説明

Fターム[4K070BA05]の内容

炭素鋼又は鋳鋼の製造 (7,058) | 吹錬 (388) | 上吹き (55)

Fターム[4K070BA05]に分類される特許

41 - 55 / 55


【課題】 吹酸によるクロムの酸化損失を最小に抑制し、かつ還元シリコンの節減、及び転炉耐火物の損傷の防止が可能な含クロム溶鋼の精錬方法を提供する。
【解決手段】 予備処理を施した溶銑を転炉に装入し、吹酸すると共にCr源となるFe−Cr合金を添加しながら脱炭精錬を行う含クロム溶鋼の精錬方法において、Fe−Cr合金に含まれるSi成分量を、0.2質量%以上2質量%以下に調整して、溶銑に添加するので、吹酸によるクロムの酸化損失を最小に抑制し、かつ還元シリコンの節減、及び転炉耐火物の損傷を防止できる。 (もっと読む)


【課題】 転炉での脱炭精錬によって得た溶鋼を、真空脱ガス設備の大気圧よりも低い減圧下において脱炭精錬して極低炭素鋼を溶製するに当たり、減圧下での脱炭精錬を迅速に行うことができると同時に、炭素濃度の極めて低い溶鋼を溶製することのできる極低炭素鋼の溶製方法を提供する。
【解決手段】 転炉における脱炭精錬によって得た溶鋼を、真空脱ガス設備の大気圧よりも低い減圧下において脱炭精錬して極低炭素鋼を溶製するに際し、前記真空脱ガス設備における脱炭精錬開始前の溶鋼の炭素濃度が0.02〜0.06質量%の範囲で、溶鋼の溶存酸素濃度が0.04質量%以上であり、且つ、該溶存酸素濃度と前記炭素濃度との比(溶存酸素濃度/炭素濃度)が1.34以上になるように予め溶鋼の成分を調整するとともに、真空脱ガス設備では減圧下の溶鋼に酸素ガスを供給せずに脱炭精錬する。 (もっと読む)


【課題】 溶銑を脱燐処理して低燐溶銑を製造するに当たり、多量の蛍石を使用することなく、少ない石灰系脱燐用フラックスで効率良く脱燐処理する。
【解決手段】 溶銑16を保持した容器2内に酸素源18と石灰系の脱燐用フラックス17とを添加して、溶銑に脱燐処理を施すことにより低燐溶銑を製造する方法において、上吹きランス4を通じて酸素ガスと少なくとも一部の石灰系脱燐用フラックス17とを溶銑浴面に吹き付けるとともに、搬送用ガスとともに溶銑中に吹き込んだ固体酸素源18を、前記酸素ガスの吹き付けによって生じる火点Rの近傍へ供給する。その際に、上吹きランスから供給される石灰系脱燐用フラックスのうちの少なくとも一部を火点に吹き付けること、また、固体酸素源の吹き込み速度を0.03〜1kg/分・溶銑tonとすることが好ましい。 (もっと読む)


【課題】 上吹きランスから酸素含有ガスを吹き付けて溶融金属を酸化精錬するに当たり、二次燃焼率を高めるとともに発生する二次燃焼熱を効率良く溶融金属に着熱させることができる溶融金属精錬用上吹きランスを提供する。
【解決手段】 上記課題は、その先端に、鉛直斜め下方に向けて酸素含有ガスを噴出するための3個以上のラバールノズル4と、鉛直斜め下方に向けて酸素含有ガスを噴出するための3個以上のストレートノズル8とが、それぞれ同一個数で且つ円周方向に交互に配置され、これらのノズルを介して溶融金属に向けて酸素含有ガスを供給して溶融金属を酸化精錬する溶融金属精錬用上吹きランス1であって、ラバールノズルの傾斜角(θ1 )とストレートノズルの傾斜角(θ2 )とが下記の(1)式を満たす溶融金属精錬用上吹きランスによって解決される。
θ2 −θ1 >10° …(1) (もっと読む)


