説明

ボロンミクロ合金化多相鋼からフラット鋼生成物を製造する方法

本発明は、高張力フラット鋼生成物を、少ない労力で、幾何学的寸法の広い範囲で、製造する方法に関する。このために、本発明によると、以下の組成(重量%で表示)
C: 0.08 〜 0.12%
Mn: 1.70 〜 2.00%
P: ≦ 0.030%
S: ≦ 0.004%
Si: ≦ 0.20%
Al: 0.01 〜 0.06%
N: ≦ 0.0060%
Cr: 0.20 〜 0.50%
Ti: 0.010 〜 0.050%
B: 0.0010 〜 0.0045%
残余鉄及び不可避の不純物
を有し、そして、多相組織を形成する鋼を、厚さ1〜4mmを有する鋳造ストリップへ鋳造して;
800〜1100℃の範囲にある最終熱間圧延温度、20%を超える変形度で、前記鋳造ストリップを連続圧延中にインラインで、0.5〜3.2mmの範囲にある厚さを有する熱間圧延ストリップへ熱間圧延して;
前記熱間圧延ストリップを、250〜570℃の範囲にある巻き取り温度で巻き取り;そして、
5%の最小破断伸びA80での、800MPaの最小引張強さRを有する熱間圧延ストリップを得る。

