説明

Fターム[4K070BA12]の内容

炭素鋼又は鋳鋼の製造 (7,058) | 吹錬 (388) | ダブルスラグ法 (25)

Fターム[4K070BA12]に分類される特許

1 - 20 / 25


【課題】溶銑配合率を低減し得る粉体吹込みランス、その吹込みランスを用いた溶鉄の精錬方法を提案する。
【解決手段】円形軌道に沿い間隔をおいて配列され、鉄浴型精練炉に収容された鉄浴中へ酸素ガスを吹込む複数の噴出開口を有する精錬用酸素ガス吹込みノズル5b1と、前記円形軌道の中心軸と同軸になる軸芯を有し、該精錬用酸素ガス吹込みノズルの内側にて火炎を形成するとともに、該火炎によって着熱された粉体を前記鉄浴中へ吹き込む噴出開口を有するバーナーノズル5b2とを備えた粉体吹込みランスにおいて、前記精練用酸素ガス吹込みノズル5b1の噴出開口と前記バーナーノズル5b2の噴出開口との位置関係を示す指標Fを調整することにより、精錬用酸素ガスとバーナーによる火炎の干渉が小さくなり、火炎温度が高位に保たれて粉体が効率的に加熱され、溶鉄着熱効率の向上を図る。 (もっと読む)


【課題】溶銑脱硫スラグの発生をなくし、転炉スラグのフッ素レス化と脱Cスラグの脱P工程リサイクルを促進し、さら二次精錬スラグをフッ素レス化して製鋼工程内リサイクルを進め、製鋼工程から系外に排出されるスラグ量を低減するとともに、系外に排出されるスラグのフッ素レス化を実現する。
【解決手段】RH真空脱ガス装置に加えて、アーク加熱手段を有する二次精錬装置(アーク加熱二次精錬装置)を用いて溶湯の加熱昇温を行うことにより、先立つ転炉精錬でのホタル石使用を不要とするとともに二次精錬でのホタル石使用を不要とし、アーク加熱二次精錬装置で脱硫精錬を行うことによって溶銑予備脱硫を不要とするとともに二次精錬スラグの転炉リサイクルを可能にする。 (もっと読む)


【課題】溶銑を転炉で予備脱燐処理し、次いで、この溶銑に別の転炉で脱炭精錬を行って溶鋼を製造するにあたり、上吹きランスの流路内での発熱・燃焼を危惧することなく、高い着熱効率及び生産性で溶鋼を製造する。
【解決手段】精錬剤供給路と、第1の燃料供給路と、燃焼用ガス供給路と、脱燐用酸化性ガス供給路と、第2の燃料供給路と、を構成する第1の上吹きランス1を用い、第1及び第2の燃料供給路からの燃料により火炎を形成させながら、精錬剤供給路から不活性ガスともに酸化鉄、石灰系媒溶剤、可燃性物質の1種以上を供給しながら脱燐用酸化性ガスを吹き付けて溶銑を予備脱燐処理し、次いで、溶銑を別の転炉に装入し、精錬用酸素ガス供給路と、燃料供給路とを有する第2の上吹きランスを用い、燃料供給路からの燃料により火炎を形成させながら、精錬用酸素ガス供給路から酸素ガスとともに粉状媒溶剤を供給して溶銑を脱炭精錬して溶鋼を製造する。 (もっと読む)


