説明

国際特許分類[C23C8/34]の内容

国際特許分類[C23C8/34]に分類される特許

1 - 10 / 34


【課題】耐ピッチング性に優れた歯車およびその製造方法を提供する。
【解決手段】鍛造あるいは機械加工により歯車形状とした後、真空中で浸炭処理を行い、その後炉内で冷却後に焼入れする際、前記炉内での、浸炭後の炉内冷却から焼入れ前の加熱保持の間に、窒化処理を行い、前記焼入れ後に焼戻し処理される歯車であって、成分組成が質量%で、C:0.15〜0.35%、Si:0.70〜2.50%、Mn:0.20〜1.00%、Ni:0.01〜0.80%、Cr:0.10〜1.50%、Mo:0.01〜0.80%、Al:0.005〜0.200%、残部鉄および不可避不純物からなり、前記成分組成におけるSi、Crと前記窒化処理による表層最大侵入窒素量による焼戻し軟化抵抗パラメータHSiCrNが(1)式を満たす事を特徴とする耐ピッチング性に優れた歯車。
SiCrN(=58Si+42×(Ns−Cr×14/52))≧80(1)、ここで、Si,Crは含有量(質量%)Ns:表層最大侵入窒素量(質量%)を示す。 (もっと読む)


【課題】炉内に供給する反応性ガスの量を低減でき、鉄系金属材の表面処理にかかる時間を短縮することが可能な鉄系金属材の表面処理方法を提供する。
【解決手段】鉄系金属材1の表面処理方法は、複数種類の反応性ガスを炉2内に供給して、前記複数種類の反応性ガスにより炉2に配置された鉄系金属材1を表面処理する方法であって、前記複数種類の反応性ガスを炉2内に供給する際に、前記複数種類の反応性ガスの噴流を互いに衝突させる。 (もっと読む)


【課題】アンモニアガスを使用しない迅速な熱処理により表層部に窒素富化層を有する機械部品を製造することが可能な機械部品の製造方法を提供する。
【解決手段】機械部品の製造方法は、鋼からなる部材を準備する工程(S10)と、当該部材を酸化することにより表面にバナジウムを含む膜を形成する工程(S20)と、膜が形成された上記部材を、窒素ガスを含みアンモニアガスを含まない熱処理ガス雰囲気中において加熱して浸炭窒化処理することにより窒素富化層を形成する工程(S30)とを備えている。 (もっと読む)


【課題】引張強度及び疲労強度が大きい無段階変速機ベルトを安価に製造することができる無段階変速機ベルトの製造方法を提供する。
【解決手段】無段階変速機ベルトの製造方法は、リング部材形成工程S10〜S14と、浸炭・焼入れ工程S15と、窒化工程S17とを備える。先ず、リング部材形成工程では、質量%で、Cが0.05%以下であり、Tiが0.1%以上であり且つ1.0%以下であるリング部材6Aを形成する。次に、浸炭・焼入れ工程S15では、リング部材6Aに対して浸炭処理を施すとともに焼入れ処理を施す。最後に、窒化工程S17では、浸炭・焼入れ処理されたリング部材6Cに対して窒化処理を施す。このようにして、無段階変速機ベルトとしての金属ベルト1を製造する。 (もっと読む)


【課題】転がり軸受に接する表面におけるフレーキングの発生が抑制され、フレーキング寿命に優れた鋼製部品およびその製造方法を提供する。
【解決手段】該鋼製部品は、転がり軸受に接する表面を有する。表面から0.1mmの深さにおいて、残留オーステナイト量が50vol%以上で、且つ、ビッカース硬さHVが710以上である。また、該鋼製部品は疲労強度を向上させるため、浸炭窒化処理が施されているか、または、浸炭処理および窒化処理が施されている。 (もっと読む)


【課題】傷がよく生じなくて耐摩耗性及び耐食性に優れて、色相が美麗で装飾性に優れるだけでなく、使用後素材および部品を再処理することが可能で再使用することができ、省資源が可能で製造費用を低減することができる高耐食性及び高硬度のカラーオーステナイト系ステンレス鋼材及びその製造方法を提供する。
【解決手段】オーステナイト系ステンレス鋼で製造された素材や部品を窒化熱処理及び表面加工工程を経た後、酸化処理を実施して優れた耐食性、高い表面硬度及び多様なカラーを有する高耐食性及び高硬度のカラーオーステナイト系ステンレス鋼材。 (もっと読む)


【課題】高価なMoの含有量を低減するか、あるいはMoが非添加であっても、優れた耐摩耗性と大きなピッチング強度を確保可能な浸炭窒化層を有する鋼製品の提供。
【解決手段】浸炭窒化層を有する鋼製品であって、生地の鋼材が、C:0.10〜0.35%、Si:0.40〜1.00%、Mn:0.60〜1.50%、Cr:0.40〜0.80%、Al:0.01〜0.05%、S:0.05%以下及びN:0.0020〜0.0300%を含有し、〔(Si+Mn)/Cr〕が2以上であって、残部がFe及び不純物からなる化学組成を有し、浸炭窒化層表面から深さ50μmまでの領域において、分散する合金窒化物がMnSiN2のみであり、浸炭窒化層表面におけるオーステナイト量が体積率で30%以上、40%以下である鋼製品。必要に応じて、Mo≦0.10%、Ti≦0.10%、Nb≦0.080%のうちの1種以上を含有してもよい。 (もっと読む)


【課題】鋼材の強度向上を実現する鋼材の熱処理方法を提供する。
【解決手段】真空浸炭窒化処理では浸窒ガスとしてアンモニアガスを使用するが、アンモニアガスの分解で生じた水素が鋼材中に浸入してその強度向上を阻害するので、真空浸炭処理の後、真空窒化処理を行う鋼材の熱処理方法において、真空窒化処理の終了後に雰囲気中の水素分圧を10Pa以下に減少させる脱水素処理を行う。該脱水素処理は雰囲気中に窒素ガスを供給することにより行なうので、真空窒化処理によって鋼材中に浸透させた窒素を放出させることなく、水素分圧を低下させて水素のみを鋼材中から放出させることができる。 (もっと読む)


【課題】エッジ部を有する各種ワークをプラズマ浸炭方法で浸炭を行う際、エッジ部と平坦部との炭素濃度の差が小さく、冷却時にエッジ部に生じる網状の炭化物の生成を抑制し、さらに特許文献1に記載の方法における課題も同時に解決すること。
【解決手段】真空炉内に、エッジ部を有するワークを収容し、該真空炉内に浸炭性ガスを供給してグロー放電するプラズマ浸炭処理(浸炭処理工程)を施した後、引き続きアルゴンに代表される不活性ガスを含む中性あるいは還元性のガスプラズマ処理によりワーク表面層の炭素をワーク内部に拡散させる工程(拡散工程)を有することを特徴とする、エッジ部を有するワークの浸炭方法。 (もっと読む)


【課題】窒化を促進させることにより窒素化合物層の厚さを厚くし窒素の内部拡散深さを増加させるとともに表面部に摩擦係数の低い層を形成し、これにより初期なじみ性および耐摩耗性を向上させる。
【解決手段】金元素を含む鉄鋼部材を窒化処理することにより得られた窒化部材であって、窒素化合物層を表層部に有し、該表層部の表面部に、内部よりも合金元素の濃度が低い合金元素低濃度領域を有する。 (もっと読む)


1 - 10 / 34