説明

Fターム[5F082CA03]の内容

バイポーラIC (6,722) | 基板材料 (301) | 三元以上 (86)

Fターム[5F082CA03]に分類される特許

41 - 60 / 86


【課題】HEMTの上にHBTを成長させる際にHEMTの移動度が劣化しないトランジスタ素子を提供する。
【解決手段】GaAs基板2上に高電子移動度トランジスタ(HEMT)3が形成され、該HEMT3上にヘテロバイポーラトランジスタ(HBT)4が形成されたトランジスタ素子1において、上記HEMT3内にバリア層10を有する。 (もっと読む)


【課題】電流利得が高いトランジスタ素子を提供する。
【解決手段】基板2上にヘテロバイポーラトランジスタ3が形成され、該ヘテロバイポーラトランジスタ3上に高電子移動度トランジスタ4が形成されたトランジスタ素子1において、上記ヘテロバイポーラトランジスタ3のベース層8の層厚が120nm以上である。 (もっと読む)


【課題】コレクタ耐圧の低下を防止し、コレクタ抵抗を低減させることが可能な半導体装置及びその製造方法を提供する。
【解決手段】半絶縁性GaAs基板101の第1領域上に形成されたHBTと、半絶縁性GaAs基板101の第2領域上に形成されたHFETとを備え、HBTは、第1領域上に順次形成された、第1導電型のエミッタ層103、エミッタ層103よりバンドギャップの小さい第2導電型のベース層104、第1導電型又はノンドープのコレクタ層105、及びコレクタ層105より高不純物濃度の第1導電型のサブコレクタ層106を有し、HFETは、エミッタ層103の一部により構成された電子供給層110と、電子供給層110の下方に形成されたチャネル層102とを有する。 (もっと読む)


【課題】高い電流利得が得られる半導体装置及びその製造方法を提供する。
【解決手段】基板と、基板の上に設けられた第1導電型のベース層と、ベース層に接続されたベース電極と、ベース層の上に設けられた第2導電型のコレクタ層と、コレクタ層の上に設けられたコレクタ電極と、ベース層の上に設けられた第2導電型のエミッタ層と、エミッタ層の上に設けられたエミッタ電極と、コレクタ層とエミッタ層との間に設けられベース層上でコレクタ層とエミッタ層とを分離する、幅が100nm(ナノメートル)以下の分離溝とを備えている。 (もっと読む)


【課題】DAT技術を利用した電力増幅器において、能動素子として高耐圧トランジスタを用いた場合に、その特性を十分に活用することができる技術を提供する。
【解決手段】3個のほぼ等価なプッシュプル増幅器を具備している。プッシュプル増幅器における1対のトランジスタ3A〜3Fのドレインは、金属配線1A〜1Hから成る電流経路により相互に接続され、電流経路の中間点が正電源Vddに接続されている。金属配線1A〜1Hのうちトランジスタのドレインからその正電源Vddに至る部分が1本の1次コイルを構成する。1次コイルが、それらと近接して配置された金属配線2から成る2次コイルと磁気的に結合することにより、1次コイルからの出力を合成し2次コイルの出力端子から出力する。1本の1次コイルに相当する金属配線の長さに対する、2次コイル全体に相当する金属配線の長さの比が、およそ3である。 (もっと読む)


【課題】半導体装置の耐湿性向上を図ることができる技術を提供する。
【解決手段】半絶縁性基板であるGaAs基板40において、素子形成領域にHBT30を形成し、絶縁領域に素子分離領域47を形成する。絶縁領域に形成される素子分離領域47は、HBT30のサブコレクタ用半導体層41とコレクタ用半導体層42と同層の半導体層にヘリウムを導入することにより形成されている。外周領域において、保護膜52、55から露出するように導電層49を形成し、この導電層49を裏面電極と接続する。裏面電極にはGND電位が供給されるので、導電層49はGND電位に固定される。この導電層49は、HBT30のサブコレクタ用半導体層41とコレクタ用半導体層42と同層の半導体層により形成される。 (もっと読む)


2つの別個の成長過程を用いて統合BiFETを製作するための方法及びシステムを開示する。本発明を実施すると、BiFETのFET部分が第1製作環境で製作される。本発明を実施すると、BiFETのHBT部分が第2製作環境で製作される。FET部分とHBT部分の製作を2つ以上の別々の反応器内に分離することで、最適な装置性能が両方の装置で達成される。
(もっと読む)