【課題】 溶銑を転炉で脱燐処理し、次いで、この溶銑を別の転炉で脱炭精錬を行って溶鋼を製造するにあたり、上吹きランスの流路内での発熱・燃焼を危惧することなく、高い着熱効率及び生産性で溶鋼を製造する。
【解決手段】 粉状精錬剤供給流路、燃料供給流路、燃料燃焼用ガス供給流路、脱燐精錬用ガス供給流路を、独立して有する上吹きランス3を用い、燃料供給流路から供給する燃料と燃焼用ガス供給流路から供給する酸化性ガスとにより火炎を形成させながら、粉状精錬剤供給流路から、酸化鉄、石灰系媒溶剤、可燃性物質のうちの1種以上を不活性ガスとともに供給し、且つ、脱燐精錬用ガス供給流路から酸化性ガスを供給して溶銑7を脱燐処理し、次いで、該溶銑を別の転炉に装入し、脱炭精錬用ガス供給流路を有する上吹きランスを用い、脱炭精錬用ガス供給流路から粉状の媒溶剤を脱炭精錬用酸化性ガスとともに転炉内の溶銑浴面に向けて供給して溶銑を脱炭精錬する。 (もっと読む)


【課題】固体酸素源の酸素比率、固体酸素源の供給のタイミングを適正化することにより汎用鋼を確実に溶製することができるようにする。
【解決手段】脱炭工程に先だって上底吹き転炉型精錬容器にて気体酸素及び固体酸素源を供給して溶銑の脱りん処理を行うに際し、全酸素に対する前記固体酸素源の固体酸素比率を10%以上60%以下とし、脱りん処理に際して使用する全気体酸素のうち0%以上10%未満の気体酸素を供給する間に、全固体酸素源の30%以上80%以下を投入し、残りの固体酸素源は全気体酸素のうち10%以上60%未満の気体酸素を供給する間に投入し、残りの固体酸素源を投入するときの供給速度は0.3〜1.5Nm3/min/tとし、全気体酸素のうち60%以上の気体酸素を供給するときは固体酸素源を供給しない。 (もっと読む)


【課題】同一の転炉で脱りん精錬と脱炭精錬を行うことによるメリットを享受しつつ、P規格の特に厳しい極低りん鋼についても安定的に溶製することのできる転炉精錬方法を提供する。
【解決手段】上底吹き転炉を用いて鋼を精錬するに際し、第1工程で溶銑を転炉に装入し、第2工程でフラックスを用いた転炉上底吹き精錬により溶銑脱りんを行い、第3工程で転炉を傾動して第2工程で生成したスラグの一部又は全部を排出し、第4工程でフラックスを追加して転炉上底吹き精錬により溶銑脱りんを行い、第5工程で転炉を傾動して第4工程で生成したスラグの一部又は全部を排出し、第6工程で転炉上底吹き精錬により脱炭を行う。最初の脱りん精錬とその後のスラグ除去の後、フラックスを追加して第2の脱りん精錬とスラグ除去を行い、さらにその後に脱炭精錬を行うので、脱炭精錬終了後の溶鋼中P濃度を十分に極低P鋼レベルまで低減できる。 (もっと読む)


【課題】蛍石を使用することなく中間排滓時のスラグの流動性を改善して溶鋼歩留まりの悪化やスラグの流出を防止するとともに、中間排滓によるCaO源の削減を図ることができる溶銑の脱Si脱P処理方法を提供する。
【解決手段】転炉型の炉内で溶銑の脱Si処理を行った後に中間排滓を行い、同一の炉内でさらに脱P処理を行う溶銑の脱Si脱P処理方法であり、脱P処理より後工程において発生する転炉スラグあるいは造塊スラグを脱Si処理を行う炉内に投入し、スラグ塩基度(CaO/SiO2)を0.5〜1.8の範囲に調整して脱Si処理を行う。なお、溶銑中のSi濃度が0.2%以上の状態で中間排滓を行うことが好ましい。 (もっと読む)


