説明

溶銑の脱Si脱P処理方法

【課題】蛍石を使用することなく中間排滓時のスラグの流動性を改善して溶鋼歩留まりの悪化やスラグの流出を防止するとともに、中間排滓によるCaO源の削減を図ることができる溶銑の脱Si脱P処理方法を提供する。
【解決手段】転炉型の炉内で溶銑の脱Si処理を行った後に中間排滓を行い、同一の炉内でさらに脱P処理を行う溶銑の脱Si脱P処理方法であり、脱P処理より後工程において発生する転炉スラグあるいは造塊スラグを脱Si処理を行う炉内に投入し、スラグ塩基度(CaO/SiO2)を0.5〜1.8の範囲に調整して脱Si処理を行う。なお、溶銑中のSi濃度が0.2%以上の状態で中間排滓を行うことが好ましい。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、転炉型の溶銑の脱Si脱P処理方法に関するものであり、特に脱Si処理を行った後に中間排滓を行う溶銑の脱Si脱P処理方法に関するものである。
【背景技術】
【0002】
転炉型の炉内で溶銑の脱Si脱Pなどの溶銑予備処理を行うことは、特許文献1に示されるように従来から行われており、脱Si脱P処理された溶銑はさらに転炉内で脱C処理されたうえ、鋳造工程に送られている。また特許文献1には、脱Si処理と脱P処理との間で脱Siスラグをスラグパンに排出する中間排滓を行うことにより、脱Si脱Pに要するCaO源を節減できることも開示されている。
【0003】
この中間排滓は転炉型の精錬炉を傾動させ、溶銑の表層に浮上しているスラグのみを流出させることによって行われるが、中間排滓を円滑に行うためには、脱Si処理工程において発生するスラグの流動性が十分に高いことが必要である。このためには脱Si処理終了時のスラグのCaO/SiO2を0.3〜1.3の範囲に調整することが必要であると特許文献1に開示されている。例えば主に塊生石灰を用いてCaO分の調整を行うと、塊生石灰はCaO:94%、その他:6%の組成を有し、その融点は2927℃であり溶解に長時間を要するため、従来は融点が1350℃である蛍石を併用し、10分程度の短時間で中間排滓できる程度までスラグの流動性を高めていた。ところが、フッ素を含有する蛍石を使用した処理工程から発生したスラグを地中に埋設したり路盤材などとして使用したりすることは土壌規制に抵触することとなったため、現状では蛍石を使用することができなくなっており、脱Si後に中間排滓を行う操業形態は実施困難である。
【0004】
また、蛍石を併用して10分程度の短時間で脱Siを終了し中間排滓を行ったとしても、その間に溶銑中のSi濃度が0.1%以下になるまで脱Siが進行していた。このように脱Siが進行すると続いて脱C反応が開始し、C+(1/2)O2→COの反応によりCOが発生し、溶銑を激しく撹拌する。その結果、脱Siスラグ中に粒鉄が巻き込まれて外部に排出されることとなり、溶鋼歩留まりを悪化させていた。なお本明細書において%はすべて質量%を意味するものとする。
【0005】
また、脱Si処理後にスラグをスラグパンに中間排滓するとき、スラグパン内で粒鉄とスラグがC+FeO→Fe+COの反応を生じて突沸し、発生するCOガスによってスラグが流出するというトラブルが発生することがあった。このように、中間排滓によるCaO源の節減を図ろうとすると、溶鋼歩留まりを悪化させたり、スラグパンからのスラグの流出が生じたりすることがあった。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開平10−152714号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
従って本発明の目的は上記した従来の問題点を解決し、蛍石を使用することなく中間排滓時のスラグの流動性を改善して溶鋼歩留まりの悪化やスラグの流出を防止するとともに、中間排滓によるCaO源の削減を図ることができる溶銑の脱Si脱P処理方法を提供することである。
【課題を解決するための手段】
【0008】
上記の課題を解決するためになされた本発明は、転炉型の炉内で溶銑の脱Si処理を行った後に中間排滓を行い、同一の炉内でさらに脱P処理を行う溶銑の脱Si脱P処理方法において、この脱P処理より後工程において発生するスラグを脱Si処理を行う炉内に投入し、スラグ塩基度(CaO/SiO2)を0.5〜1.8の範囲に調整して脱Si処理を行うことを特徴とするものである。なお、溶銑中のSi濃度が0.2%以上の状態で中間排滓を行うことが好ましく、脱P処理より後工程において発生するスラグとして、脱C炉において発生する転炉スラグあるいは鋳造工程において発生する造塊スラグを用いることが好ましい。
【発明の効果】
【0009】
本発明の溶銑の脱Si脱P処理方法は、転炉型の炉内で溶銑の脱Si処理を行った後に中間排滓を行うことにより、CaO源を節減できることは従来と同様であるが、従来とは異なり脱P処理よりも後工程において発生するスラグ、代表的には転炉スラグを脱Si処理を行う炉内に投入することにより、スラグ塩基度(CaO/SiO2)を0.5〜1.8の範囲に調整して脱Si処理を行う。転炉スラグは融点が蛍石と同様に約1350℃であるから溶け易く、特にスラグ塩基度を0.5〜1.8の範囲に調整すると、1300℃においてスラグの液相率が高く、流動性が高まるので中間排滓を円滑に行うことができる。このためCaO源として塊生石灰のみ、もしくは蛍石を併用した場合よりも溶解時間を大幅に短縮でき、例えば5分程度で脱Si処理を終了することができる。