【課題】素子分離領域を通過するリーク電流を感度高く検出できる半導体装置を提供する。
【解決手段】ベース電極を含むバイポーラトランジスタ領域と、抵抗を含む抵抗領域と、前記抵抗の一方の端部と、前記ベース電極と、を接続する配線層と、前記バイポーラトランジスタ領域と前記抵抗領域とを分離する素子分離領域と、を備え、前記バイポーラトランジスタ領域内のコレクタ層と前記抵抗との間において、前記素子分離領域を通過して前記抵抗に流れるリーク電流を、前記配線層を介して前記ベース電極に供給することを特徴とする半導体装置が提供される。 (もっと読む)


【課題】多重型トランジスタ半導体構造を提供すること。
【解決手段】半導体構造が2つの異なった部分を用いて形成される。第1の部分は第1のトランジスタを形成し、第2の部分は第2のトランジスタを形成する。第1のトランジスタの複数の部分が第2のトランジスタの複数の部分をも構成する。すなわち、第1のトランジスタ及び第2のトランジスタの両方が、同一の構造における複数の部分により構成される。 (もっと読む)


【課題】ワイドバンドギャップ半導体を用いて形成されたパワースイッチング素子とそれを制御するための受光素子を含む半導体装置を低コストで提供する。
【解決手段】半導体装置は、シリコン基板(1)を用いて形成されたフォトダイオード(5)と、シリコン基板上に形成されていてシリコンに比べて大きなバンドギャップを有するワイドバンドギャップ半導体層(2)と、そのワイドバンドギャップ半導体層を用いて形成されたスイッチング素子(9)とを含み、そのスイッチング素子はフォトダイオードからの制御信号によってオン・オフ制御されるようにフォトダイオードに電気的に接続(7、28)されている。 (もっと読む)


【課題】大出力電力に対応した電力増幅用ヘテロ接合バイポーラトランジスタを小さい面積にレイアウトすることを可能とする。
【解決手段】サブコレクタ層上に、コレクタ層が互いに分離された複数のトランジスタ要素をエミッタの長辺方向に1列に配置して、ヘテロ接合バイポーラトランジスタを形成する。さらに、前記ヘテロ接合バイポーラトランジスタを単位トランジスタとして、マルチフィンガー型ヘテロ接合バイポーラトランジスタを構成する。 (もっと読む)


【課題】 HBTでは、ベース電流を増加させて電流密度の向上を図ると、二次降伏を起し、破壊に至りやすくなる。
【解決手段】 単位HBTと単位FETを分離領域を介して隣接して配置し、単位HBTのベース電極に単位FETのソース電極を接続した単位素子を複数接続して能動素子を構成する。これにより、単位素子に電流が集中した場合であっても二次降伏による破壊が発生しない能動素子を実現できる。また単位FETでは耐圧を確保するため埋め込みゲート電極構造を採用するが、埋め込み部をInGaP層に拡散させない構造とすることによりPtの異常拡散を防止できる。更に、単位HBTのエミッタメサ、ベースメサ形成、レッジ形成および単位FETのゲートリセスエッチングに選択エッチングを採用でき、再現性が良好となる。 (もっと読む)


【課題】バイポーラ接合トランジスタ(BJT)を提供すること。
【解決手段】各BJTのコレクタ領域は、半導体基板表面内に配置され、第1のシャロー・トレンチ・アイソレーション(STI)領域に隣接している。第2のSTI領域が形成され、この第2のSTI領域は、第1のSTI領域とコレクタ領域との間に延在し、約90°以下のアンダーカット角度で活性ベース領域の一部をアンダーカットする。例えば、第2のSTI領域は、約90°未満のアンダーカット角度のほぼ三角形の断面を有していても、約90°のアンダーカット角度のほぼ長方形の断面を有していてもよい。このような第2のSTI領域は、コレクタ領域の上側表面内に形成される多孔質表面部を使用して製作することができる。 (もっと読む)


【課題】増幅利得の向上(高出力動作)と熱暴走抑制効果の向上(安定動作)とを両立させた、半導体電力増幅器及びその製造方法を提供する。
【解決手段】各HBT40のエミッタは、並列接続された第1のエミッタバラスト抵抗体41及び第2のエミッタバラスト抵抗体42を介して、エミッタ(接地)端子3にそれぞれ接続される。第1のエミッタバラスト抵抗体41と第2のエミッタバラスト抵抗体42とは、温度変化に伴う抵抗値の変化傾向が相反する温度特性を有した材料で形成される。これにより、第1のエミッタバラスト抵抗体41が有する温度上昇に従って抵抗値が減少(又は増加)する欠点を、第2のエミッタバラスト抵抗体42が有する温度上昇に従って抵抗値が増加(又は減少)する欠点で緩和させることが可能となる。 (もっと読む)