【課題】上底吹き転炉で、上吹き酸素流量を2.0〜5.0Nm3/min/溶銑t、底吹きガス流量を0.2〜0.6Nm3/min/溶銑t以下としてCaO含有粉体を上吹き酸素と共に溶銑へ上吹きして溶銑脱りんする方法において、スロッピングによる鉄歩留まり低下を抑制でき且つ高脱りん率が得られる方法を提供する。
【解決手段】CaO含有粉体中に含まれるCaOと上吹き酸素との質量比CaO/Oを式(A)の範囲とする。
0.036763×Qo2-0.26492×QB+0.366557
< CaO/O < 0.040893×Qo2-0.26492×QB+0.939606 (A)
ここで、
Qo2:上吹き酸素流量(Nm3/min/溶銑t)、
QB:底吹きガス流量(Nm3/min/溶銑t)、
CaO:CaO含有粉体上吹き期間中の、該粉体に含まれるCaOの平均質量供給速度(kg/min/溶銑t)、および
O:CaO含有粉体上吹き期間中の、上吹き酸素の平均質量供給速度(kg/min/溶銑t)
である。 (もっと読む)


【課題】 2基の転炉を用い、一方の転炉では、炭材などを熱源として大量の鉄スクラップを溶解して高炭素溶融鉄を溶製し、他方の転炉では、該高炭素溶融鉄を酸素吹錬して所定成分の溶鋼を溶製する製鋼方法において、大量の鉄スクラップを鉄源として利用する。
【解決手段】 2基の転炉を用い、一方の転炉では、炉内に鉄スクラップ及び予備処理の施されていない溶銑を装入し、更に、フェロシリコン、黒鉛、コークス及び4.0kg/(高炭素溶融鉄トン)以下の造滓剤を炉内に添加し、炉底から攪拌用ガスを供給しながら、上吹きランスから、精錬の進行に伴って供給流量が低下するようにして酸素ガスを供給し、フェロシリコン、黒鉛及びコークスの燃焼熱により鉄スクラップを溶解して炭素濃度が3質量%以上の高炭素溶融鉄を溶製し、次いで、他方の転炉で前記高炭素溶融鉄を原料として酸素吹錬し、所定の成分の溶鋼を溶製する。 (もっと読む)


【課題】転炉における脱炭処理により生成されたスラグを再利用する転炉の精錬方法において、コスト増大や熱の損失などを生じることなく、脱燐処理時の新たなCaO添加に伴う未滓化CaOの発生を抑制する。
【解決手段】転炉における脱炭処理により生成されたスラグを再利用する転炉の精錬方法において、前記第4工程で投入するCaO量を、次チャージの前記第2工程での目標塩基度と前記第4工程での仕上げ脱燐に必要なCaO量を共に確保可能なCaO量とするに際し、現在チャージの前記第3工程で排出したスラグのCaO濃度及び排出量を測定し、この測定したCaO濃度及び排出量と予め求めた該排出前の炉内スラグ量を基にして現在チャージの前記第3工程後に於ける炉内残留スラグ中のCaO量を算出し、この算出した炉内残留スラグ中のCaO量と、次チャージの第2工程で必要とする前記CaO量との差から決定する。 (もっと読む)


【課題】本発明は、精錬容器の形状を問わず、製鋼工程でのスクラップ消費量を低下させることなく、また、脱りん剤にCaF2を用いない場合でも、効率良くCaO源の滓化を促進し、安価にかつ高効率に溶銑を脱りん処理する精錬方法を提供する。
【解決手段】Si含有量0.1質量%以上の溶銑にCaO源と酸素源を添加して脱りん精錬を行うに際し、溶鋼を製造する際に発生するスラグを再利用する目的で脱りん精錬容器に予め入れ置きするおよび/または溶銑装入後に添加するスラグ中のCaO分を除き、CaO源の添加量を全精錬期間中に添加するCaO源添加量の30質量%以下(ゼロを含む)とする精練前半と、CaO源の添加量を全精錬期間中に添加するCaO源添加量の70質量%以上とする精練後半に分け、後半の開始時点は、溶銑中のSi含有量が0.1質量%未満とする。 (もっと読む)