製鋼産業に由来し、酸化鉄粒子を含むスラグ(2,2')を利用するプロセスにおいて、還元剤(29)が追加され、スラグ(2,2')の酸化鉄粒子及び任意的に設けられる他の金属酸化物が前記還元剤(29)によって還元される。 小さいエネルギー消費と低い投資で可能となる効率的なスラグ還元を達成するために、本プロセスは以下のように実行される: − 反応容器(7)内の溶解炭素を含有している残留溶融鉄(25)上に、前記スラグ(2,2')を、ゆっくりと連続的に長時間に亘って充填するステップと、 − 前記スラグ(2)、前記残留溶融鉄、及び新たに形成された溶融鉄(17)を長時間に亘って電気的に加熱するステップと、 − 炭素を含有している還元剤(29)を不活性ガスと共に、前記スラグ(2)と前記溶融鉄(25)との間の境界面(26)に近接する領域内へ、若しくは直接的に前記溶融鉄(25)内へ、ランス(11)によって長時間に亘って噴出させるステップと、 − 前記溶融鉄(25)内の前記還元剤(29)の前記炭素を溶解させるステップと、 − 金属鉄及び一酸化炭素を形成しつつ、前記スラグ(2)の酸化鉄粒子を長時間に亘って還元させるステップと、 − 結果として生じる一酸化炭素によって発泡スラグ(2')を長時間に亘って形成させるステップと、 − 酸素含有ガス若しくは酸素を前記発泡スラグ(2')に導入して、長時間に亘って一酸化炭素を二酸化炭素へと後燃焼させるステップと、 − 前記反応容器(7)の底部を不活性ガスで長時間に亘って洗浄するステップと、− 前記処理されたスラグ(16)を排出するステップと、 − その後任意的に、溶融鉄(17)を排出し、これにより、溶解炭素を含有している残留溶融鉄(25)が前記反応容器(7)内に残されるステップと、を備えていることを特徴とする。
(もっと読む)


【課題】 上吹きランスから酸素含有ガスを吹き付けて溶銑或いは溶鋼を酸化精錬するに当たり、上吹き酸素ジェットの動圧を容易に調整することができ、同一ランスであっても種々の状況に適確に対処することのできる転炉吹錬方法を提供する。
【解決手段】 その先端に1孔以上のラバールノズル形状の主孔4が設置された上吹きランス1から、溶銑または溶鋼に向けて酸素含有ガスを吹き付けて酸化精錬するに際し、前記主孔の周囲に、傾角θf が主孔の傾角θs に10°を加えた値以下である副孔8を同心円状に複数配置し、該副孔から酸素含有ガスを供給して、前記主孔から噴射される酸素含有ガスの周囲に二次燃焼による高温帯を形成する。 (もっと読む)


【課題】脱りん炉および脱炭炉により行われる転炉工程において、これらのサイクルタイムの変化に関わらず脱炭炉を効率的に稼働させる操業方法を提供する。
【解決手段】脱りん処理を行う脱りん炉9、および脱りん炉から出湯した溶銑を装入して脱炭処理を行う脱炭炉10を備えた転炉設備1の操業方法であって、脱炭炉への溶銑装入(#23)を、脱りん炉への溶銑装入(#7)開始より、少なくとも脱りん炉への溶銑装入の時間と脱炭炉に装入される溶銑が入った取鍋を吊り上げる(#21)時間との合計時間T遅らせて開始する。 (もっと読む)


高速ガス流3が、ランス1から浴4へ通され、遠隔の又は間隔を開けた観察地点9から前記ガス流を通して縦方向に溶融金属浴を観察するための前記ガス流3を通して遮るもののない観察通路を形成するように、火炎外被2によって凝集性に維持される、溶融金属浴4を光学的に分析するためのシステム。
(もっと読む)


【課題】溶融金属への酸素または酸素含有ガスの吹込みよる攪拌効果を維持しつつ、炉底の耐火物の損耗を抑制することが可能で、更には操業における整備を含めたランニングコストを抑えられる設備構成としたシンプルな酸素または酸素含有ガスの吹き込み方法を提供すると同時に、炉内を密閉化し炉内温度の低下を抑制し集塵効果を向上させる。
【解決手段】アーク炉の炉壁の外方に固定装着されたランスにより、ランス先端部の酸素または酸素含有ガスの吐出口の位置を溶融金属面から鉛直方向で700mm以上遠ざけ、かつ吐出口から吐出される酸素または酸素含有ガスの溶融金属面に突入する角度を鉛直方向の面において溶融金属面からの角度が30゜から60゜の範囲とし、酸素または酸素含有ガスの溶融金属表面上での突入速度を150m/秒から300m/秒の範囲となるようにランス先端部の吐出口からの吹込み速度を決定して吹き込む。 (もっと読む)


