説明

Fターム[5F101BA34]の内容

不揮発性半導体メモリ (42,765) | 電荷蓄積機構 (9,664) | FG型 (6,485) | FG周囲絶縁膜 (3,604) | 薄膜化又は絶縁膜材料の特徴部位 (1,645) | SDとFG間 (40)

Fターム[5F101BA34]に分類される特許

1 - 20 / 40


【課題】トンネルウィンドウやセレクトゲートの加工寸法のばらつき、およびセレクトゲートのアライメント精度を考慮する必要がなく、セルサイズを小さくすることができる半導体装置およびその製造方法を提供すること。
【解決手段】不揮発性メモリセル7を半導体基板2上に選択的に備える半導体装置1が製造される。この製造方法は、ゲート絶縁膜23上において不揮発性メモリセル7用のアクティブ領域5に、セレクトゲート19を選択的に形成する工程と、セレクトゲート19に対して自己整合的に導入することによってn型トンネル拡散層11を形成する工程と、ゲート絶縁膜23の一部セレクトゲート19に対して自己整合的に除去し、その後の熱酸化によりトンネルウィンドウ25を形成する工程とを含む。 (もっと読む)


【課題】占有面積を増加することなくトンネル絶縁膜の劣化を抑制して高い信頼性を持った電気的書き換え可能な半導体不揮発性メモリ装置を提供する。
【解決手段】ドレイン領域の一部に半球状の窪みを設けトンネル領域を形成し、フローティングゲート電極はトンネル領域の半球状の窪みに沿って入り込む形状となるように形成する。 (もっと読む)


【課題】 占有面積を増加することなくトンネル絶縁膜の劣化を抑制して高い信頼性を持った電気的書き換え可能な半導体不揮発性メモリ装置を得ることを目的とする。
【解決手段】 ドレイン領域内のトンネル領域と微細穴に埋め込まれる形で形成されたフローティングゲート電極の側面との間にはトンネル絶縁膜を設け、微細穴に接するドレイン領域の表面付近には、電気的にフローティング状態である第1導電型のトンネル防止領域を設けた。 (もっと読む)


【課題】占有面積を増加することなくトンネル絶縁膜の劣化を抑制して高い信頼性を持った電気的書き換え可能な半導体不揮発性メモリ装置を得る。
【解決手段】トンネル領域を有する半導体不揮発性メモリにおいて、トンネル領域の周囲部分は掘り下げられており、掘り下げられたドレイン領域には、空乏化電極絶縁膜を介して、トンネル領域の一部を空乏化するための電位を自由に与えることが可能な空乏化電極を配置する。 (もっと読む)


【課題】微細化による電気特性の変動が生じにくい半導体装置を提供する。
【解決手段】第1の領域と、第1の領域の側面に接した一対の第2の領域と、一対の第2の領域の側面に接した一対の第3の領域と、を含む酸化物半導体膜と、酸化物半導体膜上に設けられたゲート絶縁膜と、ゲート絶縁膜上に第1の領域と重畳した第1の電極と、を有し、第1の領域は、CAAC酸化物半導体領域であり、一対の第2の領域及び一対の第3の領域は、ドーパントを含む非晶質な酸化物半導体領域であり、一対の第3の領域のドーパント濃度は、一対の第2の領域のドーパント濃度より高い半導体装置である。 (もっと読む)


【課題】占有面積を増加することなくトンネル絶縁膜の劣化を抑制して高い信頼性を持った電気的書き換え可能な半導体不揮発性メモリ装置を得ることを目的とする。
【解決手段】ドレイン領域内のトンネル領域には、ドレイン領域と同一の電位に固定されたドレイン領域に比べて不純物濃度の低い第2導電型の領域と、不純物濃度の低い第1導電型の領域とを形成し、不純物濃度の低い第2導電型の領域と、不純物濃度の低い第1導電型の領域のそれぞれの上面に、フローティングゲート電極への電子注入用と電子引き抜き用のトンネル絶縁膜を独立して設けた。また、データ書き換え時に印加されるストレスが偏らないように、電子引き抜き用のトンネル絶縁膜に比べて電子注入用のトンネル絶縁膜の面積を大きくあるいは厚くした。 (もっと読む)


