説明

Fターム[4K070BD13]の内容

炭素鋼又は鋳鋼の製造 (7,058) | 制御 (486) | 制御因子 (382) | 送酸速度・圧力及び流量 (87)

Fターム[4K070BD13]の下位に属するFターム

L/L0 (21)

Fターム[4K070BD13]に分類される特許

1 - 20 / 66


【課題】スピッチングやスロッピングの発生を低減しつつ、製鋼における転炉の脱炭処理を高速化することが可能な、転炉の精錬方法を提供する。
【解決手段】事前の転炉脱炭処理における操業実績から、スラグ1トン当たりの炉内残留酸素濃度を計算する工程S1と、その処理後の実績値と対比して、その差から排ガス流量の補正係数を求める工程S2と、現在の転炉脱炭処理における酸素供給量、並びに、求めた排ガス補正係数を用いて補正した排ガス流量、排ガス組成、溶銑成分及び副原料使用量から炉内残留酸素濃度を逐次算出してスラグ性状の絶対値を把握する工程S3と、炉内残留酸素濃度の値に応じて、酸素供給量、ランス高さ、及び底吹きガス流量のうち少なくとも何れか1つを調整する調整工程S4と、を有する転炉の精錬方法とする。 (もっと読む)


【課題】 転炉内の溶銑浴面に上吹きランスから酸素ガスを吹き付けて溶銑を脱炭精錬する際に、スピッティング及びスロッピングの発生を抑制してダストの発生量を低減する。
【解決手段】 上吹きランス先端に複数のラバールノズル7が配置された上吹きランス1を用いて溶銑11を脱炭精錬するに際し、上吹きランスから噴射される酸素ガス噴流によって溶銑浴面に形成される火点の凹みの体積を下記の(1)式で定義したとき、(1)式で定義される火点の凹みの体積が1.0〜2.0m3になるように予定される吹錬条件に基づいて設計された上吹きランスを用い、且つ、(1)式で定義される火点の凹みの体積が1.0〜2.0m3になるように酸素ガス供給量及びランス高さを調整して酸素ガスを前記上吹きランスから吹き付ける。但し、(1)式において、Vは火点の凹みの体積、nはノズル孔数、Lは火点深さ、Aは火点面積である。 V=n×L×A…(1) (もっと読む)


【課題】 酸素ガスを過剰に供給することなく且つ脱炭精錬時間を延長することなく、溶銑の転炉での脱炭精錬終了時の溶湯中燐濃度を低位に安定する。
【解決手段】 転炉1にて溶銑16を脱炭精錬する際に、酸素バランスから求められる不明酸素量に基づいてスラグ中FeO濃度を推定し、推定したFeO濃度の推移に照らし合わせて、上吹きランスからの酸素ガス流量、上吹きランス2のランス高さ、底吹き羽口3からの攪拌用ガス流量のうちの1種以上を調整し、この調整により、全酸素ガス量の40体積%の酸素ガス量を供給する時点におけるスラグ中のFeO濃度を、脱炭精錬終了時の目標燐濃度及び脱炭精錬終了時の目標温度などから目標値として算出されるFeO濃度の1.0〜3.0倍の値に調整し、その後、溶湯中炭素濃度が所定値となった時点にサブランスを溶湯に投入して溶湯温度を測定し、溶湯温度測定値と終点での溶湯温度目標値とを対比してその後の酸素ガス供給量を決定する。 (もっと読む)


【課題】ダスト発生量を低減して鉄歩留りを向上できる転炉吹錬方法を提供する。
【解決手段】ラバールノズルを有する上吹きランスから溶湯に酸素ガスを吹き付けて、脱炭吹錬を行う。この際、脱炭吹錬を、初期、中期、および末期からなる3段階に分けて吹錬する。初期の吹錬では、P=(ρ/2g)・V/1000で定義される湯面動圧Pと、S=S(1−γ)で定義される全火点面積Sとが所定の範囲となるように吹錬する。中期および末期の吹錬では、湯面動圧Pが、それぞれの所定の範囲となるように、上吹きランスに設けられたラバールノズルの数n、ノズル傾角θ、自由噴流広がり角φ、出口径deに応じて、酸素ガス噴出流速V、および/または、ランス高さLhを調整して、吹錬する。これにより、ダスト発生量が低減でき、吹錬が短時間とすることが可能となる。 (もっと読む)


