説明

Fターム[5D034CA04]の内容

磁気ヘッド−磁束感知ヘッド (4,232) | 目的、機能 (676) | 雑音除去、高調波歪の除去 (155)

Fターム[5D034CA04]に分類される特許

1 - 20 / 155


【課題】実質的に劣化することなく、かつ層状磁気構造の化学エッチングに屈することなく、層状磁気構造の機械研磨に耐える1つ以上の停止層を含む、層状磁気構造を提供する。
【解決手段】トランスデューサヘッド用のリーダ構造を製造するための公差は小さくなり続け、対応する記憶媒体における記憶密度は増加する。リーダ構造の製造中、リーダ構造のさまざまな層を後退および/または擦り切れから保護しつつ、リーダ構造の他の保護されていない層を処理するために、リーダ停止層が利用されてもよい。たとえば、停止層は、機械研磨または化学機械研磨中、非常に低速の研磨速度を有していてもよい。研磨速度が非常に低速の停止層によって保護された構造は実質的に影響を受けず、一方、周囲の区域は著しく研磨されてもよい。停止層は次に、たとえば機械研磨または化学機械研磨の完了後、エッチングを介して除去されてもよい。 (もっと読む)


【課題】 磁気抵抗センサーのための磁気バイアス構造を提供する。
【解決手段】 本発明は、自由層の堅牢性向上およびバルクハウゼンノイズの低減のために磁気バイアスを改善する新たな磁気バイアス構造を有する磁気読み出しヘッドである。バイアス構造は、第1および第2の下層の上に形成されるハード磁性層を含む。第1の下層の少なくとも一部分は、別個の材料の島として形成され、第2の下層は第1の下層の上に形成される。第1の下層は、0.25〜0.75nmの厚さを有する。新たなシード層構造により、ハード磁性層が、センサースタックに隣接する領域でも、センサースタックの自由層と実質的に平行な磁気異方性を有する。 (もっと読む)


【課題】装置、センサおよびセンサの製造方法を提供する。
【解決手段】さまざまな実施の形態が、概して所定の第1の形態を有する減結合層で構築された磁気センサに向けられる。磁気自由層は、減結合層に接して隣り合うように蒸着可能であり、減結合層は、処置得の第2の形態を有する少なくとも第1のサブ層を有するように構成された磁気自由層を有する。 (もっと読む)


【課題】フォームファクタの小型化に伴う、磁気不安定性を防ぐと共に、再生信号出力が上昇し、読み取り性能が向上した磁気センサ装置を提供する。
【解決手段】空気ベアリング面(ABS)に位置付けられ、スペーサ138を介して、第1の磁化自由層136と第2の磁化自由層136とを有して構成される三層スタック132を備え、三層スタックは、ABSに対して直交する軸に沿ったストライプ高さ154を有し、磁化自由層の各々がABSに対して傾斜した一軸異方性を有する。 (もっと読む)


【課題】 熱マグノンによるスピントルク発振素子を提供する。
【解決手段】 「熱マグノンによる」スピントルク発振素子(STO)は、熱流のみを用いて、スピントルク(ST)効果を惹起しかつ自由層磁化の持続的な振動を発生させる。熱マグノンによるSTOは、従来型の自由層および基準層に加えて、さらに、固定された面内磁化を有する磁性酸化物層と、その磁性酸化物層の1つの表面上の強磁性金属層と、自由層および金属層間の非磁性導電層と、磁性酸化物層のもう一方の表面上の電気抵抗性ヒータとを含む。熱マグノン効果のために、金属層と伝導層と自由層とを通る磁性酸化物層からの熱流によって、最終的に、自由層に対するスピン移行トルク(STT)が生じる。熱流と反対方向に流れるセンス電流が、自由層磁化の振動周波数を監視するために用いられる。 (もっと読む)


【課題】耐食性スペーサ層を備え、より高い信号雑音比を有するCPP−GMRセンサを提供する。
【解決手段】膜面垂直通電(CPP)型巨大磁気抵抗効果(GMR)センサのスペーサ層を形成する材料の電気抵抗と耐食性を増大させるための方法と装置。スペーサ層および、それゆえCPP−GMRセンサの抵抗を大きくすることにより、より大きな電圧をセンサにかけることができ、信号対雑音比をより高くすることができる。スペーサ層の耐食性を高めることにより、製造中にスペーサ層を腐食性材料に曝す影響が最小限となる。たとえば、スズを銀に添加して金属合金スペーサ層を形成すれば、このスペーサ層の耐食性とCPP−GMRセンサの電気抵抗は、銀のみからなるスペーサ層の場合より増大する。Ag−Sn合金により、より大きな電流がセンサを流れ、これによって信号対雑音比が増大する。 (もっと読む)