【課題】占有面積を増加することなくトンネル絶縁膜の劣化を抑制して高い信頼性を持った電気的書き換え可能な半導体不揮発性メモリ装置を提供する。
【解決手段】フローティングゲート電極は、高い不純物濃度領域と低い不純物濃度領域とからなり、高い不純物濃度領域は、コントロールゲート絶縁膜と接する部分に配置し、低い不純物濃度領域はトンネル絶縁膜と接する領域に配置し、フローティングゲート電極のコントロールゲート絶縁膜と接する表面部分には微細凹凸を形成した。 (もっと読む)


【課題】占有面積を増加することなくトンネル絶縁膜の劣化を抑制して高い信頼性を持った電気的書き換え可能な半導体不揮発性メモリ装置を提供する。
【解決手段】トンネル領域のエッジ近傍のトンネル絶縁膜上には、トンネル絶縁膜とは異なる材質の絶縁膜からなる電界緩和層を配置した。 (もっと読む)


【課題】占有面積を増加することなくトンネル絶縁膜の劣化を抑制して高い信頼性を持った電気的書き換え可能な半導体不揮発性メモリ装置を提供する。
【解決手段】トンネル領域とフローティングゲート電極との間には、膜厚の異なる複数のトンネル絶縁膜を形成した。 (もっと読む)


【課題】優れた結晶性を有する酸化物半導体膜を作製する。
【解決手段】酸化物半導体の膜を形成するに際し、基板を第1の温度以上第2の温度未満に加熱しつつ、基板の、典型的な長さが1nm乃至1μmの部分だけ、第2の温度以上の温度に加熱する。ここで、第1の温度とは、何らかの刺激があれば結晶化する温度であり、第2の温度とは、刺激がなくとも自発的に結晶化する温度である。また、典型的な長さとは、その部分の面積を円周率で除したものの平方根である。 (もっと読む)


【課題】占有面積を増加することなくトンネル絶縁膜の劣化を抑制して高い信頼性を持った電気的書 き換え可能な半導体不揮発性メモリ装置を得る。
【解決手段】ドレイン領域内のトンネル領域とフローティングゲート電極領域との間には、トンネル絶縁膜が設けられており、トンネル領域のエッジ近傍のフローティングゲート電極の不純物濃度は、その他の箇所のフローティングゲート電極の不純物濃度に比べて低く設定した。 (もっと読む)


【課題】占有面積を増加することなくトンネル絶縁膜の劣化を抑制して高い信頼性を持った電気的書 き換え可能な半導体不揮発性メモリ装置を提供する。
【解決手段】トンネル絶縁膜の上部であって、トンネル領域のエッジ部近傍の領域には、フローティングゲート電極とガード絶縁膜を介してドレイン電極と同電位に固定されたトンネル領域エッジ部ガード電極を配置した。 (もっと読む)


【課題】占有面積を増加することなくトンネル絶縁膜の劣化を抑制して高い信頼性を持った電気的書き換え可能な半導体不揮発性メモリ装置を得る。
【解決手段】第2導電型のトンネル領域のフローティングゲート電極のエッジ部の下部に、第1導電型の領域からなるフローティングゲート電極エッジの電界集中防止用領域を形成する。 (もっと読む)


【課題】占有面積を増加することなくトンネル絶縁膜の劣化を抑制して高い信頼性を持った電気的書 き換え可能な半導体不揮発性メモリ装置を得ることを目的とする。
【解決手段】電気的書き換え可能な半導体不揮発性メモリにおいて、第2導電型のドレイン領域内のトンネル領域と前記フローティングゲート電極領域との間には、トンネル絶縁膜が設けられており、前記フローティングゲート電極は第1導電型の導電体で形成されている電気的書き換え可能な半導体不揮発性メモリ装置。 (もっと読む)


