説明

Fターム[4K070EA01]の内容

炭素鋼又は鋳鋼の製造 (7,058) | 数値の特定 (1,431) | 溶鋼成分 (118)

Fターム[4K070EA01]に分類される特許

1 - 20 / 118


【課題】取鍋精錬で発生する取鍋スラグを脱炭吹錬時に使用し、その使用原単位を高めることによって副原料使用コストを低減するとともに、取鍋スラグ投棄量を削減しスラグ処理コストをも低減することができる技術を確立する。
【解決手段】転炉内の溶銑に上吹きランスから酸素を吹き付けて脱炭処理する際に、転炉内に供給する取鍋スラグの量(R)を、該Rが溶鋼1トン当たり(1)式により規定する範囲に収まるように調整する。(1)式において、S:装入溶銑中のS濃度(質量%)、S:脱炭吹錬終了時の溶鋼中目標S濃度(質量%)、X:取鍋スラグ中のS濃度(質量%)、V:装入塩基度(CaO質量/SiO質量)、M:脱炭吹錬終了時の炉内スラグ生成予測量(kg/溶鋼t)である。
(もっと読む)


【課題】 燐を含有する製鋼スラグの製銑工程及び製鋼工程へのリサイクルに当り、該スラグから燐及び鉄を安価に回収するとともに、回収した燐及び鉄を資源として活用する。
【解決手段】 本発明のスラグからの鉄及び燐の回収方法は、燐含有製鋼スラグを、該スラグを含めて還元処理される対象物全体の塩基度(CaO/SiO2)が1.0〜3.0の範囲になるように調整した上で、1100〜1300℃で炭素含有還元剤でスラグ中の鉄酸化物を還元して還元鉄を得る第1の工程と、第1の工程によって鉄酸化物量が低下したスラグを、炭素含有還元剤で還元してスラグ中の燐酸化物を気相へ還元除去する第2の工程と、第2の工程によって得られたスラグを製銑又は製鋼工程でのCaO源として再利用する第3の工程と、第1の工程で得た還元鉄を製銑又は製鋼工程での鉄源として再利用する第4の工程と、第2の工程で気相へ還元除去した燐を、排ガス設備で回収して燐酸資源原料とする第5の工程と、を有する。 (もっと読む)


【課題】溶銑脱燐処理を行った溶銑を対象として、その溶銑を転炉を用いてスピッティングやダストの発生量を抑制しつつ、高能率かつ高効率で脱炭処理する方法を提供する。
【解決手段】上底吹き型の転炉を用いて、溶銑脱燐処理を施された溶銑に該溶銑トン当たり4.0〜5.5Nm/minの速度で上吹き酸素を吹き付けて脱炭処理を行う。その際に、上吹き酸素の吹付け時間が全吹付け時間の1/5経過するまでに取鍋スラグを転炉内に投入すると共に、上吹き酸素の吹付け終了時点での転炉内スラグ中Al質量%とCaO質量%との比が0.05〜0.09の範囲になるように調整する。さらに、上吹き酸素吹付けによるL/Lを、上吹き酸素の全吹付け時間の1/4が経過する時点までは0.03〜0.10に、その後その上吹き酸素の吹付け終了までは0.20〜0.35に制御する。 (もっと読む)


【課題】コストアップを抑えて生石灰を製造し、含有S濃度により分別してその全部を各製鋼プロセスの特性に合わせて使い分けることによって生石灰の利用効率を高め、製鋼方法全体を合理化する方法を提供する。
【解決手段】焼成された生石灰表面を研磨して、S含有率が高い表層部分とS含有率が低い内層部分とに分別し、該表層部分は溶銑脱硫工程において脱硫用副原料として用い、
該内層部分は溶銑脱燐工程において、または溶銑の脱燐・脱炭工程において、脱燐用副原料として用いる。 (もっと読む)


【課題】ポーラスプラグの詰まりを防止しつつ金属アルミを効率よく使用して脱酸を行うことができるようにする。
【解決手段】本発明に係る脱酸処理における取鍋への金属アルミ添加方法では、転炉3にて精錬した溶鋼4を、複数の気孔を有するポーラスプラグ1が設置された取鍋2内に出鋼し、出鋼した溶鋼4に対して脱酸するに際し、気孔の平均気孔半径を80μm〜100μmとしておき、0<V/α<0.45を満たす間に脱酸のための金属アルミニウム5を取鍋2内へ添加する。ただし、V:取鍋に出鋼した現溶鋼量(ton)、α:転炉から取鍋に出鋼する全溶鋼量(ton)である。 (もっと読む)


