説明

Fターム[5F003AP05]の内容

バイポーラトランジスタ (11,930) | 目的 (494) | 容量低減 (108)

Fターム[5F003AP05]に分類される特許

1 - 20 / 108


【課題】エミッタ層からコレクタ層を経由してベース層へ移動する電荷の移動を阻止し、エミッタ層からコレクタ層を経由してベース層に注入される電荷を無くすことで、コレクタ層における欠陥の成長を防止することが可能な炭化珪素半導体装置を提供する。
【解決手段】本発明の炭化珪素半導体装置は、炭化珪素半導体基板により構成された炭化珪素半導体装置であり、第1の導電型のコレクタ層102と、コレクタ層の上部に設けられた第2の導電型のベース層104と、ベース層の一部として設けられたベース電極105と、ベース層上に設けられベース電極と離間して設けられたエミッタ層107と、ベース電極からエミッタ層に対して移動する電荷の経路において、コレクタ層内に設けられた、コレクタ層内における電荷の経路を遮断する絶縁体層112とを有する。 (もっと読む)


【課題】多くの半導体装置に必要な低温処理と両立しない高温操作を必要とするような欠点がない、半導体構造を提供することを目的とする。
【解決手段】下部誘電層(151)へ接合された基板(103)、および、下部電極(121)を通じて前記下部誘電層(151)と接合される垂直方向半導体装置(111)を含む半導体構造であって、前記垂直方向半導体装置(111)は、n−p−n層(124)を有する隔離構造(135)を含む。 (もっと読む)


【課題】バイポーラトランジスタの動作速度を高速化できるようにした半導体装置の製造方法を提供する。
【解決手段】単結晶Si基板1に設けられたn型のコレクタ層20と、コレクタ層20の表面の周辺部上に設けられたSiO2膜21と、SiO2膜21を覆ってコレクタ層20の表面の中央部に接合するp型のベース層30と、を有し、ベース層30は、コレクタ層20の表面の中央部上に設けられた単結晶SiGe膜31aと、SiO2膜21を覆うように単結晶SiGe膜21上に積層された単結晶Si膜35aとを含む。ベース層30とコレクタ層20との接合領域60がコレクタ層20の表面の中央部に限定されるため、接合面積を小さくすることができ、ベース層とコレクタ層との間の容量CBCを低減することができる。 (もっと読む)


【課題】 放熱性を改善したバイポーラトランジスタを有する半導体装置を提供することにある。
【解決手段】 複数のバイポーラトランジスタQuが配列される半導体装置であって、エミッタ配線L3は幅広部と細長部とを有し、細長部におけるバイポーラトランジスタ素子数が、幅広部が配置された配列の外縁に沿う方向に配列されたバイポーラトランジスタ素子数よりも少なくなるように配置する。
【効果】エミッタ配線の寄生抵抗によるエミッタ−ベース間電圧ばらつきを低減する。 (もっと読む)


【課題】アナログアプリケーションの性能向上と共に、DCゲインおよび効率の増加を提供する。
【解決手段】バイポーラ接合トランジスタは、絶縁基板上の島状半導体と、島状半導体内に、第1伝導性型であるエミッタ、並びに第1伝導性型であるコレクタおよび/またはサブコレクタと、島状半導体内に、エミッタと、コレクタおよび/またはサブコレクタとを分離する、第2伝導性型であるベースと、島状半導体内に、第2伝導性型であるベース接触領域と、島状半導体内に、ベースに隣接するとともに、ベースをベース接触領域に接続する一方で、エミッタとは直接接触していない接続ベース領域と、を備え、接続ベース領域は、第2伝導性型であり、ベース接触領域のドーピング濃度未満のドーピング濃度を有する。 (もっと読む)


【課題】容易なプロセスにより単結晶半導体層を形成したSOI構造のMISFETの提供
【解決手段】半導体基板1上に、第1の絶縁膜2を介して、一部に空孔4を有する第2の絶縁膜3が設けられ、空孔4上及び第2の絶縁膜3の一部上に島状に絶縁分離された半導体層6が設けられ、半導体層6上にゲート酸化膜12を介して、空孔4直上に空孔4の幅以下のゲート電極13が設けられ、半導体層6には、ゲート電極13に自己整合して低濃度のソースドレイン領域(9,10)が、ゲート電極13の側壁に設けられたサイドウォール14に自己整合して高濃度のソースドレイン領域(8,11)がそれぞれ設けられ、ゲート電極13(配線図示せず)及び高濃度のソースドレイン領域(8,11)にはバリアメタル17を有する導電プラグ18を介してバリアメタル20を有する配線21が接続されているMISFET。 (もっと読む)


【課題】絶縁素子分離型のバイポーラトランジスタの放熱性を改善する。
【解決手段】薄い半導体層の第1のエリアに配置された第1のトランジスタと、薄い半導体層の第2のエリアに配置された第2のトランジスタで構成される回路部と、を備え、第1のトランジスタは、並列接続された複数のバイポーラトランジスタ素子を構成する複数の単位能動領域の配列全体を囲って配置された素子分離溝を含み、素子分離溝を能動領域から少なくとも1μm離間して設け、能動領域で生成される熱を単位能動領域を囲んで存在する半導体領域から外方に放熱させる構成を備えてなり、第2のトランジスタは、バイポーラトランジスタ動作を行う単位能動領域と、単位能動領域を取り囲んで形成され単位能動領域から1μm以下の位置に配置された素子分離溝を含む。 (もっと読む)


