範囲で、製造する方法に関する。このために、本発明によると、以下の組成(重量%で表示)
C: 0.10 〜 0.14 %
Mn: 1.30 〜 1.70 %
P: ≦ 0.030 %
S: ≦ 0.004 %
Si: 0.10 〜 0.30 %
Al: 0.90 〜 1.2 %
N: ≦ 0.0070 %
Ti: 0.070 〜 0.130 %
Nb: 0.040 〜 0.060 %
Mo: 0.140 〜 0.260 %
残余鉄及び不可避の不純物
を有し、そして、多相組織を形成する鋼を、厚さ1〜4mmを有する鋳造ストリップへ鋳造して;
850〜1000℃の範囲にある最終熱間圧延温度、20%を超える変形度で、前記鋳造ストリップを連続圧延中にインラインで、0.5〜3.2mmの範囲にある厚さを有する熱間圧延ストリップへ熱間圧延して;
前記熱間圧延ストリップを、350〜480℃の範囲にある巻き取り温度で巻き取り;そして、
5%の最小破断伸びA80での、800MPaの最小引張強さRを有する熱間圧延ストリップを得る。 (もっと読む)


本発明は、特に高張力なフラット鋼生成物を、少ない労力で、幾何学的寸法の広い範囲で、製造する方法に関する。このために、本発明によると、以下の組成(重量%で表示)
C: 0.15 〜 0.19%
Mn: 0.80 〜 1.20%
P: ≦ 0.030%
S: ≦ 0.004%
Si: 0.60 〜 1.00%
Al: ≦ 0.05%
N: ≦ 0.0060%
Cr: 0.30 〜 0.60%
Nb: 0.040〜 0.070%
残余鉄及び不可避の不純物
を有し、そして、マルテンサイト組織を形成する鋼を、厚さ1〜4mmを有する鋳造ストリップへ鋳造して;
900〜1050℃の範囲にある最終熱間圧延温度、20%を超える変形度で、前記鋳造ストリップを連続圧延中にインラインで、0.5〜3.2mmの範囲にある厚さを有する熱間圧延ストリップへ熱間圧延して;
前記熱間圧延ストリップを、多くとも350℃の巻き取り温度で巻き取り;そして、
5%の最小破断伸びA80での、1400MPaの最小引張強さRを有する熱間圧延ストリップを得る。 (もっと読む)


【課題】形状凍結性に優れた低降伏比高強度冷延鋼板及びその製造方法を提供する。
【解決手段】質量%で、C:0.05〜0.25%、Si:1.00%以下、Mn:0.5〜3.5%、P:0.150%以下、S:0.0150%以下、Al:0.200%以下、N:0.0100%以下を含有し、残部が鉄及び不可避的不純物からなり、金属組織が、面積率で、10〜70%の未再結晶フェライト及び1〜30%の硬質第2相からなる形状凍結性に優れた低降伏比高強度冷延鋼板。鋼片を熱間圧延し、300〜500℃の温度範囲で巻取り、酸洗後、60%以下の圧下率で冷間圧延を施した後、(Ac1[℃]−100℃)からAc1[℃]までの昇温速度を10℃/s以上、Ac1[℃]〜{Ac1[℃]+2/3×(Ac3[℃]−Ac1[℃])}の温度範囲内での滞留時間を10〜200sとして焼鈍する製造方法。 (もっと読む)


【課題】引張強度が390〜600MPaであり、降伏強度及び降伏比が低く、強度−延性バランスに優れ、BH性及び常温非時効性を兼備した亜鉛めっき鋼板及びその製造方法を安価に提供する。
【解決手段】質量%で、C:0.02〜0.08%、Si:0.5%以下、Mn:1.0〜2.5%、P:0.05%以下、S:0.02%以下、Al:0.0005〜0.014%、Cr:0.2%超、1.5%以下、N:0.001〜0.008%を含み、残部がFe及び不可避的不純物からなり、Cr/Al:30以上を満足し、金属組織におけるマルテンサイトの面積率が3〜20%であり、フェライトの面積率が80%以上であることを特徴とする加工性、塗装焼付硬化性及び常温非時効性に優れた高強度亜鉛めっき鋼板。更に、B、Mo、W、Nb、Ti、V、Cu、Ni、Ca、Mg、Zr、La、Ceの1種又は2種以上を含有しても良い。 (もっと読む)