【課題】 溶銑を転炉で脱燐処理し、次いで、この溶銑を別の転炉で脱炭精錬を行って溶鋼を製造するにあたり、上吹きランスの流路内での発熱・燃焼を危惧することなく、高い着熱効率及び生産性で溶鋼を製造する。
【解決手段】 粉状精錬剤供給流路、燃料供給流路、燃料燃焼用ガス供給流路、脱燐精錬用ガス供給流路を、独立して有する上吹きランス3を用い、燃料供給流路から供給する燃料と燃焼用ガス供給流路から供給する酸化性ガスとにより火炎を形成させながら、粉状精錬剤供給流路から、酸化鉄、石灰系媒溶剤、可燃性物質のうちの1種以上を不活性ガスとともに供給し、且つ、脱燐精錬用ガス供給流路から酸化性ガスを供給して溶銑7を脱燐処理し、次いで、該溶銑を別の転炉に装入し、脱炭精錬用ガス供給流路を有する上吹きランスを用い、脱炭精錬用ガス供給流路から粉状の媒溶剤を脱炭精錬用酸化性ガスとともに転炉内の溶銑浴面に向けて供給して溶銑を脱炭精錬する。 (もっと読む)


【課題】吹錬中のスロッピングを安定的に回避しうる溶銑脱りん方法を提供する。
【解決手段】上底吹き転炉型容器を用い、上吹き酸素流量1.5〜4.0Nm/min/溶銑t、底吹きN流量0.1〜0.6Nm/min/溶銑tとして、生石灰および酸化鉄を添加し、処理後のスラグ塩基度は1.5〜2.5で、吹錬中にサブランスからスラグへコークス粉を吹き付ける溶銑脱りん方法において、コークス粉吹き付け速度を、上吹き酸素流量および処理前溶銑中[Si]濃度と[Ti]濃度の和によって規定される所定の範囲とし、コークス粉吹き付け量を、上吹き酸素流量および上記の濃度の和により規定されたコークス粉吹き付け速度に基づき設定される所定の範囲とする。 (もっと読む)


【課題】ダスト発生の抑制効果に優れる転炉の精錬方法を提供する。
【解決手段】転炉で、珪素濃度0.15質量%以上の溶銑予備処理をしない溶銑を使って精錬する方法において、吹錬の各段階でキャビティの形態に対応するランス吹精指標を用いて、ランスからの酸素吹精を調節する。ランス吹精指標とは、キャビティの表面積、およびキャビティ径とキャビティ深さとの比、のいずれかを用い、吹錬の初期と末期においては、キャビティの表面積を用い、一方、吹錬の中期においては、キャビテイ径と深さとの比を用いる。吹錬初期は、無次元化したキャビティの表面積が0.6以下となるようにランスからの酸素噴射を行い、吹錬中期は、キャビティの径Dとその深さLとの比L/Dが0.85以上になるようにランスからの酸素噴射を行い、そして、吹錬末期は、無次元化したキャビティの表面積が0.6以下となるようにランスからの酸素噴射を行う。 (もっと読む)


【課題】吹錬中のスラグ中のFeO生成量の推移を推定し、吹錬終了時でのそのFeO生成量推定値を使用したりん濃度推定方法を提供することで、過剰な酸素ガスや合金使用量の削減を可能として、溶製コストを低減することを目的とするものである。
【解決手段】上底吹き機能を有する転炉容器での脱炭吹錬において、吹錬中の排ガスの組成および流量、酸素ガス流量、石炭および酸化鉄等の副原料の投入量並びに溶銑成分から逐次計算することにより得られる残留酸素量に基づきスラグ中のFeO生成量を計算し、そのFeO生成量計算値、溶鋼温度および石灰原単位をパラメータとした回帰式により、吹錬終了時点での溶鋼中りん濃度を推定することを特徴とする転炉りん濃度推定方法である。 (もっと読む)


【課題】転動疲労寿命の長い軸受材料を提供すると共に、該軸受材料の製造方法を提供することを目的とする。
【解決手段】被検面積が3000mmである場合に、(長さ×幅)1/2で算出される介在物平均径が3μm以上である酸化物系非金属介在物及び硫化物含有酸化物系非金属介在物の合計の個数が、1000mmあたり100個以下、前記介在物平均径が10μm以上の酸化物系非金属介在物及び硫化物含有酸化物系非金属介在物の合計の個数が、1000mmあたり2個以下で、且つ、前記介在物平均径が3μm以上の酸化物系非金属介在物及び硫化物含有酸化物系非金属介在物の全体の90%以上が、酸化マグネシウム濃度が5質量%以下である軸受材料は、転動疲労寿命が優れている。 (もっと読む)