【0010】
この段階では溶銑中のSi濃度は0.2%以上のレベルにあり、未だ溶銑の脱C反応は生じない。従って従来のように脱C反応に伴って発生するガスによる溶銑の撹拌がなくなり、脱Siスラグ中に粒鉄が巻き込まれることもなくなるので、溶鋼歩留まりが向上する。また、脱Si処理後にスラグをスラグパンに中間排滓するとき、スラグパン内で粒鉄とスラグが反応することもなくなり、発生するガスによるスラグの流出も防止することができる。従って本発明によれば、蛍石を使用することなく中間排滓によるCaO源の節減を図ることができ、しかも溶鋼歩留まりを悪化させたり、スラグパンからのスラグの流出が生じたりすることをなくすることができる。
【図面の簡単な説明】
【0011】
【図1】本発明の工程説明図である。
【図2】SiO2−CaO−FeOの3元図である。
【図3】中間排滓による溶鋼歩留変化を示すグラフである。
【発明を実施するための形態】
【0012】
以下に本発明の実施形態を示す。
図1は本発明の実施形態を示す説明図であり、高炉により製造された銑鉄は転炉型の炉(精錬炉)1に注入され、例えば上吹ランス2から高圧酸素を吹き込んで脱Si処理を行う。この脱Si処理において生ずるSiO2を捕捉させるため、本発明では脱P処理よりも後工程において発生するスラグを脱Si処理工程に返送して使用する。脱P処理よりも後工程は一般的には転炉3における脱C工程及び鋳造工程であるから、脱P処理よりも後工程において発生するスラグとは、脱C工程から発生した転炉スラグまたは鋳造工程から発生した造塊スラグ(取鍋内に残留するスラグ)を意味する。
【0013】
本発明ではこれらの転炉スラグや造塊スラグを炉1内に投入し、脱Si処理終了時におけるスラグ塩基度(CaO/SiO2)が0.5〜1.8の範囲となるように調整しながら、脱Si処理を行う。図2はSiO2−CaO−FeOの3元図の1300℃における等温断面図であり、グラフ中にCaO/SiO2が0.5の直線と、CaO/SiO2が1.8の直線を示した。このグラフに示されるように、この範囲内においてはスラグは液相を形成し易く、優れた流動性を得ることができるが、塩基度がこの範囲を外れると融点が上昇する。グラフ中に楕円で示した範囲がスラグ組成の目標組成である。
【0014】
このように組成調整を行えばスラグの融点は低下し、炉1に投入されたスラグも短時間で溶けることとなる。このため本発明では、融点が約2930℃の塊生石灰を投入した従来法のように長時間を要することなく、5分程度で完全溶融させることができる。そこで本発明では溶銑中のSi濃度が0.2%以上の状態で脱Siスラグのみをスラグパン4に排出する中間排滓を行う。これに対し、塊状生石灰を使用した場合には、5分程度では殆ど溶融しないので中間排滓時のスラグ排出性が著しく悪く、また排出したスラグ中には未反応のCaOが多量に残り、スラグを路盤材等に再利用する際、強アルカリ化や膨張の問題の原因となる。また、これを避けるため脱珪処理を長時間行えば、炉のサイクルタイムが長くなって生産性を落とすことになり、また珪素濃度が0.2%以下まで脱珪反応が進行してしまうので、歩留まり悪化が避けられない。Si濃度が0.2%以上の状態では未だ銑鉄の脱C反応は生じないので、脱C反応により発生したCOが溶銑を激しく撹拌するトラブルを回避することができ、脱Siスラグ中に粒鉄が巻き込まれることもない。またスラグパン4内における粒鉄とスラグが反応することもなくなり、突沸によるスラグの流出も防止することができる。
【0015】
従って従来のように脱Siスラグ中に粒鉄が巻き込まれ外部に排出されることもなくなり、溶鋼歩留まりが向上する。図3はそのグラフであり、中間排滓を行わない場合の溶鋼歩留まりを基準(0.0%)として表示している。図3に示すように、溶銑中のSi濃度が0.2%よりも低下するまで脱Si処理を行い中間排滓を行うと、巻き込まれた粒鉄が排出されるために溶鋼歩留まりはマイナス0.14%となるが、本発明のように溶銑中のSi濃度が0.2%以上の段階で中間排滓を行った場合には、プラス0.28%となる。また、中間排滓を行わない場合に比べて歩留まりが向上するのは、脱P時に生成するスラグ量が減少し、脱Pスラグに巻き込まれてロスする鉄分が減少するためである。
【0016】
なお中間排滓によるCaO削減効果は既知であるが具体的な平均値を示すと、装入Siが0.6%の場合には中間排滓なしでは脱Si脱P工程に要するCaOが17kg/トンであるのに対して、中間排滓を行うと13kg/トンまで減少し、装入Siが0.8%の場合には中間排滓なしでは脱Si脱PCaOが22kg/トンであるのに対して、中間排滓を行うと15kg/トンまで減少する。
【0017】
中間排滓により脱Siスラグを排出した後、再び上吹ランス2から高圧酸素を吹き込んで脱P処理を行う。この脱P処理自体は従来と同様であり、このようにして脱Siと脱Pが行われた溶銑は鍋5に移し変えられ、転炉3において脱C処理が行われる。この工程で発生する転炉スラグは前記したように脱Si処理工程に返送される。また造塊スラグも同様に脱Si処理工程に返送される。
【0018】
上記のように、本発明の精錬工程においてはCaO源として蛍石を使用していないので、発生したスラグは土壌規制に抵触せず、路盤材などとして再利用することができる。
【実施例】
【0019】
本発明の効果を確認するため行った実験の結果を表1にまとめた。