【課題】本発明は、磁気減衰自由層を備えたスピントルク発振器(STO)を提供する。
【解決手段】スピントルク発振器(STO)は、発振自由強磁性層の磁気減衰を増加させる。ギルバート磁気減衰パラメータ(α)は、少なくとも0.05、好ましくは0.05より大きい。自由層は、任意のタイプの従来の強磁性材料であってもよいが、ドーパントとして1つまたは複数の減衰元素を含む。減衰元素は、Pt、Pdおよび15のランタニド元素からなる群から選択される。自由層減衰は、自由層に隣接する減衰層によって増加させてもよい。減衰層の一タイプは、Mn合金のような反強磁性材料であってもよい。反強磁性減衰層に対する変更例として、二重層減衰層を、反強磁性減衰層と、自由層および反強磁性層間の非磁性金属導電分離層とで形成してもよい。別のタイプの減衰層は、Pt、Pdおよびランタニドから選択された元素の1つまたは複数で形成された層であってもよい。 (もっと読む)


【課題】センサ積層体と、シールドと、第1のシールド安定化構造とを含む装置を提供する。
【解決手段】装置は、センサ積層体(92,122,162,202,262)と、センサ積層体の対向する側に位置決めされる第1および第2のシールド(94,96;124,126;164,166;204,206;264,266)と、第1のシールド(94,124,164,204,264)に隣接し、第1のシールドにバイアス磁界を印加する第1のシールド安定化構造(102,132,172,212,268)とを含む。第2のシールド安定化構造(186,234)は、第2のシールド(164,204)に隣接して位置決めすることができる。 (もっと読む)


【課題】
ハードバイアスのシード構造を有する磁気センサを提供する。
【解決手段】
データ密度増加させるため縮小したギャップ間隔を提供する新規なハードバイアス構造を有する磁気センサ。本磁気センサは、磁気シールド上で形成される第1および第2の側面を備えるセンサ積層体を含む。薄い絶縁体層は、センサ積層体の側面上および最下部シールド上に形成される。Cu−Oを含む下地層は、絶縁体層上に形成され、ハードバイアス層は下地層上に形成される。下地層にCu−Oを使用することにより、下地層をより薄くすることができつつ、その上方に形成されるハードバイアス層中でも優れた磁気特性を維持することを可能にする。下地層の膜厚縮小により、ギャップ間隔(最上部および最下部磁気シールド間の間隔)が縮小され、そのことは次にデータ密度の増加を提供する。 (もっと読む)


【課題】所与の厚さの反強磁性層に対する交換バイアスが増加した磁気デバイスを提案することによって従来技術の欠点を克服すること。
【解決手段】本発明は、自由層として知られている、可変磁化方向を有する磁気層と、前記自由層と接触している、前記自由層の磁化方向をトラップすることができる第1の反強磁性層とを備えた磁気デバイスに関する。磁気デバイスは、さらに、安定化層として知られている、自由層とは反対側の面を介して第1の反強磁性層と接触している、強磁性体から作製される層を備えており、前記自由層および安定化層の磁化方向は実質的に垂直である。前記自由層および安定化層のうちの第1の層は磁化を有しており、その方向は、前記第1の層の平面内に配向されており、一方、前記自由層および安定化層のうちの2つの層の第2の層も磁化を有しており、その方向は、前記第2の層の平面外に配向されている。 (もっと読む)


【課題】不要な磁束から磁気抵抗素子を保護し、磁気読出しを高めることが可能な磁気シールドを提供する。
【解決手段】磁気素子190は、少なくとも1つの横側方シールド206によって、磁束からシールドされるとともに所定の初期磁化にバイアスされる、磁気的に応答する積層体192を有し、少なくとも1つの横側方シールドは、第1および第2の強磁性層210、212の間に配置される遷移金属層208を有する。 (もっと読む)


【課題】望ましくない磁束から磁気抵抗(MR)素子を保護することができる磁気シールドを提供する。
【解決手段】磁気抵抗(MR)リーダ192は、空気軸受面(ABS)から第1の距離を延在する少なくとも1つのシールド194,196に近接する。シールドは、MRリーダに接触するように近接し、ABSから第1の距離未満である第2の距離を延在する、安定化構造200を有する。安定化構造はMRリーダと一致する面積範囲を有する。 (もっと読む)


【課題】 磁気抵抗読取センサを提供する。
【解決手段】 センサは、浮上面に沿って上部電極と下部電極との間に配置された磁気反応性スタックである。センサ内の電流がスタックと少なくとも1つの電極との間の第1の多層絶縁構造によって浮上面近くの領域に制限されることで、読取機の感度が向上する。 (もっと読む)