【課題】転炉吹止め時における溶鋼中りん濃度の制御精度を高めることが可能な転炉吹錬制御方法を提供する。
【解決手段】少なくとも、転炉吹錬時における排ガス成分及び排ガス流量を定期的に測定して、測定値を得る測定工程と、転炉吹錬の操業条件及び測定工程で得られた測定値に基づいて脱りん速度定数を推定する定数推定工程と、推定された脱りん速度定数を用いて、転炉吹錬中の溶鋼中りん濃度を逐次推定する濃度推定工程と、推定された溶鋼中りん濃度が目標溶鋼中りん濃度以下であるか否かを判断する濃度判断工程と、該濃度判断工程で、推定された溶鋼中りん濃度が目標溶鋼中りん濃度を超えていると判断された場合に、濃度推定工程で推定される溶鋼中りん濃度が目標溶鋼中りん濃度以下となるように、転炉吹錬の操業条件を変更する変更工程と、を有する、転炉吹錬制御方法とする。 (もっと読む)


【課題】 炉底に2列の底吹き羽口群を有する底吹き転炉を用い、炉体使用回数の初期から末期まで安定して溶融鉄の揺動を抑制して溶銑を脱炭精錬する。
【解決手段】 羽口列間隔をDとする、2列の底吹き羽口7を有する底吹き転炉1を用い、溶融鉄10に底吹き羽口から酸素ガスを吹き込んで精錬するにあたり、(1)式よって算出される底吹きガスにより発生する溶融鉄の揺動の振幅Aが、静止したときの溶融鉄浴面から出鋼口までの距離Hよりも小さくなるように、(2)式で示される(1)式における定数aの値を、酸素ガス流量QO2、炉内のスラグ質量VSL、炉内への冷鉄源の装入量MSCのうちの何れか1種以上を調整することによって決定する。但し、fは揺動の振動数、α、β、γ、δは操業実績によって定まる係数である。
A=(a/D)×[1/(2πf)2]…(1) a=α×QO2+β×VSL+γ×MSC+δ…(2) (もっと読む)


【課題】 溶銑を転炉で脱燐処理し、次いで、この溶銑を別の転炉で脱炭精錬を行って溶鋼を製造するにあたり、上吹きランスの流路内での発熱・燃焼を危惧することなく、高い着熱効率及び生産性で溶鋼を製造する。
【解決手段】 粉状精錬剤供給流路、燃料供給流路、燃料燃焼用ガス供給流路、脱燐精錬用ガス供給流路を、独立して有する上吹きランス3を用い、燃料供給流路から供給する燃料と燃焼用ガス供給流路から供給する酸化性ガスとにより火炎を形成させながら、粉状精錬剤供給流路から、酸化鉄、石灰系媒溶剤、可燃性物質のうちの1種以上を不活性ガスとともに供給し、且つ、脱燐精錬用ガス供給流路から酸化性ガスを供給して溶銑7を脱燐処理し、次いで、該溶銑を別の転炉に装入し、脱炭精錬用ガス供給流路を有する上吹きランスを用い、脱炭精錬用ガス供給流路から粉状の媒溶剤を脱炭精錬用酸化性ガスとともに転炉内の溶銑浴面に向けて供給して溶銑を脱炭精錬する。 (もっと読む)