【課題】 炉内の残存スラグを利用して溶銑予備処理炉の炉内壁に短時間で長寿命のスラグコーティング層を形成することができる溶銑予備処理炉の補修方法を提供する。
【解決手段】溶銑予備処理炉1の残存スラグ3に酸素ブローを行うことにより、スラグ中のFeと酸素を反応させてFeOを増加させる。この発熱反応によりスラグは加熱されるとともに、スラグの融点が低下する。次にスラグ深さとほぼ等しい直径の石灰石を投入して冷却固化させ、炉内壁にスラグコーティング層を形成する。石灰石の投入によりスラグ組成はCaOリッチの高融点となり、強固な保護層となる。 (もっと読む)


【課題】脱りん炉に装入する適切な銑鉄スクラップの量を算出可能とする。
【解決手段】脱りん炉2と脱炭炉3とをそれぞれ備える製鋼設備1で、脱りん炉2内の溶銑4に銑鉄スクラップ5を装入した上で脱りん処理を行う製鋼設備の操業方法において、前記銑鉄スクラップ5の量を、脱りん処理前後での溶銑重量の変化量と、脱りん炉で発生し且つ脱りん処理に必要な熱量を上回る余裕熱量とを基に算出する。 (もっと読む)


【課題】 従来に比べてはるかに安価に且つ効率良く低炭素高マンガン鋼を溶製することのできる方法を提供する。
【解決手段】 転炉を用いて大気圧下で溶銑に脱炭精錬を施し、次いで前記脱炭精錬によって得られた溶鋼を真空脱ガス設備を用いて減圧下で真空脱炭精錬して炭素濃度が0.05質量%以下、マンガン濃度が1.0質量%以上の低炭素高マンガン鋼を溶製するに際し、転炉では、脱燐処理の施された溶銑を使用すると共にマンガン鉱石を使用して、マンガン鉱石を還元しながら溶銑の脱炭精錬を行ない、当該脱炭精錬終了後はアルミニウムによる溶鋼の脱酸処理を施さないまま溶鋼を真空脱ガス設備に搬送し、真空脱ガス設備では、大気圧よりも低い雰囲気下において溶鋼表面に向けて酸素ガスと不活性ガスとの混合ガスを吹き付けて、溶鋼の炭素濃度が0.05質量%以下になるまで脱炭処理を施す。 (もっと読む)


【課題】転炉に収容された溶銑に脱燐と脱炭とを並行して行うことにより溶銑の精錬効率を高めることができる溶銑の精錬方法を提供する。
【解決手段】転炉に収容された溶銑に、酸化カルシウムを含む生石灰、石灰石又は水酸化カルシウムの粉体を、溶銑トン当たり毎分1.0〜4.5Nmの流量の酸素ガスととともに吹付けることによって脱燐と脱炭の一部とを並行して行うことにより溶銑の炭素濃度を1.8〜3.8質量%とする第1の工程と、転炉に収容された第1の工程を経た溶銑に脱炭の残りを行う第2の工程とを経て、所望の燐濃度及び炭素濃度を有する溶鋼を製造する。 (もっと読む)


製鋼方法が開示されている。本製鋼方法は、製鋼プロセスで溶融鋼と溶融製鋼スラグを造ることを含み、製鋼スラグは鉄分とフラックス分を含み、その後、直接製錬プロセスの装入材料必要量の一部として、製鋼スラグのかなりの部分を用いて、溶融浴ベースの直接製錬プロセスで溶融鉄を造る。直接製錬方法も開示されている。本方法は、製鋼スラグを含む鉄材料を予備処理し、その後、直接製錬プロセスの装入材料の一部として予備処理された鉄材料を用いて溶融鉄を直接製錬することを含む。
(もっと読む)


脱炭処理のために酸素がガス・シュラウドにより包囲されて供給される第1段階と、脱炭処理のために酸素がフレーム・シュラウドにより包囲されて供給される第2段階と、不活性ガス、又は酸素及び不活性ガスがフレーム・シュラウドにより包囲されて供給される第3段階とを含む3段階精錬法により溶鋼が脱炭処理される、低酸素鋼の製造方法。
(もっと読む)


41 - 55 / 55