【課題】生石灰粉を上吹きして溶銑を脱りんする方法において、上吹き酸素流量を2.0〜5.0Nm3/min/溶銑tに増加して、上吹き酸素の供給時間が5〜8分間という短時間に高速で溶銑脱りん処理する場合に、上吹きした生石灰粉の飛散ロスをCaO純分換算で1.0kg/溶銑t以下に抑制するとともに処理後溶銑中[%P]を0.015質量%以下にまで低減する方法を提供する。
【解決手段】上底吹き転炉でCaO含有粉体を上吹き酸素と共に溶銑へ上吹きして溶銑脱りんする方法において、上吹き酸素と共に生石灰粉を3kg/min/溶銑t以下の速度で溶銑表面へ吹き付け、底吹きガス流量を0.2〜0.6Nm3/min/溶銑t、サブランスから0.1〜1.0Nm3/min/溶銑tのガスと共に生石灰粉を3kg/min/溶銑t以下の速度で溶銑表面へ上吹きし、CaO・FetO・SiO2・Al2O3を含有するプリメルトフラックス4〜10kg/溶銑tと、前記生石灰粉と前記プリメルトフラックスと塊生石灰とのCaO純分に対して前記生石灰粉中のCaO純分が40質量%以上となるように定めた量の生石灰粉とを吹錬開始前後に添加し、且つ処理後スラグ塩基度を2.0〜3.0とする。 (もっと読む)


【課題】転炉吹錬において、排ガス情報を活用して精度良く溶鋼中の炭素濃度と溶鋼温度を推定することが可能な、吹錬方法及び吹錬システムを提供する。
【解決手段】 転炉吹錬時の排ガス成分及び排ガス流量を測定する、測定工程と、測定工程により得られた測定値と転炉吹錬時の操業要因とに基づいて推定される脱炭酸素効率減衰定数及び最大脱炭酸素効率を用いて、吹錬時における溶鋼中の炭素濃度及び溶鋼温度を推定する、推定工程とを備える、転炉吹錬方法とし、当該吹錬方法を実行可能なシステムとする。 (もっと読む)


【課題】マイクロ波を用いて転炉吹錬時における浴面レベルを安定して正確に測定する。
【解決手段】転炉1に脱燐処理を実施した溶銑を装入した後、マイクロ波レベル測定装置3を用いて、全チャージに対し80%以上の割合で転炉1内の浴面レベルを測定し、当該測定データを当該チャージの設定ランス高さに反映させ、3.0〜7.0Nm3/(分・トン)の送酸速度で、かつ3.3以上の装入塩基度で吹錬する。
【効果】安定して正確な浴面レベルを計測できるので、スピッティングやスロッピングの発生を抑制することができる。 (もっと読む)


【課題】 鉄スクラップを鉄源として溶鋼を製造するにあたり、鉄スクラップを省エネルギーで効率良く溶解するとともに、含有成分の種類及び含有量が様々である鉄スクラップを使用しても不純物成分の少ない鋼を製造する。
【解決手段】 鉄スクラップと炭材とからアーク炉にて溶銑を製造し、製造した溶銑を、該溶銑の一部を炉内に残留させてアーク炉から出湯し、出湯した後の溶銑に高炉溶銑を混合し、混合した後の溶銑を転炉に装入し、転炉にて酸素吹錬して溶鋼を製造する、鉄スクラップを利用した製鋼方法であって、アーク炉では、前記の鉄スクラップ装入から前記の溶銑出湯までの工程を繰り返し実施し、且つ、下記の(1)式で定義される、アーク炉に残留させる溶銑の残湯量比率Zが10〜70質量%の範囲内になるように出湯量を制御する。 残湯量比率Z(質量%)=炉内残留溶銑量(t)×100/溶銑溶解量(t)…(1) (もっと読む)


【課題】 高い脱炭酸素効率を維持した状態で、炉体への地金付着を効率的に削減する。
【解決手段】 ランス先端の噴射ノズル6は、スロート7、その下流側に末広がり部8を有し、スロート径Dt及び出口径Deが雰囲気圧力Pe及び適正膨張圧力Poに対して(1)式を満足し、且つ末広がり部の壁面に、制御用ガスを供給する制御用ガス噴射孔9を有した上吹きランスを使用した精錬方法であって、スロート径よりもスロートとの接続部位である末広がり部の径が大きく、スロート中心線が末広がり部中心線に対してランスの中心軸側に偏心していると共に、制御用ガス噴射孔は、スロートから制御用ガス噴射孔までの距離Lとスロート径Dtとの比(L/Dt)が2.5以上となる位置に配置され、且つ噴射ノズルへの供給圧力Pが適正膨張圧力Po以下となる場合には、ランス高さHを(2)式の範囲内に制御する。 (De/Dt)2=0.259×(Pe/Po)-5/7×[1-(Pe/Po)2/7]-1/2…(1) H≦H0×(P/Po)…(2) (もっと読む)