【課題】ダスト発生の抑制効果に優れる転炉の精錬方法を提供する。
【解決手段】転炉で、珪素濃度0.15質量%以上の溶銑予備処理をしない溶銑を使って精錬する方法において、吹錬の各段階でキャビティの形態に対応するランス吹精指標を用いて、ランスからの酸素吹精を調節する。ランス吹精指標とは、キャビティの表面積、およびキャビティ径とキャビティ深さとの比、のいずれかを用い、吹錬の初期と末期においては、キャビティの表面積を用い、一方、吹錬の中期においては、キャビテイ径と深さとの比を用いる。吹錬初期は、無次元化したキャビティの表面積が0.6以下となるようにランスからの酸素噴射を行い、吹錬中期は、キャビティの径Dとその深さLとの比L/Dが0.85以上になるようにランスからの酸素噴射を行い、そして、吹錬末期は、無次元化したキャビティの表面積が0.6以下となるようにランスからの酸素噴射を行う。 (もっと読む)


【課題】吹錬中の溶湯の成分を精度高く推定すること。
【解決手段】演算処理部21が、溶鋼101の吹錬中に発生する排気ガスの成分に基づいて、溶鋼101の酸化反応に使用された酸素量を酸化反応量として算出し、算出された酸化反応量に基づいて、溶鋼101を構成する各成分の酸化に使用された酸素量の組を複数生成し、生成された各組について反応平衡評価値を算出し、算出された反応平衡評価値が所定範囲内にある組を抽出し、抽出された組に基づいて溶鋼101を構成する各成分の濃度範囲を算出する。 (もっと読む)


【課題】吹錬中のスラグ中のFeO生成量の推移を推定し、吹錬終了時でのそのFeO生成量推定値を使用したりん濃度推定方法を提供することで、過剰な酸素ガスや合金使用量の削減を可能として、溶製コストを低減することを目的とするものである。
【解決手段】上底吹き機能を有する転炉容器での脱炭吹錬において、吹錬中の排ガスの組成および流量、酸素ガス流量、石炭および酸化鉄等の副原料の投入量並びに溶銑成分から逐次計算することにより得られる残留酸素量に基づきスラグ中のFeO生成量を計算し、そのFeO生成量計算値、溶鋼温度および石灰原単位をパラメータとした回帰式により、吹錬終了時点での溶鋼中りん濃度を推定することを特徴とする転炉りん濃度推定方法である。 (もっと読む)


【課題】マイクロ波を用いて転炉吹錬時における浴面レベルを安定して正確に測定する。
【解決手段】転炉1に脱燐処理を実施した溶銑を装入した後、マイクロ波レベル測定装置3を用いて、全チャージに対し80%以上の割合で転炉1内の浴面レベルを測定し、当該測定データを当該チャージの設定ランス高さに反映させ、3.0〜7.0Nm3/(分・トン)の送酸速度で、かつ3.3以上の装入塩基度で吹錬する。
【効果】安定して正確な浴面レベルを計測できるので、スピッティングやスロッピングの発生を抑制することができる。 (もっと読む)


【課題】 高い脱炭酸素効率を維持した状態で、炉体への地金付着を効率的に削減する。
【解決手段】 ランス先端の噴射ノズル6は、スロート7、その下流側に末広がり部8を有し、スロート径Dt及び出口径Deが雰囲気圧力Pe及び適正膨張圧力Poに対して(1)式を満足し、且つ末広がり部の壁面に、制御用ガスを供給する制御用ガス噴射孔9を有した上吹きランスを使用した精錬方法であって、スロート径よりもスロートとの接続部位である末広がり部の径が大きく、スロート中心線が末広がり部中心線に対してランスの中心軸側に偏心していると共に、制御用ガス噴射孔は、スロートから制御用ガス噴射孔までの距離Lとスロート径Dtとの比(L/Dt)が2.5以上となる位置に配置され、且つ噴射ノズルへの供給圧力Pが適正膨張圧力Po以下となる場合には、ランス高さHを(2)式の範囲内に制御する。 (De/Dt)2=0.259×(Pe/Po)-5/7×[1-(Pe/Po)2/7]-1/2…(1) H≦H0×(P/Po)…(2) (もっと読む)


