説明

Fターム[5F140BF32]の内容

絶縁ゲート型電界効果トランジスタ (137,078) | ゲート電極 (19,255) | 構造、不純物の状態 (690) | 材料の不均一性 (81)

Fターム[5F140BF32]に分類される特許

41 - 60 / 81


【課題】ポリシリコン・ゲート電極とNiSiフルシリサイド・ゲート電極とを高誘電率ゲート絶縁膜上に同時に形成する。
【解決手段】pウェル103に高誘電率ゲート絶縁膜106およびポリシリコン・ゲート電極108を形成するとともに、nウェル104に高誘電率ゲート絶縁膜107およびポリシリコン・ゲート電極109を形成する。次に、ポリシリコン・ゲート電極108,109の表面が露出するように層間膜116を形成する。さらに、層間膜116およびポリシリコン・ゲート電極108,109の表面を覆うNi膜117を形成する。続いて、Ni膜117の表面のうちポリシリコン・ゲート電極108に対向する領域を含み且つポリシリコン・ゲート電極109に対向する領域を含まない部分にSi膜118を形成する。さらに、加熱処理により電極108,109をシリサイド化した後、層間膜116上の膜を除去する。 (もっと読む)


【課題】しきい値電圧を低くすることが可能な半導体装置を提供する。
【解決手段】この半導体装置は、シリコン基板1にチャネル領域3(13)を挟むように形成された一対のソース/ドレイン領域4(14)と、チャネル領域3(13)上にゲート絶縁膜5を介して形成され、ゲート絶縁膜5との界面近傍に配置された金属含有層7を含むゲート電極6(16)とを備えている。そして、金属含有層7は、ゲート絶縁膜5の表面を部分的に覆うようにドット状に形成されており、金属含有層7のドット間の平均距離は、金属含有層7のドットの直径以下に設定されている。 (もっと読む)


【課題】イオン注入を行うことに起因する電気的特性の低下およびしきい値電圧の変動を抑制することが可能な半導体装置を提供する。
【解決手段】この半導体装置は、シリコン基板1にチャネル領域3を挟むように形成された一対のソース/ドレイン領域4と、チャネル領域3上にゲート絶縁膜5を介して形成されたゲート電極6とを備えている。そして、ゲート電極6は、金属含有層7と、金属含有層7上に形成された金属含有層9と、金属含有層7と金属含有層9との間に形成されたポリシリコン層8とを含む。 (もっと読む)


【課題】 ゲート絶縁膜とゲート電極との間に金属粒子を備えた半導体装置において、ゲート電極の仕事関数の調整(閾値電圧の制御)と空乏化の抑制に加え、さらに金属粒子とこの周囲の膜との密着性を向上させた半導体装置を提供する。
【解決手段】 p型シリコン基板1、埋め込み酸化膜2、及び単結晶シリコン層3から構成されるSOI基板4において、単結晶シリコン層3にソース領域10およびドレイン領域11を備える。ソース領域10とドレイン領域11との間の単結晶シリコン層3の表面側はチャネル層3aとして機能する。チャネル層3aの上にはゲート絶縁膜5が形成される。ゲート絶縁膜5上には、窒化チタンからなる金属粒子6aと多結晶シリコン膜7から構成されるゲート電極8が設けられる。ここで、金属粒子6aと多結晶シリコン膜7との間にはチタンシリサイド反応層6bが形成され、金属粒子6aとゲート絶縁膜5との間には反応層6cが形成される。 (もっと読む)


【課題】 導電性電極と高k誘電体との間に配置された金属含有材料層に少なくとも1つの金属不純物を導入することによって導電性電極スタックの仕事関数が変更される、半導体構造体を提供すること。
【解決手段】 例えば、導電性電極と共に電極スタック内に存在する金属含有材料層に金属不純物を導入することによって導電性電極スタックの仕事関数が変更される、電界効果トランジスタ(FET)及び/又は金属酸化物半導体キャパシタ(MOSCAP)のような半導体構造体である。金属不純物の選択は、電極がn型仕事関数を有するか、又はp型仕事関数を有するかによって決まる。本発明はまた、こうした半導体構造体の製造方法も提供する。金属不純物の導入は、金属含有材料及び仕事関数変更用の金属不純物の両方を含む層を共堆積して、金属不純物の層が金属含有材料層の間に存在するスタックを形成することによって、或いは、金属含有材料の上及び/又は下に金属不純物を含む材料層を形成し、次いで、構造体を加熱し、金属不純物が金属含有材料に導入されるようにすることによって、達成することができる。 (もっと読む)


