説明

Fターム[4K058BA02]の内容

金属の電解製造 (5,509) | 電解生成物及びその形態 (1,026) | 金属 (914) | アルカリ金属 (31)

Fターム[4K058BA02]の下位に属するFターム

Na (18)

Fターム[4K058BA02]に分類される特許

1 - 13 / 13



【課題】電解還元装置の腐食、汚染を防止することができるとともに、還元処理速度が高い高効率の電解還元装置を提供する。
【解決手段】溶融塩2が満たされている電解容器1と、前記電解容器2内に配置され回収対象の金属化合物8が収容されたバスケット状の陰極4と、前記電解容器1内に配置された陽極5と、を有する電解還元装置において、前記陽極5は繊維状カーボン束7からなる。 (もっと読む)


【課題】アノードとカソードとの間におけるガスまたは溶質の物質移動に起因する問題を抑制することが可能な、電気分解による金属の製造方法を提供する。
【解決手段】溶融金属塩にアノードおよびカソードを浸漬して電解セルを形成し、真空雰囲気中で電解セルに通電して電気分解を行い、金属を生成することを特徴とする電気分解による金属の製造方法。前記溶融金属塩が1以上のハロゲン化物、または1以上のハロゲン化物と金属酸化物との混合塩であり、前記アノードが炭素、前記カソードがTi,Zr,Hf,V,Nb,Ta,B,Al,Ga,In, アルカリ金属、アルカリ土類金属もしくは希土類元素の酸化物、またはこの酸化物を含む混合物であってもよい。また、前記溶融金属塩が、アルカリ金属、アルカリ土類金属もしくは希土類元素のハロゲン化物、またはこれらと金属酸化物の混合物であってもよく、この場合にアノードを炭素としてもよい。 (もっと読む)


【課題】表面に不要な形成物が形成された金属リチウムを廃棄せずに、当該表面に不要な形成物が形成された金属リチウムから金属リチウムを回収する。
【解決手段】表面に生成物が形成された金属リチウムに窒素を反応させて、窒化リチウムを形成し、当該窒化リチウムに二酸化炭素を反応させて、炭酸リチウムを形成し、当該炭酸リチウムに塩酸を反応させて、塩化リチウムを形成し、当該塩化リチウム及び塩化カリウムを融解させ、当該融解させた塩化リチウム及び塩化カリウムを電気分解することにより、金属リチウムを回収する。 (もっと読む)


【課題】最も好ましくは200℃よりも低い低温アルカリ金属電解プロセスによるアルカリ金属を生産する方法を提供する。
【解決手段】アルカリ金属ハロゲン化物と、(1)イミダゾリウム塩、N−アルキルピリジニウム塩、テトラアルキルアンモニウム塩およびテトラアルキルホスホニウム塩のような窒素またはリン化合物、および任意選択でIIIA族ハロゲン化物、IB族ハロゲン化物、VIII族ハロゲン化物またはこれらの2種以上の組合せ、あるいは(2)IIIA族ハロゲン化物、VB族ハロゲン化物、またはIIIA族ハロゲン化物とVB族ハロゲン化物の組合せ、あるいは(3)水を含むコエレクトロライトとを含む電解液を使用する。 (もっと読む)


【課題】アルカリ金属アマルガムを含むアノード、アルカリイオン伝導性を有する固体電解質、及び融解アルカリ金属であるカソードを用いた電気分解によりアルカリ金属アマルガムからアルカリ金属を製造する方法。
【解決手段】大気圧下または大気圧よりわずかに大きな圧力下で攪拌することにより、アノードであるアルカリ金属アマルガムに運動状態が付与されることを特徴とする、アルカリ金属アマルガムからアルカリ金属を製造する方法。 (もっと読む)


【課題】少ないエネルギー消費量で効率的に不純物含有アルカリ金属から高純度のアルカリ金属を製造することができるアルカリ金属の製造方法およびアルカリ金属製造装置を提供すること。
【解決手段】不純物含有アルカリ金属180を陽極とし、かつカーボネート系有機溶媒およびアルカリ金属のイオンを含む溶液を電解液170として電気分解を行う。陽極では、不純物含有アルカリ金属180に含まれるアルカリ金属のみがイオンとなって電解液170に溶出し、その他の不純物は不純物含有アルカリ金属180中に残存する。一方、陰極では、電解液に含まれるアルカリ金属(アルカリ金属イオン)のみが陰極の表面に析出する。結果として、不純物含有アルカリ金属から高純度のアルカリ金属190を製造することができる。 (もっと読む)


【課題】カソード側で生成した金属(例えば、Ca)のアノード側への侵入を防止してバックリアクションを抑え、高い電流効率を維持することができる電解槽、及びこの電解槽を用いるアルカリ金属、アルカリ土類金属または希土類金属の製造方法を提供する。
【解決手段】流動型の電解槽であって、電気分解が行われる間、アノード1室側がカソード2室側に対して加圧状態に維持される電解槽である。加圧状態とは、アノード室側とカソード室側にヘッド差がある状態で、アノード側の電解浴の液面レベルをカソード側より高くすること、アノード室内の気相部の圧力をカソード室内のそれに対して相対的に高く設定すること(図1(b)参照)、アノード側電解浴にポンプ圧を加えること(図1(a)参照)、等の方法により得られる。この電解槽を用いて、Ca、その他電解法により製造されているNa、Ca、Mg、La等の金属を連続して製造することが可能である。 (もっと読む)