【課題】高い脱炭酸素効率を維持した状態で、炉体への地金付着を効率的に削減する。
【解決手段】ランス先端の少なくとも1つの噴射ノズル6は、その入口部にスロート7を有し、スロートの下流側に末広がり部8を有し、スロート径Dt及び末広がり部の出口径Deがノズル出口部雰囲気圧力Pe及びノズル適正膨張圧力Poに対して(1)式を満足し、且つ、末広がり部の壁面に、制御用ガスを供給する制御用ガス噴射孔9を有した上吹きランスを使用した転炉精錬方法で、制御用ガス噴射孔は、スロートからの距離LとDtとの比(L/Dt)が1.8以下または2.5以上となる位置に配置され、且つ、噴射ノズルへの酸化性ガスの供給圧力PがPo以下となる場合には、ランス高さHを(2)式の範囲内に制御する。(De/Dt)2=0.259×(Pe/Po)-5/7×[1-(Pe/Po)2/7]-1/2…(1)H≦H0×(P/Po)…(2) (もっと読む)


【課題】 石灰源の一部を上吹きランスから投射して転炉内の溶銑を脱炭精錬するに際し、酸素ガスを過剰に供給することなく脱炭精錬終了時の溶湯中燐濃度を低位に安定する。
【解決手段】 底吹き羽口3から攪拌用ガスを吹き込みながら、上吹きランス2から、酸素ガスを供給すると同時に石灰源19を投射して溶銑16を転炉にて脱炭精錬するにあたり、上吹きランスからの酸素ガス流量、排ガス組成、排ガス流量、副原料投入量及び溶湯成分から酸素バランスを計算することにより求められる不明酸素量に基づいて炉内でのFeO生成量を推定し、推定したFeO生成量の推移に照らし合わせて、上吹きランスからの酸素ガス流量、上吹きランスのランス高さ、攪拌用ガス流量のうちの少なくとも何れか1種を調整し、この調整により精錬開始時から全酸素量の40体積%の酸素量を供給する時点までに、炉内でのFeO生成量を3〜30kg/溶銑tの範囲に調製する。 (もっと読む)


【課題】 転炉内の溶銑を脱炭精錬するにあたり、酸素ガスを過剰に供給することなく、脱炭精錬終了時の溶湯中燐濃度を低位に安定する。
【解決手段】 上吹きランス2から酸素ガスを供給するとともに底吹き羽口3から攪拌用ガスを吹き込んで溶銑16を転炉にて脱炭精錬するにあたり、上吹きランスからの酸素ガス流量、精錬中の排ガスの組成、排ガスの流量、副原料投入量及び溶湯成分から酸素バランスを逐次計算することにより求められる不明酸素量に基づいて炉内のスラグ17のFeO濃度を推定し、推定したFeO濃度の推移に照らし合わせて、上吹きランスからの酸素ガス流量、上吹きランスのランス高さ、底吹き羽口からの攪拌用ガス流量のうちの少なくとも何れか1種を調整し、この調整により精錬開始時から全酸素量の40体積%の酸素量を供給する時点までに、炉内スラグ中のFeO濃度を5〜30質量%の範囲に調製する。 (もっと読む)


【課題】スピッティングやダスト発生の抑制とスロッピング発生の抑制を両立して高速送酸処理を実現しつつ、さらに高脱燐能を得ることができる転炉型溶銑予備脱燐方法を提供する。
【解決手段】上底吹き型の転炉を用い、上吹き酸素を該転炉内の溶銑へ吹き付けて溶銑を脱燐処理する方法であって、脱燐処理中には上吹き酸素の供給速度を溶銑トン当たり2.5〜4.0Nm3/minとし、かつ、スラグ生成剤として脱炭スラグおよび取鍋スラグの少なくとも一方を該転炉内に投入した後に、サブランスより粉末状加炭剤をC質量換算で1.5〜5.5kg/t吹き付けることを特徴とする溶銑の脱燐処理方法。 (もっと読む)