【課題】高いオン電流とソース/ドレイン拡散層における低い接合リーク電流を両立可能な半導体装置を提供する。
【解決手段】半導体装置は、半導体基板1上に設けられたゲート絶縁膜3を含む。ゲート電極21は、ゲート絶縁膜上に設けられ、第1部分を含む。第1部分は、半導体と金属との化合物からなり、下面がゲート絶縁膜に達する。第1部分内の金属元素の密度は第1値である。1対のソース/ドレイン拡散層11は、ゲート電極の下方のチャネル領域を挟む。導電膜23は、半導体基板のソース/ドレイン拡散層の部分に設けられ、半導体と金属との化合物からなる。導電膜内の金属元素の密度は、第1値より小さい第2値である。 (もっと読む)


【課題】ニッケルシリサイド膜とシリコンとの界面における界面抵抗を低減することを可能にする。
【解決手段】シリコン基板に不純物が導入された不純物領域を形成する工程と、不純物領域を覆うようにNi層を形成する工程と、アニールすることにより、不純物領域の表面をNiSi層に変化させる工程と、NiSi層上にNi層を形成する工程と、アニールすることにより、NiSi層をシリサイド化する工程と、を備えている。 (もっと読む)


【課題】 製造方法が容易なデュアルメタルゲート構造を実現することができ、CMOSデバイス等の特性向上に寄与する。
【解決手段】 基板上に、pチャネルMISトランジスタ51とnチャネルMISトランジスタ52を具備した半導体装置であって、pチャネルMISトランジスタ51のゲート電極32の膜厚方向に対するTaC(111)面の結晶配向比率[TaC(111)面/{TaC(111)面+TaC(200)面}]は80%以上であり、nチャネルMISトランジスタ52のゲート電極53の膜厚方向に対するTaC(111)面の結晶配向比率[TaC(111)面/{TaC(111)面+TaC(200)面}]は60%以下である。 (もっと読む)


【課題】短チャネル効果を抑制するMOSトランジスタおよびその製造方法を提供する。
【解決手段】集積回路がゲート酸化膜に接触する底部を持つゲートを有する少なくとも1つのMOSトランジスタを備える。 該底部は、ソース領域とドレイン領域との間のゲートの長さに沿った不均一な仕事関数を有し、該ゲートの端部における該仕事関数の値は、該ゲートの中央部における該仕事関数の値より大きい。ゲートは、該中央部において第1の材料を含み、残りの部分において第2の材料を含む。このような構成は、例えばシリサイド化によって得られる。
(もっと読む)


【課題】ウォーターマークの発生を抑制することができる半導体装置を提供する。
【解決手段】本発明の半導体装置は、シリコン基板上に、ゲート絶縁膜と、高濃度リンドープポリシリコン膜及び上層ポリシリコン膜とからなるゲート電極とを順次備え、上層ポリシリコン膜中でのリン濃度は、高濃度リンドープポリシリコン膜から離れるにつれて低下することを特徴とする。 (もっと読む)


【課題】高精度でメタルゲート電極の仕事関数を制御することができる、メタルゲート電極を用いたMOS型の半導体装置を提供すること。
【解決手段】半導体基板10と、半導体基板10の主面に絶縁膜16を介して形成されたメタルゲート電極25と、主面にメタルゲート電極を挟んでそれぞれ形成されたソース電極33およびドレイン電極34とを有するMOS型の半導体装置において、メタルゲート電極25は、金属窒化物膜17とその金属窒化物の金属と同じ金属からなる金属膜18との2層構造を形成した後に金属窒化物膜17の窒素を金属膜に固相拡散させることにより形成される。 (もっと読む)


ゲート酸化物層(12)とメタルゲート電極(60)との間に保護層(70)を形成することによって、リプレースメントゲートトランジスタに対してリーク電流を抑えた実効的なゲート酸化膜厚を得ることができ、これにより、応力を減らすことができる。実施形態においては、金属ゲート電極(60)から保護層を通じてゲート酸化物層(12)に向かうに従って濃度が低下する金属炭化物を含む非晶質炭素層(70)の保護層が形成される。方法の実施形態では、リムーバブルゲートを除去するステップ、ゲート酸化物層へ非晶質炭素層を蒸着するステップ、メタルゲート電極(60)を形成するステップ、を含み、さらにその後、メタルゲートからの金属を非晶質炭素層に拡散して金属炭化物を形成するように、高温に加熱するステップ、を含む。さらに、一実施形態では、高誘電定数を有するゲート酸化物層(82)と、金属ゲート電極(100)と基板(10)との界面において高濃度のシリコンと、を含むメタルゲートトランジスタが含まれる。
(もっと読む)


【課題】ゲート電極膜とマスク材との界面での剥がれを防止する半導体装置およびその製造方法を提供すること。
【解決手段】本発明の一形態の半導体装置は、半導体基板(1)と、前記半導体基板上にゲート絶縁膜を介して形成されたゲート電極膜(10)と、前記ゲート電極膜上に形成された絶縁膜(5)と、を備え、前記絶縁膜を構成するシリコンである第一の元素と第二の元素との組成比が膜厚方向に連続的または不連続に変化している。 (もっと読む)