【課題】エミッタメサの加工精度を損ねることなく、HBTの高速性および信頼性が向上できるようにする。
【解決手段】エミッタメサの部分の側面およびレッジ構造部105aの表面には、これらを被覆するように、SiNからなる第1絶縁層108が形成されている。また、第1絶縁層108の周囲には、酸化シリコンからなる第2絶縁層109が形成されている。第2絶縁層の下端部には、レッジ構造部1105aが形成されている領域より外側に延在し、第1絶縁層108およびレッジ構造部105aの側方のベース層104との間に空間を形成する庇部109aが形成されている。 (もっと読む)


【課題】結晶欠陥による接合リークを防止しながら、バイポーラトランジスタの面積を縮小し、コレクタ容量の低減によってトランジスタ特性を向上できるようにした半導体装置及びその製造方法を提供する。
【解決手段】活性領域1からSTI4上にかけて連続して形成したSiGe膜は、半導体基板3上ではSiGeエピ膜6となり、STI4上ではSiGeポリ膜7となる。半導体基板3とSTI4の境界はSiGe−HBT形成工程以前の洗浄工程によって段差15が生じており、SiGeエピ膜6及び半導体基板3には、上記境界を基点とした結晶欠陥が応力によって発生する可能性がある。この境界に第1のP型不純物層8及び第2のP型不純物層9を設けることで、結晶欠陥をこれらP型不純物層8、9に内包し、接合リークの発生を抑制する。 (もっと読む)


【課題】形成する素子に要求される素子間耐圧や素子内部耐圧に応じたディープトレンチ膜を有する半導体装置を提供する。
【解決手段】P型のシリコン基板11上に、N+型埋め込み層12と、N型半導体層13と、が積層された基板10と、基板10にN+型埋め込み層12の形成位置よりも深く形成され、基板10内の素子形成領域内を区画するディープトレンチ20と、ディープトレンチ20の内壁に沿って形成される側壁酸化膜23,24と、ディープトレンチ20内を埋めるTEOS膜を含むディープトレンチ膜26と、ディープトレンチ膜26で区画される素子形成領域に形成されるLDMOSと、を備え、ディープトレンチ20は、N+型埋め込み層12の上面よりも浅い位置の境界深さまでの第1のディープトレンチ21と、境界深さから底部までの第1のディープトレンチ21よりも小さい開口径を有する第2のディープトレンチ22によって構成される。 (もっと読む)


【課題】エミッタ接地直流増幅率のばらつきを低減し、かつ抵抗の増大を防止できる、信頼性に優れるバイポーラトランジスタを得ること。
【解決手段】本発明は、N−型エピ層3aやP−型シリコン基板1aを含む半導体基板、N+型ポリシリコン層21a、タングステン層25、シリサイド層27a、シリサイド層39a、ベース電極36a、エミッタ電極36b及びコレクタ電極36cを少なくとも備える。半導体基板上に形成されたN+型ポリシリコン層21aはシリサイド層27aに覆われる。シリサイド層27a上の形成されたタングステン層25はシリサイド層39aに覆われる。 (もっと読む)


【課題】線形性に優れた半導体抵抗素子を提供する。
【解決手段】本発明の半導体装置は、GaAs基板101上に形成され、3−5族化合物半導体から構成されるHBT130と、GaAs基板101上に形成され、HBT130を構成する半導体エピタキシャル層の少なくとも1層から構成される半導体抵抗素子120とを備え、半導体抵抗素子120は、ヘリウム不純物を含む。 (もっと読む)


【課題】バイポーラトランジスタのエミッタ−ベース界面において、ドーパント濃度プロファイルを制御する方法を提供する。
【解決手段】第1濃度を有する第1ドーパントを含む第1半導体材料を形成する工程と、その上に、第2濃度を有し、これにより接合を形成する、第2ドーパントを含む第2半導体材料を形成する工程と、第2半導体材料を形成する前に、原子層エピタキシまたは気相ドーピングにより、第1半導体材料の上に、第2ドーパントを形成するのに適した、単分子層の少なくとも一部分の前駆体を堆積し、これにより接合における第2ドーパントの第2濃度を増加させる工程と、を含む(またはこれらの工程からなる)。 (もっと読む)


【課題】最終的なコレクタを薄層化しつつ、広い線幅のSiO細線を例とする絶縁物細線の埋め込みを可能にし、低消費電力での超高速動作が可能なバイポーラトランジスタの製造方法を提供すること。
【解決手段】半絶縁性基板1上にサブコレクタ層2を形成する工程と、サブコレクタ層2上に絶縁物3の細線を形成する工程と、サブコレクタ層2および絶縁物3の細線を覆うコレクタ層4を形成する工程とを有するバイポーラトランジスタの製造方法において、前記サブコレクタ層2および絶縁物3の細線を覆うコレクタ層4を形成する工程は、コレクタ層2の表面をエッチングする工程を含むことを特徴とするバイポーラトランジスタの製造方法を構成する。 (もっと読む)