【発明の詳細な説明】
【発明の詳細な説明】
【0001】
本発明は、高張力のボロンミクロ合金化鋼(hochfeste, mit Bor mikrolegierten Staehlen)から、フラット鋼生成物(Stahl-Flachprodukte;例えば、ストリップ又はシートメタルブランク)を製造する方法に関する。前記鋼は、多相鋼の群に属する。これらは、通常、ミクロ組織の相のタイプ、量、及び配置(Anordnung)によりその特性が決定される鋼に関する。従って、ミクロ組織中には、少なくとも2つの相(例えば、フェライト、マルテンサイト、ベイナイト)が存在する。その結果、これらは、通常の鋼と比較すると、優れた強度/成形性の組合せを有する。
【0002】
前記製造手段では、特に、包晶凝固した組成の鋳造で問題が生じる。これらの鋼の品質(Stahlguete)の場合には、連続鋳造間で縦方向の亀裂が生じるリスクがある。前記縦方向の亀裂の出現は、鋳造されたスラブ又は薄スラブから製造される熱間圧延ストリップの品質を低下させ、使用不可能にすることができる。このリスクを防止するために、大規模な対策(例えば、増加した火炎処理)が必要であり、それによって、前記鋼品質を不経済的なものへ転換させてしまう。高いAl含有量を有する鋳造鋼の場合には、粉末化フラックス(Giesspulver)での相互作用によって望ましくない効果も生じ、その結果、前記鋼製のフラット生成物の品質もネガティブな影響を受ける。
【0003】
多相鋼は、これらの特殊な特徴のために、特に自動車製造にとって極めて興味深い。なぜなら、それらの強度が高いために、一方で、より小さい材料厚の使用が可能になると同時に、車両重量の削減を可能にし、そして、他方で、衝突の際の車体の安全性(衝突態様)を改良するからである。従って、ボディ全体の少なくとも均等な強度を有する多相鋼によって、前記多相鋼製の部品のシートメタル厚を、従来の鋼製のボディよりも減少させることができる。
【0004】
通常、多相鋼は、コンバータースチールミル(Konverterstahlwerk)中で溶融され、そして、連続鋳造機でスラブ又は薄スラブへ鋳造され、次に、熱間圧延ストリップへ熱間圧延されて、巻き取られる。この場合には、特定のミクロ組織フラクションを調節する目的で、熱間圧延後での熱間圧延ストリップの選択的に制御された冷却によって、熱間圧延ストリップの機械的特性を変化させることができる。熱間圧延ストリップを冷間圧延ストリップへ冷間圧延して、より薄いシートメタル厚を得ることもできる(EP0910675B1、EP0966547B1、EP1169486B1、EP1319725B1、EP1398390A1)。
【0005】
800MPaを超える引張強度を有する高張力多相鋼からフラット生成物を製造することについての更なる問題は、前記鋼を圧延する際に、高い圧延力を付与する必要があることである。前記要件のために、通常、一般に入手可能な現在の製造機では、前記タイプの鋼から製造される高張力熱間圧延ストリップが、自動車産業により現在要求される要件を十分に満たさない幅及び厚さでしか、製造できないということが結果として生じる。特に、従来の装置では、十分な幅を有する厚さの小さいストリップを非常に良好に製造することができない。更に、従来の方法によって、800MPaを超える強度を有する冷間圧延ストリップを多相鋼から製造することが実際に困難であることが分かっている。
【0006】
多相鋼から鋼ストリップを製造するための代替的な方法が、欧州特許EP1072689B1(DE60009611T2)中に提案されている。この公知方法によると、最初に、(以下、重量%で表示)C:0.05及び0.25%;Mn、Cu及びNi:合計で0.5〜3%;Si及びAl:合計で0.1〜4%;P、Sn、As及びSb:合計で0.1%まで;Ti、Nb、V、Zr及び希土類金属元素(REM):合計で0.3%未満;並びに、Cr、Mo及びV:それぞれ1%未満;残余鉄及び不可避の不純物を含む鋼メルトを、厚さ0.5〜10mm(特に、1〜5mm)を有する鋳造ストリップへ鋳造する。続いて、25%〜70%の間の範囲にある変形度(Umformgrad)で、鋳造ストリップを熱間圧延ストリップへ1回又は複数回のパスでインラインに熱間圧延する。この場合、最終熱間圧延温度は、Ar温度を超える。熱間圧延の終了時点で、得られる熱間圧延ストリップは、次に、2つの工程で冷却される。前記冷却の最初の工程では、温度が400〜550℃の間の範囲に達するまで、冷却速度5〜100℃/秒が維持される。次に、前記温度で、熱間圧延ストリップを滞留時間保持する。前記滞留時間は、5%を超える残余オーステナイト含有量を有する鋼がベイナイト変態するために必要とされる時間である。この場合、パーライトの形成も避けられるべきである。所望のミクロ組織を得るのに十分な滞留時間後で、変態プロセスが第2冷却工程の始まりによって中断される。前記第2冷却工程では、熱間圧延ストリップを400℃未満の温度にして、350℃未満の巻き取り温度でコイルに巻き取る。
【0007】
EP1072689B1に記載される方法では、TRIP特性(TRIP=変態誘起塑性)を有し、そして、ベイナイトミクロ組織フラクションを有する熱間圧延ストリップを、多相鋼から単純な方法で製造することができる。前記鋼は、良好な成形性を有する比較的高い強度を有する。しかしながら、多くの用途(特に、自動車製造分野における)にとって、強度が不十分である。
【0008】
従って、本発明の目的は、高張力フラット鋼生成物を、少ない労力で、幾何学的寸法の広い範囲で、製造することを可能にする方法を提供することからなる。
【0009】
前述の先行技術に基づいて、本発明によると、前記目的は、
以下の組成(重量%で表示)
C: 0.08 〜 0.12%
Mn: 1.70 〜 2.00%
P: ≦ 0.030%
S: ≦ 0.004%
Si: ≦ 0.20%
Al: 0.01 〜 0.06%
N: ≦ 0.0060%
Cr: 0.20 〜 0.50%
Ti: 0.010 〜 0.050%