【課題】水素性欠陥を防止し、耐水素脆性性に優れた超高強度鋼板とその製造方法及び超高強度溶融亜鉛めっき鋼板の製造方法並びに超高強度合金化溶融亜鉛めっき鋼板の製造方法を提供する。
【解決手段】本発明の超高強度鋼板は、質量%で、C:0.06〜0.25%、Si:2.0%以下、Mn:3.0%以下、Al:2.0%以下、Cr:3.0%以下、P:0.04%以下、S:0.01%以下、O:0.01%以下、N:0.01%以下を含有し、Si、Mn、Al及びCr各々の含有量の合計が0.3%以上であり、残部が鉄及び不可避的不純物からなる鋼板の表面から10μm以内の表層の結晶粒界、結晶粒内、結晶粒界及び結晶粒内のいずれか1種または2種以上に、酸化物を平均含有率0.01〜30質量%にて含有してなる。 (もっと読む)


【課題】最大引張強度(TS)590MPa以上で優れた加工性を有する高強度溶融亜鉛めっき鋼板を提供する。
【解決手段】質量%で、C:0.05〜0.25%未満、Si:1.0〜2.0%、Mn:1.1〜1.9%、O:0.006%以下、P:0.04%以下、S:0.01%以下、Al:0.05%以下、N:0.01%以下を含有し、残部が鉄及び不可避的不純物からなり、さらに、体積分率でフェライトを50%以上、オーステナイトを3〜50%未満含有し、残部がベイナイトまたはマルテンサイトからなる鋼板の表面に溶融亜鉛めっき層を有し、この鋼板と溶融亜鉛めっき層との界面から5μm以内の鋼板内の結晶粒界及び結晶粒内、溶融亜鉛めっき層内のいずれか一方または双方にSiを含む酸化物を平均含有率0.01〜10質量%にて含有してなることを特徴とする。 (もっと読む)


【課題】440MPa以上のTS及び1.3以上のr値を有する深絞り用高強度複合組織型冷延鋼板の製造方法を提供する。
【解決手段】質量%で、C:0.015〜0.050、Si:1.0以下、Mn:1.0〜3.0、P:0.005〜0.1、S:0.01以下、Al:0.005〜0.5、N:0.01以下、Nb:0.01〜0.3を含有し、残部Fe及び不可避的不純物からなり、かつNbとCの含有量が式(1)を満たすスラブを、熱間圧延後、720℃以下の巻取温度CT℃で巻取り、式(2)と(3)から求まる範囲内の圧下率CR%で冷間圧延して、500〜750℃の均熱温度で熱処理後、さらに冷間圧延し、連続焼鈍して、面積率で、50%以上のフェライト相と1〜15%のマルテンサイト相を含むミクロ組織を得る方法;[C]-(12×[Nb]/93)≧0.01・・・(1)、350-CT+1000×ε1.2≧0・・・(2)、ε=ln(1+CR/100)・・・(3)、ここで、[M]は元素Mの含有量(質量%)を表す。 (もっと読む)


酸化防止の表面コーティング、特にすずメッキに適した鋼板の製造工程鋼板の製造工程に関するものであり、この鋼板の製造工程は生産能力が中程度で広い土地や高額の設備投資を要する設備の設置を必要としない。好ましくは薄型スラブ製造設備で得た0.7mmより厚い酸洗後の熱延鋼板を3台以下のゼンジミア6Zhi型圧延機に通して厚さ0.25mm未満まで冷間圧延しその後焼きなましをする。後に調質と仕上鋼板の製造工程のみを行う1回の厚み減少鋼板の製造工程(Simple reduction)で最終的な厚さ0.18mm未満にしてもよいし、厚さを30%減少させるために半加工鋼板をもう一度冷間圧延する二重の減少鋼板の製造工程(double reduction)により最終的な値にしてもよい。
(もっと読む)