【課題】スピッティングやダストの発生の抑制と、スロッピングの発生の抑制とを両立して高速送酸処理を実現しつつ、さらに高脱燐能を得ることができる溶銑の脱燐処理方法を提供する。
【解決手段】上底吹き型の転炉を用い、スラグ生成剤として取鍋スラグを転炉内に投入し、上吹き酸素とともに粉状CaO源を転炉内の溶銑へ吹き付けて溶銑を脱燐処理する方法である。取鍋スラグには最大粒径を30mm以下に調整したものを用い、上吹き酸素の供給速度を溶銑トン当たり2.0〜4.0Nm3/minとし、かつ取鍋スラグの転炉内への投入を上吹き酸素の供給時間が30%経過する時点より前に完了させて、脱燐処理終了時点におけるスラグの化学組成を、塩基度(CaO質量%/SiO2質量%):2.5以上3.5以下、Al2O3質量濃度:3%以上10%以下、T.Fe質量濃度:3%以上15%以下に制御する。 (もっと読む)


【課題】転炉吹錬操業にて、スピッティング発生量を推定し、ランス高さを制御してスピッティング発生を抑えた生産性のよい転炉吹錬制御方法を提供する。
【解決手段】転炉炉口部から飛散し落下しているピッティングのうち一定の輝度以上であるスピッティングを、下記式を満たすように転炉炉外にて撮像する撮像工程と、その撮像情報を画像解析する解析工程と、その画像解析情報を基にランス位置を制御する制御工程を有することを特徴とする転炉の吹錬制御方法。
1/4*(Ls/Lt)*π/4*(d+σ) ≦ X≦ (Ls/Lt)*π/4*(d−σ)
X:監視装置の視野中の1画素相当径または1画素相当正方形の1辺の長さ(mm)
Ls:スピッティング(溶鉄粒)撮像の平均濃度
Lt:スピッティング(溶鉄粒)撮像の濃度閾値
d:スピッティング(溶鉄粒)粒径の平均値(mm)
σ:スピッティング(溶鉄粒)粒径の標準偏差(mm) (もっと読む)


【課題】高速送酸下でも送酸速度を低下させることなくスロッピングを防止でき、炭材の使用量も削減でき、設備費も安価なスロッピング防止方法を提供する。
【解決手段】上底吹き型の転炉を用いて、上吹き酸素流量2.0〜4.0Nm3/min/tonで溶銑へ向けて4〜8分間上吹き酸素を吹き付け、かつ、上吹き酸素の吹き付け開始から1〜4分経過中に溶銑トン当たりMkg(10≦M≦30)の酸化鉄を一括して又は断続的に転炉内に投入して、上吹き酸素の吹付け終了時のスラグ塩基度(CaO%/SiO2%)を2.0〜2.5、T.Fe濃度を5〜15%として溶銑を脱燐処理する。酸化鉄の投入完了時点から、{26/(M-1.4)-1.0}≦T≦{26/(M-1.4)}を用いて計算される時間T(T≧0)が経過した時点から、溶銑トン当たり0.4〜1.0kgの炭材を、サブランスを通じて溶銑トン当たり0.4〜1.0kg/minの速度でスラグ層内に吹き込むことにより、脱燐処理中のスロッピングを防止する。 (もっと読む)


【課題】本発明は、転炉の内壁に付着した地金の一部を過溶解させず、付着地金の厚みを円周方向で均一に減らし、常に炉内の平断面形状を均一に維持可能な上吹きランス及び転炉の操業方法を提供することを目的としている。
【解決手段】 溶銑又は溶鋼を保持した転炉の上方及び炉底より酸化性ガスを吹き込む上底吹き転炉に利用され、酸化性ガスの流路を形成する水冷ジャケットと、該酸化性ガス流路の先端に複数本の該ガスを噴射させるノズルとを備えた円筒状の上吹きランスを改良した。その改良は、前記複数本のノズルとして、平面視で、該ランスの中心に対して同一距離の点対称の位置に一対の急拡大ノズルを配置し、別の少なくとも複数対の位置にストレートノズルを配置するようにしたのである。この場合、前記ノズルのそれぞれ隣接する位置が、前記ランス先端の平面視での同心円上にほぼ等しい距離で離隔しているのが好ましい。 (もっと読む)


1 - 20 / 66