【課題】転炉における脱炭処理により生成されたスラグを再利用する溶鋼の吹錬方法において、コスト増大や熱の損失などを生じることなく、脱燐処理時の新たなCaO添加に伴う未滓化CaOの発生を抑制する。
【解決手段】溶銑が装入された転炉内にCaOを含むフラックスを添加し脱珪及び脱燐を行う溶銑予備処理工程と、溶銑予備処理工程後のスラグを転炉から排出する中間排滓工程と、転炉内にCaOを含むフラックスを新たに添加し脱炭及び仕上げ脱燐を行う脱炭処理工程と、を順に繰り返し行い、nチャージ目の脱炭処理工程で生成されたスラグの全量を(n+1)チャージ目の溶銑予備処理工程のフラックスとして再利用する溶鋼の吹錬方法において、nチャージ目の脱炭処理工程では、該脱炭処理工程で生成されたスラグ中に含まれるCaO量が(n+1)チャージ目の溶銑予備処理工程で使用するCaO量を確保可能なように、CaOの添加量を決定する。 (もっと読む)


【課題】転炉内で溶銑予備処理を行った後に、溶銑を転炉内に残したままスラグを排滓鍋に排出する際のスラグの鎮静方法において、排滓鍋内で急速にフォーミングするスラグを効率良く鎮静することにより、排滓鍋からのスラグの溢出を防止しつつ、溶銑予備処理後のスラグを転炉から排滓鍋に短時間で大量に排出する。
【解決手段】転炉10内で溶銑Pの脱燐処理を行った後に、溶銑Pを転炉10内に残したまま、転炉10の下方に設置された排滓鍋30に、塩基度が1.0以上1.5以下で酸化鉄濃度が15質量%以上25質量%以下のスラグSを、排滓鍋30の体積1m当たり0.03トン/分以上の平均排出速度で排出する際に、スラグSのフォーミングを鎮静するために、所定の組成、比重を有する塊状の鎮静材50を、スラグSの排出開始から20秒以内に、連続的または断続的に50kg以上の投入量で排滓鍋30に投入する。 (もっと読む)


【課題】本発明は、鋼を製造しバナジウム等の高含有量の付加的元素を含むスラグを回収するための2段階プロセスであって、まず液状の銑鉄を低い温度で高品質スラグにブローし、前記スラグを取出し後に個別にさらに処理する一方、前記銑鉄を少なくとも1つの他の転炉に供給し、少なくとも1つの転炉内で前記銑鉄を高い温度でブローして鋼を形成するプロセスに関する。高品質スラグが製造され、製鋼法が短縮されることを目的とする。
【解決手段】これは、第1転炉から取り出される金属中間製品が、第2転炉に供給される前に加熱段階および/または保温段階を施されるプロセスによって達成される。
(もっと読む)


【課題】 同一の転炉型容器を用いて脱燐処理と脱炭処理とを中間に排滓工程を挟んで連続して実施して溶銑から溶鋼を製造する際に、脱燐用精錬剤にフッ素源を配合しなくても脱燐処理することができ且つ中間排滓を充分に行うことができる製鋼方法を提供する。
【解決手段】 転炉型容器に溶銑を装入し、該溶銑にCaO系媒溶剤を主体とする脱燐用精錬剤と酸素源とを供給して脱燐処理を行った後、該脱燐処理で生成した脱燐スラグの少なくとも一部を転炉型容器から排出し、その後、転炉型容器内の溶銑に酸素源を供給して脱炭処理を行い、溶銑から溶鋼を製造する製鋼方法において、脱燐処理では、処理後に生成される脱燐スラグの塩基度(質量%CaO/質量%SiO2 )を2.5以下とするとともに、脱燐用精錬剤の一部として酸化チタン源または/及びAl23 源を使用し、且つ、脱燐処理後には、生成した脱燐スラグの60質量%以上を転炉型容器から排出する。 (もっと読む)