【課題】高い脱炭酸素効率を維持した状態で、炉体への地金付着を効率的に削減する。
【解決手段】ランス先端の少なくとも1つの噴射ノズル6は、その入口部にスロート7を有し、スロートの下流側に末広がり部8を有し、スロート径Dt及び末広がり部の出口径Deがノズル出口部雰囲気圧力Pe及びノズル適正膨張圧力Poに対して(1)式を満足し、且つ、末広がり部の壁面に、制御用ガスを供給する制御用ガス噴射孔9を有した上吹きランスを使用した転炉精錬方法で、制御用ガス噴射孔は、スロートからの距離LとDtとの比(L/Dt)が1.8以下または2.5以上となる位置に配置され、且つ、噴射ノズルへの酸化性ガスの供給圧力PがPo以下となる場合には、ランス高さHを(2)式の範囲内に制御する。(De/Dt)2=0.259×(Pe/Po)-5/7×[1-(Pe/Po)2/7]-1/2…(1)H≦H0×(P/Po)…(2) (もっと読む)


【課題】 転炉内の溶銑を脱炭精錬するにあたり、酸素ガスを過剰に供給することなく、脱炭精錬終了時の溶湯中燐濃度を低位に安定する。
【解決手段】 上吹きランス2から酸素ガスを供給するとともに底吹き羽口3から攪拌用ガスを吹き込んで溶銑16を転炉にて脱炭精錬するにあたり、上吹きランスからの酸素ガス流量、精錬中の排ガスの組成、排ガスの流量、副原料投入量及び溶湯成分から酸素バランスを逐次計算することにより求められる不明酸素量に基づいて炉内のスラグ17のFeO濃度を推定し、推定したFeO濃度の推移に照らし合わせて、上吹きランスからの酸素ガス流量、上吹きランスのランス高さ、底吹き羽口からの攪拌用ガス流量のうちの少なくとも何れか1種を調整し、この調整により精錬開始時から全酸素量の40体積%の酸素量を供給する時点までに、炉内スラグ中のFeO濃度を5〜30質量%の範囲に調製する。 (もっと読む)


【課題】 含クロム溶銑または含クロム溶銑と高炉溶銑との混合物を主原料として高クロム鋼を溶製する際に、溶製される溶鋼の燐濃度を製品規格内に維持した状態で、昇熱材である炭材としてコークスと無煙炭とを併用し、効率的な酸素吹錬を行う。
【解決手段】 含クロム溶銑または含クロム溶銑と高炉溶銑との混合物を主原料として転炉で脱炭精錬して高クロム鋼を溶製するときに、前記脱炭精錬の初期に炉内にコークスと無煙炭とを昇熱用炭材として投入して鉄浴を昇熱する高クロム鋼の溶製方法であって、前記昇熱用炭材から溶鋼に持ち込まれる燐による溶鋼での燐濃度の上昇量が、鋼製品の燐濃度規格上限値と、脱炭精錬工程以降の溶鋼への復燐量と、前記主原料から溶鋼に持ち込まれる燐質量と、から算出される燐濃度上昇の許容値以下となるように、昇熱用炭材であるコークス及び無煙炭の投入量を調整する。 (もっと読む)


【課題】 燐を含有する製鋼スラグの製銑工程及び製鋼工程へのリサイクルにあたり、該スラグから予め燐を安価に回収するとともに、回収した燐を資源として有効活用する。
【解決手段】 金属鉄が分離された、燐を含有する製鋼スラグを還元処理し、燐を0.5質量%以上含有する高燐高Mn銑鉄を回収する第1の工程と、前記還元処理によって得られたスラグを製銑工程または製鋼工程へリサイクルする第2の工程と、前記高燐高Mn銑鉄を脱マンガン処理する第3の工程と、脱マンガン処理によって生成したスラグを排出する第4の工程と、スラグが排出された後の処理容器内の溶銑に対して脱燐処理する第5の工程と、第5の工程によって溶銑中燐濃度が0.10質量%以下となるまで脱燐処理された溶銑を製鋼工程にリサイクルする第6の工程と、前記第5の工程の脱燐処理で生成したスラグを回収して燐酸資源原料とする第7の工程と、を有する。 (もっと読む)


【課題】スピッティングやダスト発生の抑制とスロッピング発生の抑制を両立して高速送酸処理を実現しつつ、さらに高脱燐能を得ることができる転炉型溶銑予備脱燐方法を提供する。
【解決手段】上底吹き型の転炉を用い、上吹き酸素を該転炉内の溶銑へ吹き付けて溶銑を脱燐処理する方法であって、脱燐処理中には上吹き酸素の供給速度を溶銑トン当たり2.5〜4.0Nm3/minとし、かつ、スラグ生成剤として脱炭スラグおよび取鍋スラグの少なくとも一方を該転炉内に投入した後に、サブランスより粉末状加炭剤をC質量換算で1.5〜5.5kg/t吹き付けることを特徴とする溶銑の脱燐処理方法。 (もっと読む)


1 - 20 / 118