説明

Fターム[5F103BB21]の内容

半導体装置を構成する物質の物理的析出 (6,900) | 析出装置 (1,132) | 析出物質源及びその付随装置 (731) | 熱シールド、断熱(S) (7)

Fターム[5F103BB21]に分類される特許

1 - 7 / 7


【課題】種結晶を坩堝の中心軸からずらして配置しなくても、種結晶およびSiC単結晶の成長途中の表面形状を制御することで、異種多形や異方位結晶の発生を抑制できるようにする。
【解決手段】種結晶となるSiC単結晶基板3に対向配置される遮蔽板6aを有する遮蔽部6を備える。そして、遮蔽部6の遮蔽板6aに備えたガス供給孔6bを通じて螺旋転位発生可能領域3aに選択的に昇華ガスが供給されるようにする。これにより、SiC単結晶基板3の中心よりも螺旋転位発生可能領域3a側において最も成長量が大きくなった凸形状とすることが可能となり、台座1cの厚みを非対称にして成長途中表面4aに温度分布を設けたりしなくても良くなって、異種多形や異方位結晶の発生を抑制できる。 (もっと読む)


【課題】たとえば、昇華法によるSiC単結晶の製造において、単結晶の成長途中での断熱材の劣化を抑制すると共に、坩堝内の温度分布の再現性を高め、さらに製造コストの上昇を抑えることが可能な単結晶の製造装置を提供する。
【解決手段】単結晶の製造装置は、導電性の坩堝10と、坩堝10の外周に近接して配設され、当該坩堝10の側方および上方を覆う導電性の炉芯管11を備える。誘導加熱法を用いて坩堝10が加熱される際、炉芯管11は、その下端は坩堝10の底よりも低い位置となるように設置される。 (もっと読む)


【課題】良好な膜質を有するIII族窒化物半導体を反応性スパッタ法によって効率よく成膜することができるIII族窒化物半導体の製造方法及びIII族窒化物半導体製造装置、並びにIII族窒化物半導体発光素子の製造方法を提供する。
【解決手段】スパッタチャンバ41内に基板11及びGa元素を含有するターゲット47を配置し、プラズマを用いた反応性スパッタ法によって、基板11上に単結晶のIII族窒化物半導体を形成する方法であり、スパッタチャンバ41内に、基板11を加熱するヒータ44と、プラズマ発生空間70を取り囲むシールド部材50と、該シールド部材50を冷却するパイプ部材(冷却手段)51とが備えられ、ヒータ44によって基板11を加熱するとともに、パイプ部材51によってシールド部材50を冷却しつつ、III族窒化物半導体を形成する方法である。 (もっと読む)


【課題】被処理物を急速昇温でき、熱効率及びスループットに優れるとともに、構成の簡素な熱処理装置を提供する。
【解決手段】高温真空炉は、被処理物を1,000℃以上2,400℃以下の温度に加熱する本加熱室21と、本加熱室21に隣接する予備加熱室22と、予備加熱室22と本加熱室21との間で被処理物を移動させるための移動機構27と、を備える。本加熱室21の内部には、被処理物を加熱するメッシュヒータ33と、メッシュヒータ33の熱を被処理物に向けて反射するように配置される第1多層熱反射金属板41と、が備えられる。移動機構27は、被処理物とともに移動可能な第2多層熱反射金属板42を備える。被処理物が予備加熱室22内にあるときには、第2多層熱反射金属板42が本加熱室21と予備加熱室22とを隔てて、メッシュヒータ33の一部が第2多層熱反射金属板42を介して予備加熱室22に供給される。 (もっと読む)


本発明は真空蒸着装置及びこれに関連する蒸着方法に関する。基板が設置される蒸着領域を局部的にポンピングするために1つまたはそれ以上のクライオパネルを使用する真空蒸着装置が提供される。本発明は、特に、分子線エピタキシーにおいて高蒸気圧蒸着材料をポンピングしその再蒸発を最小限に抑えるために応用可能である。
(もっと読む)


【課題】 金属製の断熱材を用いず、かつ断熱材を交換することなく温度の異なるスパッタ処理を行うことができるスパッタ装置を得る。
【解決手段】 プラズマ中のイオンによってターゲットをスパッタしてウェハ上に薄膜を形成するスパッタ装置において、冷却ステージと、冷却ステージ上に断熱材を介して設けられたホットプレートと、ホットプレート上に設けられた、ウェハを保持するウェハホルダと、ウェハホルダと対向して設けられた、ターゲットを保持するターゲットホルダと、ウェハホルダとターゲットホルダとを内包するチャンバーとを有し、断熱材は、温度によって熱伝導率が変化するセラミック材である。 (もっと読む)


分子線エピタキシーシステム等の超高真空システムに用いられるフェイズセパレータである。真空チャンバ内には極低温パネルが配置されており、この極低温パネルには極低温シュラウド領域とフェイズセパレータ領域とが含まれている。液体窒素はインレットラインを介して極低温パネルに導入される。液体窒素の温度が上昇し、蒸発すると、窒素蒸気がシュラウド内の上部へ移動する。極低温パネルのフェイズセパレータ領域においては、略大気圧蒸気層が液体窒素の上にあり、その結果、窒素蒸気は、ガスバーストを形成することなくパネルからスムーズに排出される。また、液体窒素レベルの変化による極低温シュラウド表面の温度変化を防ぐため、フェイズセパレータ領域は真空ジャケットされ、これにより極低温シュラウドのポンプ安定性が高められる。分子線エピタキシーシステム(MBE)で用いられる一実施例では、極低温パネルを第一と第二の冷却室に分割している。第一の冷却室は液体窒素を含み、被膜される基板を取り囲む。第二の冷却室は水のような異なる流体を含み、エフュージョンセルを取り囲むことによって、エフュージョンセルの動作中に発生される熱を散逸させる。
(もっと読む)


1 - 7 / 7