【課題】 溶銑、溶鋼などの溶融金属を収容した精錬炉或いは取鍋などの溶融金属容器から溶融金属の上に浮遊するスラグを排出するに当たり、構造が簡単であり、しかも転炉などの奥行きの深い溶融金属容器であっても数回の操作でスラグの大半を排出することのできる排滓装置を提供する。
【解決手段】 上記課題を解決するための本発明に係る排滓装置1は、溶融金属容器8に収容された溶融金属11の浴面上に存在するスラグ12を、支持アーム3の先端部に取り付けられた、水平方向に往復移動可能な掻き板4によって溶融金属容器の滓排出口9から掻き出す排滓装置において、前記掻き板は、弾性変形可能な金属板からなり、滓排出口に接触しても弾性変形して通過することを特徴とする。 (もっと読む)


【課題】脱燐反応を促進させて溶銑を効率的に脱燐処理することができ、且つ脱燐・脱炭の両工程を含めたトータルのMn歩留まりを十分に高める溶銑精錬方法を提供する。
【解決手段】同一の転炉型容器を用い、溶銑にCaO源を主体とする精錬剤と酸素源を添加し、処理後のスラグの塩基度が2.2超え3.5以下、T.Fe濃度が10〜30mass%となり、且つ溶銑の処理終点温度が1320℃以上となるように脱燐処理を行った後、脱燐スラグの排滓率が60mass%以上となるように排滓し、引き続きMn鉱石を添加して脱炭処理を行う。 (もっと読む)


【課題】 1基の転炉を用いて溶銑から溶鋼を製造するに当たり、転炉の生産性を阻害することなく、冷鉄源の配合量を従来に比べて増大させることができ、且つ、装入した冷鉄源を効率的に溶解することのできる転炉製鋼方法を提供する。
【解決手段】 第一工程として冷鉄源15及び溶銑14を転炉2に装入し、第二工程として気体酸素を上吹きまたは底吹きするとともに炉底から不活性ガスを吹き込んで溶銑を攪拌しながら脱燐剤17を添加して溶銑の脱燐処理を実施し、第三工程として転炉を傾動させて第二工程で生成したスラグ16を炉外へ排出し、第四工程として転炉を元の直立した状態に戻して溶銑の脱炭吹錬を実施する転炉製鋼方法において、第二工程の終了時点には、第1工程で装入した冷鉄源の総質量に対して質量比で60%以下の冷鉄源が未溶解で残留するように、冷鉄源の転炉内への装入量を調整する。 (もっと読む)


【課題】脱燐剤を酸素とともに溶銑に上吹きすることにより、高い脱燐処理能率および脱燐反応効率を得ることのできる溶銑の処理方法を提供する。
【解決手段】高炉から出銑後に脱珪処理した溶銑を転炉型脱燐炉にて脱燐処理するに際して、脱珪処理溶銑を、溶銑が収容された溶銑鍋から上記脱燐炉に装入する前に、脱珪処理で生成したスラグを除去することなく、または上記スラグの一部を除去後、脱燐炉に装入し、CaO含有粉状脱燐剤を上吹きランスから酸素をキャリアガスとして溶銑に吹き付けることにより脱燐処理を行う溶銑の処理方法である。脱珪処理は、トーピードカーから溶銑鍋への溶銑払出し時に脱珪剤を投入するなどの方法により行うのが好ましく、また、脱珪剤として、転炉脱炭スラグを用いることが好ましい。 (もっと読む)


【課題】 転炉にて溶銑の予備脱Pを行い、脱P処理後に溶銑を転炉内に残したまま、転炉を傾転させてスラグを排滓する際に、溶銑の流出を抑制しつつ、残留スラグの量が少ない精錬方法を提供することを目的とする。
【解決手段】 転炉にて溶銑の脱燐処理を行い、脱燐処理後に溶銑を転炉内に残したまま、転炉を傾転させてスラグを排滓し、その後、同一転炉で脱炭処理を行う、溶銑の精錬方法において、2CaO・Fe23を、30質量%以上以上含んだ精錬材を添加して脱燐処理を行うことを特徴とする溶銑の精錬方法。 (もっと読む)


1 - 20 / 25