B: 0.0010 〜 0.0045%
残余鉄及び不可避の不純物
を有し、そして、多相ミクロ組織を形成する鋼を、厚さ1〜4mmを有する鋳造ストリップへ鋳造して;
800〜1100℃の範囲にある最終熱間圧延温度、20%を超える変形度で、前記鋳造ストリップを連続圧延中にインラインで、0.5〜3.2mmの範囲にある厚さを有する熱間圧延ストリップへ熱間圧延して;
前記熱間圧延ストリップを、250〜570℃の範囲にある巻き取り温度で巻き取り;そして、
5%の最小破断伸びA80での、800MPaの最小引張強さRを有する熱間圧延ストリップを得る;
フラット鋼生成物の製造方法によって達成される。
【0010】
本発明は、高張力で、包晶凝固する多相鋼を熱間圧延ストリップへ加工するためのストリップ鋳造の可能性を利用する。この場合、鋳造ストリップそれ自体が小さい厚さを有しているので、自動車製造の分野で特に必要とされる厚さの小さいフラット生成物を製造するために、前記ストリップの熱間圧延の過程で比較的低い変形度のみを維持することが必要である。従って、本発明の方法によって、相当する鋳造ストリップの初めの厚さを特定することによって、熱間圧延ストリップを問題なく製造することが可能である。前記熱間圧延ストリップは、最適な特性分布での最大厚さ1.5mmを有し、そして、前記熱間圧延ストリップから、例えば、車両の支持体構造用の部品を製造することができる。
【0011】
熱間圧延間での変形度が低いために、このために必要とされる圧延力は、従来方法による熱間圧延スラブ又は薄スラブで必要とされる力よりも低く、その結果、幅の大きい熱間圧延ストリップ(従来方法で鋳造される同じ強度及び厚さを有する熱間圧延ストリップの幅よりも実質的に大きい)を、本発明の方法で問題なく製造することができる。従って、本発明によって、前記組成を有し、本発明により製造されるマルテンサイト鋼からなり、そして、1200mmを超える(特に、1600mmを超える)幅を有する高張力熱間圧延ストリップを確実に製造することができる。
【0012】
前記利点とは別に、本発明方法に特有のそれらの特徴及びプロセス変数(例えば、熱間圧延最終温度、冷却、巻取り温度)のために、本発明により構成されるタイプの高張力鋼を加工するためのストリップ鋳造工程の本発明の適用は、本発明により処理されるタイプの重要な鋼組成の確実な鋳造の可能性(さらに、それらの凝固態様について)を提供する。従って、ストリップの鋳造に特有な、鋳造ストリップの非常に素早い凝固によって、従来の製造と比較すると、中央溶解(Mittenseigerungen)の出現のリスクを実質的に減少させることができ、その結果、本発明により製造される熱間圧延ストリップは、その断面及びその長さにわたって特に均一な特徴分布及びミクロ組織を有する。
【0013】
本発明の方法の更なる特別な利点は、例えば、EP1072689B1に記載されるように、冷却中断の必要の結果としての、熱間圧延後と巻き取り後との間に維持されるべき、熱間圧延ストリップの特別な冷却サイクルを追加することなく、本発明により製造される熱間圧延ストリップが、少なくとも800MPaの高い強度を有することである。本発明の方法を実施する場合には、熱間圧延を比較的厳密に限定される温度枠で終了すること、そして、巻取りを正確に規定された温度範囲で実施すること、だけが保証される必要がある。単一工程の冷却がその合間に実施される。
【0014】
本発明の方法の更なる利点は、本発明により製造されるストリップの機械的特性の範囲における拡張を、冷却及び圧延条件を変化させることによって、単一の鋼分析に基づいて、達成することができることである。
【0015】
本発明により製造される熱間圧延ストリップは、次の冷間圧延ストリップへの加工に特に適当である。従って、本発明の或る実際の実施態様では、熱間圧延ストリップが提供され、前記熱間圧延ストリップは、自動車車体製造用に必要とされる、厚さ0.5〜1.4mm(特に、0.7mm〜1.3mmまで)を有する冷間圧延ストリップへ冷間圧延される。冷間圧延の間で生じる凝固を排除するために、冷間圧延ストリップを焼鈍温度750〜850℃で焼鈍することができる。この場合に、本発明の方法により製造される熱間圧延ストリップから製造される冷間圧延ストリップでは、最小引張強度800MPaを確実に保証することができる。同時に、冷間圧延ストリップの最小破断伸びA50は、10%である。
【0016】
本発明の更なる有利な実施態様によると、冷間圧延ストリップは、それ自体が公知である方法により、金属コーティング(例えば、これを亜鉛コーティングであることができる)を提供される。
【0017】
本発明により製造される熱間圧延ストリップの強度値及び伸び値を、最終熱間圧延温度及び巻き取り温度の相当する調整によって、大きな範囲にわたって調節することができる。例えば、得られた熱間圧延ストリップの10%の最小破断伸びA80と、800MPaの最小引張強度Rとを有する熱間圧延ストリップを製造すべき場合には、これを、900〜1000℃の最終熱間圧延温度、及び、420〜510℃の巻き取り温度により達成することができる。
【0018】
更に、5%の最小破断伸びA80での少なくとも1000MPaの、保証された高い引張強さRを有する熱間圧延ストリップを製造すべき場合には、このために、900〜1100℃の範囲にある最終熱間圧延温度、及び、450〜570℃の範囲にある巻き取り温度が選択される。
【0019】
5%の最小破断伸びA80での少なくとも1200MPaの、得られた熱間圧延ストリップの更に高い引張強度Rは、800〜1000℃の最終熱間圧延温度、及び、250〜550℃の巻き取り温度により達成することができる。
【0020】
本発明を、模範的な実施態様に基づいて、以下に詳しく説明する。
【0021】
本発明の効果を実証するために実施される試験において、表1に示される組成を有する本発明により構成される2つの鋼A及びBを溶融し、双ロール鋳造機(Zweiwalzengiess-Maschine)で、1.6mm厚の鋳造ストリップへそれぞれ鋳造した。
【表1】