No.1〜No.14は本発明の実施例であり、蛍石を使用せず転炉スラグ及び造塊スラグを用いて、転炉スラグを脱Si工程に返送し、Si濃度が0.2%〜0.3%である段階で中間排滓を行った例である。脱Si脱P処理後の溶銑中のSi濃度は検出限界以下にまで低減し、P濃度は0.012〜0.053%にまで低減している。このときの脱Si脱P処理に要したCaO量は表中に示されるとおりであり、10.0〜21.0kg/トンの範囲にある。なお使用した転炉スラグは、CaO:46%、SiO:14%、FeO:24%、その他:16%の組成を有するもので、その融点は1320℃である。使用した造塊スラグは、CaO:34%、SiO:13%、FeO:12%、その他:41%の組成を有するもので、その融点は1150℃である。
【0020】
No.15及びNo.16に示す比較例1は、脱Si処理終了後のスラグ塩基度が0.5を下回った場合である。中間排滓後、処理を開始すると炉口からスラグが激しく流出して処理が困難であった。また、No17及びNo18に示す比較例2は、脱Si処理終了後のスラグ塩基度が1.8を上回った場合である。塩基度の上昇に伴って中間排滓時のスラグ排出性が悪化した。
【0021】
またNo.19〜No.22に示す比較例3は、脱Si処理終了後の溶銑中のSi濃度が0.2%を下回った場合である。脱Si処理終了後の溶銑中のSi濃度が0.1%より低い場合は、脱Si中に炉口からスラグが流出した。また中間排滓後のスラグパンからもスラグが流出した。脱Si処理終了後の溶銑中のSi濃度が0.1%〜0.2%では、脱Si中に炉口からスラグは流出しなくなったものの、中間排滓後のスラグパンからスラグが流出した。
【0022】
表1のNo23〜No27に示す比較例4は、中間排滓を行わなかった場合である。操業性に支障はないものの、脱Si脱P処理に使用するCaO原単位が悪化した。No28〜No32に示す比較例5は、脱Si処理時の副原料としてのスラグをリサイクルしなかった場合である。脱Si処理時のスラグ形成に時間を要したため、試験的に蛍石を使用した。しかしながら、蛍石を使用しても脱Si処理後の溶銑中のSi濃度が0.2%以上で処理を終えることができず、中間排滓後のスラグパンからスラグが流出した。
【0023】
表2は脱Si終了時のスラグ塩基度を変化させて、操業性を調査した結果である。スラグ塩基度は転炉スラグおよび塊生石灰を用いて調整し、溶銑中のSi濃度が0.25%前後で中間排滓を実施した。スラグ塩基度の値は、投入した副原料量および溶銑成分変化からの計算値である。
【0024】
中間排滓時のスラグ排出性に注目すると、スラグ塩基度が1.8以下であれば、炉の傾動に応じて飴状のスラグがゆっくりと流出し、スラグがある程度炉外に排出された後で溶銑が流出を始めることが目視で確認できた。これは、短時間で液相率が高いスラグを形成できたためと考えられる。一方、塩基度を1.8以上に調整すると、炉を傾けてもなかなかスラグが排出されず、さらに炉を傾けるとスラグに先んじて溶銑が流出した。これは、塩基度を高めるために多量の転炉スラグおよび塊生石灰を投入する必要が生じたため短時間では溶解しきらず、液相率が低いスラグになっていたためと考えられる。スラグが炉外に排出できないと、Siの炉外除去効果が得られず、脱P時のCaO使用量を低減することができないので、脱Siスラグの塩基度を1.8以下に調整することが望ましい。
【0025】
一方、中間排滓後の脱P処理状況に注目すると、スラグ塩基度が0.5以上であれば特に問題なく操業できたのに対し、塩基度が0.5以下だと、脱Pのために酸素供給を開始してしばらくすると炉口から激しくスラグが流出して、処理を継続できなくなった。これは、脱Siスラグの塩基度が低いほどスラグの粘度は高くなるため、脱Siスラグの塩基度が低すぎると、酸素供給による脱Cで生じたCOガスがスラグを通過できず、炉口までスラグを押し上げてしまったためと考えられる。脱P処理の操業性のためには脱Siスラグの塩基度を0.5以上に調整することが望ましい。
【0026】
以上2点より、脱Siスラグの塩基度は0.5〜1.8の範囲に調整するのが望ましいことを確認した。
【0027】
表3は、脱Si後の溶銑[Si]に応じて操業性がどのように変化するか試験結果を示したものである。溶銑[Si]<0.10%まで脱Siした後に排滓を試みた場合、脱Si処理中の炉口からのスラグ流出および中間排滓後のスラグパンからのスラグ漏出が激しく、操業性は非常に悪かった。溶銑[Si]=0.10〜0.20%の範囲まで脱Siした後に排滓を試みると、脱Si処理中の炉口からのスラグ流出は起こらなくなったが、中間排滓後のスラグパンからのスラグ漏出は引き続き起こり、操業性は悪かった。一方、溶銑[Si]>0.20%の範囲で中間排滓を行うと中間排滓後のスラグパンからのスラグ漏出も起こらなくなり、操業性が改善された。脱Si時の塩基度調整に用いた副原料の種類と中間排滓時のスラグ排出性の関係を調査すると、溶銑[Si]<0.20%であれば使用する副原料の種類によらずスラグ排出性は良好であったが、溶銑[Si]>0.20%になると生石灰および蛍石を使用した場合にはスラグ排出性が悪く、炉外にSiを排出できないため、中間排滓によるCaO削減効果が得られなくなってしまった。一方、本発明により転炉スラグあるいは造塊スラグを用いた場合には、溶銑[Si]>0.20%の領域でもスラグ排出性は良好であり、CaO削減効果が享受できた。
【0028】
【表1】