【課題】アルカリ金属、アルカリ土類金属または希土類金属(特に、金属Ca)を対象とした電解法による金属製造方法、およびその方法を実施する際に用いる金属製造装置を提供する。
【解決手段】電解槽10内のカソード11側の電解浴12を循環させながら電気分解を行う。カソード側の電解浴を、当該浴中の金属濃度を調整するための調整槽15に導入し、調整槽から必要な濃度の金属18を取り出した後、電解浴20を電解槽へ戻すこととすれば、電解を継続しながら金属を取り出せる。電解浴をカソード表面近傍で一方向に流しながら電気分解することができる流動型電解槽を用いるのが望ましい。この方法は、電解槽と、カソード側の電解浴を循環させる循環経路13と、さらに、調整槽を有する本発明の金属製造装置により実施できる。 (もっと読む)


【課題】溶液中での電気化学的輸送による第1電解液(E1)から第2電解液(E2)への選択的なカチオン(Mn+)の抽出法を提供する。
【解決手段】電解質分離壁としてモリブデンクラスターとのカルコゲニドであるMon+2又はMMon+2で作成された輸送壁を用い且つ、第1電解液の側の輸送壁で複数のカチオンの交互配置、輸送壁の中で複数のカチオンの分散、そして第2電解液中でのそれらの交互配置解除を生じさせるために第1電解液(E1)中の電極A1と第2電解液(E2)中の電極C2又は前記輸送壁(2)との間に電位差(ΔE)を発生させることによって前記輸送壁を通るカチオンの輸送を確保することを特徴とする、前記抽出方法。 (もっと読む)


【課題】生産・貯蔵・輸送時におけるエネルギーロスを低減し、システム全体の効率を向上させる海洋工場を提供する。
【解決手段】 洋上に係留した双胴船1に、風力発電手段2及び海流発電手段3又は太陽熱エネルギー集熱手段4と、海水を淡水化する手段5と、淡水化の廃液としての灌水を電気透析する手段9と、太陽熱あるいは電熱または溶融塩電気分解により発生する熱で濃縮する煎ごう手段10と、灌水に溶存するナトリウム、マグネシウムなどの塩化物を溶融塩電気分解手段11と、陸地で船積みされた卑金属酸化物を溶融塩電気分解で生成した塩素と真水の電気分解で得られた水素との反応で生成した塩化水素と卑金属酸化物とを反応させて塩化物を作り、これを溶融塩電気分解することにより廃ガス塩素の有効利用を行う。そして流体エネルギーから得られた電力により、マンガンクラストあるいは海底熱水鉱床中の泥状硫化物を採鉱し港に輸送する総合工場である。 (もっと読む)


【課題】Ca、Li、Na、Al等のメタルフォグ形成金属の塩化物、特に、溶融CaCl2を含有する溶融塩を電気分解して、高濃度Ca溶融塩を効率よく回収できる溶融塩電解方法と電解槽、及びその方法を適用したTiの製造方法を提供する。
【解決手段】メタルフォグ形成金属の塩化物(例えば、CaCl2)を含有する溶融塩を電解槽1の一端からアノード2とカソード3の間に連続的または断続的に供給することにより、カソード表面近傍の溶融塩に一方向の流速を与え、溶融塩をカソード表面近傍で一方向に流しつつ電気分解する。垂直方向に細長い配管(円筒)形状を有し、その長手方向に沿って配置されたアノードとカソード間に隔膜8または隔壁が設けられた電解槽を用いるのが望ましい。Ca還元によるTiの製造にこの電解方法を適用すれば、Caが濃化した溶融塩が比較的安定して得られるので、効率的なTi製造が行える。 (もっと読む)


【課題】β”−Al構造を有する固体カリウムイオン伝導体、その製造方法、及び、該カリウムイオン伝導体を用いることによるカリウムの製造方法の提供。
【解決手段】多結晶質アルカリ金属β”−Alモールディングをカリウムとアルミニウムを含有している酸化物粉末に埋め込み、少なくとも100℃/Hrで少なくとも1100℃に加熱し、更に少なくとも1300℃に加熱し、この温度で少なくとも1時間維持した後に冷却することによって、固体カリウムイオン伝導体を得る。カリウム金属は、カリウムアマルガムを原料とし、カリウムアマルガムを含有するアノード16と固体カリウムイオン伝導体からなる固体電解質管1の内部に充填された液体カリウム金属からなるカソード17を用いて電気分解することにより生成し、パラフィンが充填された不活性雰囲気にある容器20中に導かれ、球体23の形状で固化させらることによって得られる。 (もっと読む)


1 - 13 / 13