【0022】
ストリップを鋳造した後に、鋼A及びBから鋳造されたストリップを、最終熱間圧延温度WETで、1.25mmの厚さを有する熱間圧延ストリップへインラインに直接熱間圧延した。続いて、それぞれの場合において得られた熱間圧延ストリップを、冷却工程中で巻き取り温度HTまで直接冷却して巻き取った。巻き取り後に、鋼A及びBの各々から製造される熱間圧延ストリップは、それらの製造の間でそれぞれ維持される最終熱間温度WET及び巻き取り温度HTと共に表2に示される、引張強さR及び破断伸びA80を有していた。
【表2】

【0023】
巻き取り及びピックリング後で、試験4による鋼Bから製造される熱間圧延ストリップを、0.7mm厚の冷間圧延ストリップへ冷間圧延して、800℃の温度でインラインに焼鈍して、ストリップを再結晶化した。
【0024】
11.5%の破断伸びA50での、この方法で得られる冷間圧延ストリップの引張強度Rは、835MPaであった。

【特許請求の範囲】
【請求項1】
フラット鋼生成物の製造方法であって、
以下の組成(重量%で表示)
C: 0.08 〜 0.12%
Mn: 1.70 〜 2.00%
P: ≦ 0.030%
S: ≦ 0.004%
Si: ≦ 0.20%
Al: 0.01 〜 0.06%
N: ≦ 0.0060%
Cr: 0.20 〜 0.50%
Ti: 0.010 〜 0.050%
B: 0.0010 〜 0.0045%
残余鉄及び不可避の不純物
を有し、そして、多相ミクロ組織を形成する鋼を、厚さ1〜4mmを有する鋳造ストリップへ鋳造して;
800〜1100℃の範囲にある最終熱間圧延温度、20%を超える変形度で、前記鋳造ストリップを連続圧延中にインラインで、0.5〜3.2mmの範囲にある厚さを有する熱間圧延ストリップへ熱間圧延して;
前記熱間圧延ストリップを、250〜570℃の範囲にある巻き取り温度で巻き取り;そして、
5%の最小破断伸びA80での、800MPaの最小引張強さRを有する熱間圧延ストリップを得る;
前記製造方法。
【請求項2】
熱間圧延ストリップの幅が、1200mmを超える(特に、1600mmを超える)ことを特徴とする、請求項1に記載の方法。
【請求項3】
熱間圧延ストリップの厚さが、多くとも1.5mmであることを特徴とする、請求項1又は2に記載の方法。
【請求項4】
熱間圧延ストリップを、厚さ0.5〜1.4mmを有する冷間圧延ストリップへ冷間圧延することを特徴とする、請求項1〜3のいずれか一項に記載の方法。
【請求項5】
冷間圧延ストリップを、焼鈍温度750〜850℃で焼鈍することを特徴とする、請求項4に記載の方法。
【請求項6】
冷間圧延ストリップの最小引張強さが、800MPaであることを特徴とする、請求項4又は5に記載の方法。
【請求項7】
冷間圧延ストリップが、10%の最小破断伸びA50を有することを特徴とする、請求項4〜6のいずれか一項に記載の方法。
【請求項8】
熱間圧延又は冷間圧延ストリップに、金属コーティングを施すことを特徴とする、請求項1〜7のいずれか一項に記載の方法。
【請求項9】
金属コーティングが亜鉛コーティングであることを特徴とする、請求項8に記載の方法。
【請求項10】
得られた熱間圧延ストリップの10%の最小破断伸びA80の場合に、最終熱間圧延温度が900〜1020℃であり、そして、巻き取り温度が420〜490℃であることを特徴とする、請求項1〜9のいずれか一項に記載の方法。
【請求項11】
得られた熱間圧延ストリップの1000MPaの最小引張強さRの場合に、最終熱間圧延温度が900〜1100℃であり、そして、巻き取り温度が450〜570℃であることを特徴とする、請求項1〜9のいずれか一項に記載の方法。
【請求項12】
得られた熱間圧延ストリップの1200MPaの最小引張強さRの場合に、最終熱間圧延温度が800〜1000℃であり、そして、巻き取り温度が250〜550℃であることを特徴とする、請求項1〜9のいずれか一項に記載の方法。

【公表番号】特表2010−508435(P2010−508435A)
【公表日】平成22年3月18日(2010.3.18)
【国際特許分類】
【出願番号】特願2009−533822(P2009−533822)
【出願日】平成19年10月24日(2007.10.24)
【国際出願番号】PCT/EP2007/061390
【国際公開番号】WO2008/052919
【国際公開日】平成20年5月8日(2008.5.8)
【出願人】(500169782)ティッセンクルップ スチール アクチェンゲゼルシャフト (45)
【氏名又は名称原語表記】ThyssenKrupp Steel AG
【Fターム(参考)】