【0029】
【表2】

【0030】
【表3】

【符号の説明】
【0031】
1 炉
2 上吹ランス
3 転炉
4 スラグパン
5 鍋

【特許請求の範囲】
【請求項1】
転炉型の炉内で溶銑の脱Si処理を行った後に中間排滓を行い、同一の炉内でさらに脱P処理を行う溶銑の脱Si脱P処理方法において、この脱P処理より後工程において発生するスラグを脱Si処理を行う炉内に投入し、スラグ塩基度(CaO/SiO2)を0.5〜1.8の範囲に調整して脱Si処理を行うことを特徴とする溶銑の脱Si脱P処理方法。
【請求項2】
溶銑中のSi濃度が0.2%以上の状態で中間排滓を行うことを特徴とする請求項1記載の溶銑の脱Si脱P処理方法。
【請求項3】
脱P処理より後工程において発生するスラグとして、脱C炉において発生する転炉スラグを用いることを特徴とする請求項1記載の溶銑の脱Si脱P処理方法。
【請求項4】
脱P処理より後工程において発生するスラグとして、鋳造工程において発生する造塊スラグを用いることを特徴とする請求項1記載の溶銑の脱Si脱P処理方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate


【公開番号】特開2011−137196(P2011−137196A)
【公開日】平成23年7月14日(2011.7.14)
【国際特許分類】
【出願番号】特願2009−296860(P2009−296860)
【出願日】平成21年12月28日(2009.12.28)
【出願人】(000006655)新日本製鐵株式会社 (6,474)
【Fターム(参考)】