【課題】膜質の劣化を抑え、トンネル領域のエッジ部への電界集中を防止し、占有面積を増加することなくトンネル絶縁膜の劣化を抑制して、高い信頼性を持った電気的書き換え可能な半導体不揮発性メモリ装置を得る。
【解決手段】電気的書き換え可能な半導体不揮発性メモリにおいて、ドレイン領域内のトンネル領域と前記フローティングゲート電極領域との間には、第1のトンネル絶縁膜と第2のトンネル絶縁膜が設けられており、第1のトンネル絶縁膜は、トンネル領域のエッジ部近傍に形成されており、第2のトンネル絶縁膜はトンネル領域の前記第1のトンネル絶縁膜か形成されていない領域に形成されており、第1のトンネル絶縁膜の膜厚は、第2のトンネル絶縁膜の膜厚よりも大きく、ゲート絶縁膜よりも小さく形成した。 (もっと読む)


【課題】第1導電型の半導体層とトンネルウィンドウが対向する第2導電型の不純物拡散領域との高い接合耐圧を得ることができる、半導体装置を提供する。
【解決手段】各メモリセルにおいて、半導体基板2の表層部には、N型の第1不純物拡散領域3が形成されている。また、半導体基板2の表層部には、第1不純物拡散領域3に対して所定方向の一方側に、第1不純物拡散領域3と間隔を空けて、N型の第2不純物拡散領域4が形成されている。半導体基板2上には、第1絶縁膜6が形成されている。第1絶縁膜6には、第1厚膜部8が形成されており、第2不純物拡散領域4の全周縁は、第1厚膜部8の直下に位置している。 (もっと読む)


【課題】2つのメモリトランジスタに同一のデータを確実に書き込むことができる、W(ダブル)セル方式のEEPROMを提供する。
【解決手段】半導体層には、第1不純物領域8、第2不純物領域9、第3不純物領域10、第4不純物領域11、第5不純物領域12および第6不純物領域13が形成されている。セレクトゲート15は、第1不純物領域8と第2不純物領域9との間の領域に、第1絶縁膜14を挟んで対向している。第1フローティングゲート16は、第2不純物領域9と第3不純物領域10との間の領域および第5不純物領域12に、第1絶縁膜14を挟んで対向している。第2フローティングゲート20は、第3不純物領域10と第4不純物領域11との間の領域および第6不純物領域13に、第1絶縁膜14を挟んで対向している。第5不純物領域12および第6不純物領域13は、第2不純物領域9と接続されている。 (もっと読む)


【課題】 半導体素子とその製造及び動作方法を提供する。
【解決手段】 相異なるナノ構造体を含む半導体素子である。例えば、半導体素子は、ナノワイヤーで形成された第1構成要素とナノパーティクルで形成された第2構成要素とを含む。ここで、ナノワイヤーは、双極性の炭素ナノチューブでありうる。第1構成要素は、チャンネル層であり、第2構成要素は、電荷トラップ層であるが、この場合、前記半導体素子は、トランジスタやメモリ素子でありうる。 (もっと読む)


【課題】セルサイズのさらなる縮小を図ることができる、半導体装置を提供すること。
【解決手段】半導体層2に、トレンチ5が形成されている。半導体層2の表層部には、第1拡散領域3およびドレイン領域が形成されている。第1拡散領域3は、トレンチ5に対して所定方向の一方側に形成され、トレンチ5に隣接している。第2拡散領域6は、所定方向においてトレンチ5に対して第1拡散領域3と反対側に形成され、トレンチ5に隣接している。トレンチ5の底面および側面上には、第1絶縁膜8が形成されている。第1絶縁膜8上には、フローティングゲート11が設けられている。フローティングゲート11は、第1絶縁膜8を挟んで、トレンチ5の底面および側面と対向している。フローティングゲート11上には、第2絶縁膜12が形成されている。第2絶縁膜12上には、コントロールゲート13が設けられている。 (もっと読む)


【課題】十分に低いリーク電流、高い電気的ストレス耐性、及び高いエッチング耐性を有する絶縁膜を半導体基板の表面に堆積する、半導体装置の製造方法、並びに、その絶縁膜を備える半導体装置を提供する。
【解決手段】シリコンソースと酸化剤とを交互に供給して半導体基板の表面にシリコン酸化膜を堆積する、半導体装置の製造方法であって、前記シリコンソースの供給を、前記半導体基板へ前記シリコンソースの分子が吸着飽和することなく吸着量が増加する供給条件で行い、前記酸化剤の供給を、前記半導体基板に吸着された前記シリコンソースの分子中に不純物が残存する供給条件で行う。 (もっと読む)


1 - 20 / 40