【課題】 電力増幅モジュールやそれに用いる集積受動部品または半導体チップの低コスト化および高性能化を図る。
【解決手段】 集積受動部品5において、シード膜51、銅膜53およびニッケル膜54の積層膜からなる配線55により、RFパワーモジュールのローパスフィルタ回路を構成するインダクタ素子が形成される。ニッケル膜54は、銅膜53の全面上に形成され、表面保護膜としての絶縁膜61の開口部62から露出するニッケル膜54上に、金膜63およびバンプ電極64が形成されている。ニッケル膜54は、無電解Ni−Pめっき膜であり、リンを10重量%以上含有し、非磁性状態とされている。 (もっと読む)


【課題】 ヘテロ接合バイポーラトランジスタ及びフォトダイオードが電気信号の劣化を伴うことなく接続され、全面再成長の特徴である高集積度を損ねることなく、動作速度及び受光感度に優れた光電子集積回路を提供する。
【解決手段】 光電子集積回路は、光素子2のアノード電極9又はカソード電極8からの配線19が[011]方向に形成されて素子に接続されることを特徴としている。 (もっと読む)


【課題】 互いに並列に接続されたベースバラスト抵抗及び容量を付加したHBT等のヘテロ接合型半導体素子を有する半導体装置において、その素子面積を縮小し、かつ作製工程の簡略化も可能にすること。
【解決手段】
少なくともコレクタ層3とベース層5と第1のエミッタ層7Aとからなる積層体によって構成されたHBT15a及び15bを有し、これらのHBTと同一構成材料からなる積層体16において、各HBTのベースに接続されたベース構成材料層5と、ベース信号入力端子電極に相当するエミッタ構成材料層上のエミッタ電極9との間に、ベース構成材料によるベースバラスト抵抗13と、エミッタ及びベース構成材料からなる逆方向ダイオードによる容量14とが並列に接続されることによって、並列の複数のHBTの熱暴走を防止する構造を素子面積の縮小の下で容易に作製することができる。 (もっと読む)


【課題】 HBTセル内での発熱均一性を保ち、かつ、高周波帯域の利得特性を向上させたバイポーラトランジスタを提供する。
【解決手段】 ベースメサフィンガー(エミッタレッジ層15、ベース層16及びコレクタ層17)を2本のコレクタフィンガー(コレクタ電極13)で挟み、ベースメサフィンガー上に1本のベースフィンガー(ベース電極12)及びその両側の2本のエミッタフィンガー(エミッタ層14及びエミッタ電極11)を形成した構造である。2本のエミッタフィンガーは、ベースフィンガーを基準に対称の位置に形成される。 (もっと読む)


【課題】 HBTセル内での発熱均一性を保ち、かつ、高周波帯域の利得特性を向上させたバイポーラトランジスタを提供する。
【解決手段】 ベースメサフィンガー(エミッタレッジ層15、ベース層16及びコレクタ層17)を2本のコレクタフィンガー(コレクタ電極13)で挟み、ベースメサフィンガー上に1本のベースフィンガー(ベース電極12)及びその両側の2本のエミッタフィンガー(エミッタ層14及びエミッタ電極11)を形成した構造である。2本のエミッタフィンガーは、ベースフィンガーを基準に対称の位置に形成される。 (もっと読む)


【課題】 ヘテロ接合半導体素子と別の半導体素子とが同一基板上に集積され、かつ、この別の半導体素子の電極取り出し構造が改良された半導体装置及びその製造方法を提供すること。
【解決手段】 前記別の半導体素子の一例である抵抗素子20を構成する抵抗層11を、イオン注入法または不純物拡散法によって半絶縁性基板1内に形成する。次に、サブコレクタ層2、コレクタ層3、ベース層4、エミッタ層5、そしてエミッタキャップ層6の構成材料層を、基板1の全面にエピタキシャル成長法によって形成する。次に、これらの一部をメサ構造に加工して、HBT10を形成する。一方、抵抗素子20の素子電極14、15を高い位置で取り出すための導電層12、13を、サブコレクタ層2の構成材料層42のパターニングによって形成し、素子電極14、15をこの上に形成する。次に、BCBなどの平坦化膜30を形成し、これを介して配線31、32を形成する。 (もっと読む)


41 - 60 / 86