【課題】 半導体装置の製造方法に関し、Mo、Al、Wなど柱状結晶のメタルをゲート電極とするMOSFETのソース領域及びドレイン領域をイオン注入で形成する際、極めて簡単な手段を採ることでイオンがチャネリングに依って深く打ち込まれることを防止できるようにする。
【解決手段】 柱状結晶構造をもつメタル膜からなるゲート電極3をマスクとしてソース領域及びドレイン領域形成の為のイオン注入を行う際、前記柱状結晶構造のグレイン境界3Aをイオンが横切るように斜め方向からイオン注入を行う工程が含まれてなることを特徴とする。 (もっと読む)


【課題】 ゲート電極の実効仕事関数をトランジスタの動作閾値電圧が最適なものとなるように制御するこを可能にする。
【解決手段】 半導体基板2と、半導体基板上に設けられたゲート絶縁膜4と、ゲート絶縁膜上に設けられたゲート電極8と、ゲート電極の両側の半導体基板に設けられたソース・ドレイン領域12、14と、ゲート電極とゲート絶縁膜との界面に、ゲート電極およびゲート絶縁膜を構成する元素と異なる電気陰性度を有する元素を含む層5と、を備えている。 (もっと読む)


【課題】 良好な膜質を有する薄膜を、良好な生産性で成膜することが可能となる成膜方法と、良好なデバイス特性を有する半導体装置を、良好な生産性で製造することが可能となる半導体装置の製造方法を提供する。
【解決手段】 被処理基板上に成膜を行う成膜方法であって、前記被処理基板上に形成された絶縁層上にALD法で第1の成膜を行う第1の工程と、当該第1の工程と連続して、CVD法で第2の成膜を行う第2の工程と、を有することを特徴とする成膜方法。 (もっと読む)


【課題】ゲートパターン間に埋め込まれる層間絶縁膜の埋め込み性及びランディングプラグ形成物質の埋め込み性を向上させることができる半導体素子のゲートパターン及びその形成方法を提供すること。
【解決手段】半導体素子のゲートパターンは、基板110に形成されたトレンチ112の内面及び基板110の表面に形成されたゲート絶縁膜114と、トレンチ112が形成されていない領域におけるゲート絶縁膜114の上面より突出しないように、トレンチ112に埋め込まれた第1ゲート電極層116Aと、一部分が第1ゲート電極層116Aと接触するように、第1ゲート電極層116A上に形成された第2ゲート電極層120Aとを備えている。 (もっと読む)


【課題】 ゲート絶縁膜のSiO2換算膜厚の薄膜化を達成した半導体装置を提供する。
【解決手段】 半導体基板と、
前記半導体基板上に形成されたゲート絶縁膜と、
前記ゲート絶縁膜上に形成され、アモルファスもしくは多結晶のSi1-xGex(0≦x<0.25)を主成分とし、シリコン原子を置換する配置にあるようなp型不純物を含有するゲート電極とを具備する半導体装置である。前記ゲート電極における前記シリコン原子を置換する配置にあるようなp型不純物は、5×1019個/cm3以上5×1020個/cm3以下の濃度で含有された第一のp型不純物と、前記第一のp型不純物より原子半径が小さい第二のp型の不純物とを含み、しかも第一のp型不純物と第二のp型不純物とが共有結合していることを特徴とする。 (もっと読む)


【課題】チャネル層に応力が付加され、かつ高信頼なMOSFETを実現する。
【解決手段】半導体基板と、前記半導体基板の表面に対向して設けられ、単結晶または多結晶構造を有する一対のソース・ドレイン電極と、前記ソース・ドレイン電極の間の前記半導体基板の表面に形成された単結晶チャネル領域と、前記チャネル領域上にゲート絶縁膜を介して形成されたゲート電極と、前記ソース・ドレイン電極の上部に形成された金属化合物層と、前記ソース・ドレイン電極の下部に位置し、前記ソース・ドレイン電極を構成する物質の固有の格子間隔とは異なる格子間隔を保持した結晶構造を有する応力付与層と、前記応力付与層の下部に位置する第1の絶縁層とを具備する。 (もっと読む)


【課題】ゲート電極の空乏化を抑制しながら、電子移動度の劣化を低減することが可能な半導体装置を提供する。
【解決手段】この半導体装置では、nチャネルMOSトランジスタ50aのゲート電極8aは、ゲート絶縁膜7aを部分的に覆うようにドット状に形成された金属含有層9aと、金属含有層9a上に形成され、ゲート絶縁膜7aの金属含有層9aにより覆われていない部分に接触する下部ポリシリコン層10aとを含み、pチャネルMOSトランジスタ50bのゲート電極8bは、ゲート絶縁膜27aを部分的に覆うように形成された金属含有層29aと、金属含有層29a上に形成され、ゲート絶縁膜27aの金属含有層29aにより覆われていない部分に接触する下部ポリシリコン層30aとを含み、ゲート電極8aおよびゲート電極8bは、互いに異なる金属(HfおよびPt)を含む。 (もっと読む)


41 - 60 / 81