【課題】磁気状態の変化を検出することができるデータ検知素子を提供するために装置および関連する方法が用いられ得る。
【解決手段】本発明のさまざまな実施例は、一般に、磁気的に応答する積層体と、空気軸受け面(ABS)の近位に高磁気モーメント領域を生成し、硬磁石の近位に低磁気モーメント領域を生成するための手段とに向けられている。 (もっと読む)


【課題】磁気状態の変化を検出することのできる磁気素子を提供する。
【解決手段】磁気素子は、強磁性自由層が、スペーサ層によって合成反強磁性(SAF)層から分離され、かつ空気軸受面(ABS)によって隣接する媒体に格納された検知済みデータビットから分離されている磁気反応積層構造を備える。積層構造は、ABSから所定のオフセット距離を空けて少なくとも1つの反強磁性(AFM)タブに結合される。 (もっと読む)


【課題】 トンネル層における面抵抗の低減が図られたスピン伝導素子及び磁気ヘッドを提供する。
【解決手段】
本発明に係るスピン伝導素子(磁気センサー1)は、半導体で構成されるチャンネル層10と、チャンネル層10上に形成された強磁性層20A、20Bと、チャンネル層10と強磁性層20A、20Bとの間に介在するように形成されたトンネル層22A、22Bとを備え、トンネル層22A、22Bが、MgOのMgの一部がZnで置換された材料で構成されている。発明者らの研究によれば、MgOのMgの一部をZnで置換したトンネル材料において、面積抵抗の低下が観測された。そのため、トンネル層22A、22Bを、MgOのMgの一部がZnで置換された材料で構成することにより、トンネル層22A、22Bの面積抵抗の低減が図られる。 (もっと読む)


【課題】スペーサ層に隣接する磁性層の酸化を防止し、かつ大きなMR変化率を実現する。
【解決手段】磁気抵抗効果素子は、外部磁界に応答して磁化方向のなす相対角度が変化する第1及び第2の磁性層L1,L2と、第1の磁性層L1と第2の磁性層L2との間に位置するスペーサ層16と、を有している。第1の磁性層L1は、磁気抵抗効果素子が形成される基板に対し、第2の磁性層L2よりも近い側に位置している。スペーサ層16は、酸化ガリウムを主成分とする主スペーサ層16bと、主スペーサ層16bと第1の磁性層L1との間に位置し、一部が酸化された銅を主成分とするボトム層16aと、を有している。 (もっと読む)


【課題】SAFフリー層構造を有するパターニングされたCPP型MRセンサスタックを含むCPP型MR読取りヘッド、およびその製造方法を提供する。
【解決手段】本発明のSAFフリー層構造では、センサスタックの上に形成された交換バイアス層と、スタックのパターニングされた側面に隣接して形成されたハードバイアス層との組み合わせにより、長手方向のバイアスが印加されている。この組み合わせでは、ごくわずかな隙間をもって近接した上部シールドおよび下部シールドによって形成された狭いリードギャップを必要とせずに、高分解能の読取性能を提供することができる。交換バイアス層、ハードバイアス層の位置およびCPP型MRセンサスタックのパターニングが異なる16個の実施態様を開示する。 (もっと読む)


【課題】ハードバイアス層用の改善されたシード層構造を備えた面垂直電流(CPP)磁気抵抗(MR)センサを提供する。
【解決手段】面垂直電流(CPP)磁気抵抗(MR)センサ100は、センサの自由強磁性層に縦にバイアスをかけるために用いられる強磁性体ハード(高保磁力)バイアス層用の改善されたシード層構造114を有する。シード層構造114は、タンタル(Ta)の第1のシード層114aと、Ta層114a上でそれに接するチタン(Ti)およびTi酸化物の一方または両方の第2のシード層114bと、第2のシード層114b上でそれに接するタングステン(W)の第3のシード層114cと、からなる3層である。 (もっと読む)


【課題】データ変換ヘッドにおける読取センサとして、または固体不揮発性メモリ素子などとして使用するための、磁気状態の変化を検出可能な磁気素子を提供する。
【解決手段】さまざまな実施例によれば、磁気素子は、第1の面積範囲を有する磁気応答性スタックまたは積層を含む。スタックは、第1および第2の強磁性フリー層間に位置付けられたスペーサ層を含む。少なくとも1つの反強磁性(AFM)タブが、第1のフリー層に、スペーサ層とは反対側のその表面上で接続されており、AFMタブは、第1の面積範囲よりも小さい第2の面積範囲を有する。 (もっと読む)


1 - 20 / 155