【課題】寄生容量を低減しつつ、トランジスタが形成される半導体層に歪応力を与える。
【解決手段】半導体層3に形成されたコレクタ層3aの表面および裏面にストレス印加層5を形成し、ストレス印加層5を介して埋め込み絶縁層6上に配置されたベース層9をコレクタ層3aの側壁に選択的に形成し、ベース層9の側壁を絶縁膜10から露出させる開口部12を形成し、開口部12を介してベース層9の側壁に接続されたエミッタ層13aを埋め込み絶縁層6上に形成する。 (もっと読む)


【課題】電流利得のばらつきを低減することができる半導体装置を提供する。
【解決手段】第1導電型の半導体基体1と、この半導体基体1の表面の一部に形成された、バイポーラトランジスタの第2導電型のコレクタ層2と、このコレクタ層2の一部に形成された、バイポーラトランジスタの第1導電型のベース層6と、このベース層6の一部に形成された、バイポーラトランジスタの第2導電型のエミッタ層7と、このエミッタ層7の直下の領域を除いた部分の半導体基体1に形成された、第1導電型の半導体層9とを含む半導体装置を構成する。 (もっと読む)


【課題】バイポーラトランジスタのベース走行時間の低減とエミッタ・ベース接合容量の低減により、遮断周波数と低電流駆動性能の向上を図ったバイポーラトランジスタを提供する。
【解決手段】半導体基板上に設けられた第1導電型の第1の半導体層5と、前記第1の半導体層の上に設けられた第1導電型の第2半導体層6と、前記第2半導体層上に設けられた第2導電型の第3の半導体層7と、該第3の半導体層上に設けられ、開口部を有する第1の絶縁膜9と、前記開口部内に設けられた第1導電型の第4の半導体層11と、前記第4の半導体層上に設けられた第1導電型の第5の半導体層13とで構成され、第4の半導体層が第1の絶縁膜の側壁に接しないように形成し、少なくとも前記第4の半導体層と第1の絶縁膜で囲まれた空洞12を有して成ることを特徴とする。 (もっと読む)


【課題】バイポーラトランジスタの高周波特性の向上を図る。
【解決手段】p型シリコン基板10上に形成されたn型導電型の第1コレクタ層14と、第1コレクタ層14上に形成された、第1コレクタ層14より幅の狭い、n型導電型の第2コレクタ層21と、第1コレクタ層14上に、第2コレクタ層21側面に接して形成された絶縁膜層20と、第2コレクタ層21上に形成された、p型導電型のベース層22と、ベース層22側面に接してに形成された、p型導電型のベース引き出し層25と、ベース層22上に形成された、n型導電型のエミッタ領域32とを備える。第1コレクタ層14とベース層22の間、又は第1コレクタ層14とベース引き出し層25の間に、絶縁膜層20が形成されていることにより、ベース・コレクタ間の接合容量を低減させる。 (もっと読む)


【課題】バイポーラトランジスタの高周波特性を向上させる。
【解決手段】ヘテロバイポーラトランジスタ70は、ベースとエミッタ、ベースとコレクタがヘテロ接合を有し、双条ベース構造を有する。N型エピタキシャル層3上の内部ベース層(P型SiGe層)5と接する外部ベース層10、及び内部ベース層(P型SiGe層)5上には、絶縁膜7及びN型多結晶シリコン膜8が積層形成される。積層形成された絶縁膜7及びN型多結晶シリコン膜8の中央部にはエミッタ開口部19が設けられる。エミッタ開口部19にはN型エピタキシャル層11が設けられる。N型エピタキシャル層11及びN型多結晶シリコン膜8上には、エミッタ開口部19を覆うようにT型形状を有するN型多結晶シリコン膜12が設けられる。左右のN型多結晶シリコン膜8及びエミッタ開口領域は同時に形成され、左右のN型多結晶シリコン膜8の幅は同一に設定される。 (もっと読む)


【課題】SiGe混晶層を有する半導体装置において、高い高周波特性と安定した低いベースコンタクト抵抗とを得られるようにする。
【解決手段】半導体装置は、N型のコレクタ層1aと、コレクタ層1aの上に形成され、P型SiGe層3bを含む真性ベース層となるSiGeエピ膜3と、SiGeエピ膜3の周囲に形成され、P型の多結晶シリコン層及びP型の多結晶シリコンゲルマニウム層を含むベース引き出し電極4と、SiGeエピ膜3の上部に形成されたN型のエミッタ層8とを有している。真性ベース層の上部には、Si−Cap層3cが形成されており、エミッタ層8は、Si−Cap層3cの上部に形成された上部エミッタ領域8bと、該上部エミッタ領域8bの下側に該上部エミッタ領域8bと接して形成された下部エミッタ領域8aとにより構成されている。 (もっと読む)


1 - 20 / 108