【課題】プレス成形後の製品の表面性状が良好で、優れた焼付硬化性および耐常温時効性を有する、引張強度が340MPa以上の複合組織を有する高張力冷延鋼板を提供する。
【解決手段】主相がフェライト相であるとともに第二相がマルテンサイト相を含む低温変態生成相である組織を備え、板幅方向へ長さが10mmである任意の断面におけるフェライト相の硬さ分布が、Hv(max)−Hv(ave)<0.5×Hv(ave)により規定される関係を満足する高張力冷延鋼板である。Hv(max)は、高張力冷延鋼板の板厚をtとした場合に表面から深さ方向への距離が(1/8)t〜(1/4)tの範囲におけるフェライト粒の最大ビッカース硬さであり、Hv(ave)は、この範囲におけるフェライト粒の平均ビッカース硬さである。 (もっと読む)


本発明は、フェライト構造を有する冷間圧延ストリップを製造する方法に関する。前記方法によると、冷却時にフェライト構造を形成する溶融鋼をストリップへ鋳造し、必要により、前記鋳造ストリップをインラインで熱間圧延して巻き取り、そして、次に1つ以上の工程で冷間圧延して冷間圧延ストリップを形成する。前記タイプの方法によって、冷間成形加工間でのオレンジピール外観及びリジングの形成のリスクが最小限化される冷間圧延ストリップの製造が可能になる。前記目的を達成するためには、鋳造加工及び巻き取り加工の間で、1180℃より高い開始温度から、少なくとも150/秒の冷却速度で、最大中間温度1000℃まで前記鋳造ストリップを冷却し、そして、次に900〜1000℃の間の維持温度で10秒間保持する。 (もっと読む)


【課題】 安価で、機械的特性に、すぐれたプラズマテレビのガスケット材用表面処理鋼板、およびそれを用いたプラズマテレビのガスケット材を適用する。
【解決手段】 重量%で、C:0.03〜0.20%、Si:≦0.5%、Mn:0.5〜3.0%、P:≦0.1%、S:≦0.06%、Al:≦0.1%、N:0.0010〜0.0160%、残部Feおよび不可避的な不純物よりなる鋼板の表面に表面処理層を有することを特徴とするプラズマテレビのガスケット材用表面処理鋼板。 (もっと読む)


【課題】伸びフランジ性と疲労特性に優れた高強度熱延鋼板を提供する。
【解決手段】C:0.03〜0.10質量%、Si:0.08〜1.5質量%、Mn:1.0〜3.0質量%、P:0.05質量%以下、S:0.002〜0.02質量%、N:0.0005〜0.01質量%、酸可溶Al:0.01質量%以下、酸可溶Ti:0.008質量%未満、CeもしくはLaの1種または2種の合計:0.0005〜0.04質量%を含有し、残部が鉄および不可避的不純物からなる鋼板であり、その鋼板中に存在する円相当直径1μm以上の介在物で、かつ、長径/短径が5以上の延伸介在物の個数割合が20%以下である。 (もっと読む)


【解決手段】
熱間圧延された状態から、高強度であると共にきわめて良好な変形特性を有するマルチフェイズ構造の、TRIP鋼(変態誘起塑性)と称される熱間ストリップを製造するために、本発明に従い、次の方法が提案される。この方法は、40〜70%のフェライト、15〜45%のベイナイトおよび5〜20%の残留オーステナイトからなる構造が得られるように、0.12〜0.25%のC、0.05〜1.8%のSi、1.0〜2.0%のMn、残部Feおよび普通の随伴元素を含む使用鋼種の所定の化学的組成で、圧延方式と冷却方式を組み合わせて実施され、その際きわめて微細なオーステナイト結晶粒(d<8μm)を生じるために、熱間ストリップ7の仕上げ圧延が、最後の変形6’の際に準安定オーステナイトの範囲内のAr3のすぐ上の770〜830°Cの温度で行われ、最後の圧延スタンド6’の後に、320〜480°Cのベイナイト形成範囲内のストリップ温度までの熱間ストリップ7の冷却10、11、12が、制御して2段階でかつ約650〜730°Cでの停止時間で行われ、この停止時間の開始がフェライト領域内への冷却曲線の侵入によって決定され、停止時間の持続時間が少なくとも40%のフェライトへのオーステナイトの変態によって決定される。
(もっと読む)


61 - 80 / 96