説明

国際特許分類[G01C3/06]の内容

物理学 (1,541,580) | 測定;試験 (294,940) | 距離,水準または方位の測定;測量;航行;ジャイロ計器;写真計量または映像計量 (22,094) | 視準線上の距離測定;光学的距離計 (1,749) | 細部 (1,609) | 最終指示値を得るための電気的手段の使用 (1,608)

国際特許分類[G01C3/06]の下位に属する分類

国際特許分類[G01C3/06]に分類される特許

901 - 910 / 1,603


【課題】隠れ点を考慮して簡易に精度良くマッピング画像を取得できるようにする。
【解決手段】同期制御部20により距離画像を取得するための撮像部2Aおよび撮像部2Bの駆動を同期させて距離画像および2次元画像を取得する。対応関係算出部30により、距離画像上における画素と、2次元画像上における画素との対応関係を算出する。この際、隠れ点検出部31において、撮像部2Aからは臨むことができるが撮像部2Bからは臨むことができない被写体上の隠れ点を距離画像および2次元画像上において検出する。マッピング部32により、対応関係に基づいて、隠れ点を視認可能に2次元画像を距離画像にマッピングしてマッピング画像を生成する。 (もっと読む)


【課題】車両に搭載されて互いに所定間隔離れた位置に設置された複数の撮像手段を設け、この撮像手段の光軸を調整する光軸調整手段と撮像手段から得られた画像を処理する画像処理手段とが備えられた制御手段を設けた車両用画像処理装置において、車両走行状態に応じた画像を表示させ、運転者の様々な要求に、他の撮像手段を追加することなく答えさせることにある。
【解決手段】画像処理手段は、光軸調整手段を用いて少なくとも複数の撮像手段により撮影された画像をステレオ画像として処理するステレオ画像処理モードと、複数の撮像手段により撮影された画像を夫々別々の画像として処理する単眼画像処理モードとを備えている。 (もっと読む)


【課題】パルス反射混合法において測定時間をより的確に利用することにより、手持ち式レーザ距離測定器の感度ひいては測定範囲を向上させる。
【解決手段】制御手段2によって制御可能な少なくとも1つの遅延回路9a,9bが設けられており、該遅延回路9a,9bが、局所発振器8と、光検出器10および/または送光器12との間に配置されており、測定パルス4および基準パルス6を走査するために、走査パルス11と送信パルス7との間に遅延を発生させる。 (もっと読む)


【課題】物体の高速検知と物体の物理量の高分解能計測を実現する。
【解決手段】物理量センサは、半導体レーザ1と、光電センサ10と、光電センサ10の出力を基に物体13を検知する物体検知装置11と、検知モードでは第1の周期の変調光をレーザ1から放射させ、物体13を検知した後の計測モードでは第1の周期より長い第2の周期の変調光をレーザ1から放射させる変調モード切替装置12と、フォトダイオード2の出力信号に含まれる、レーザ1から放射されたレーザ光と物体13からの戻り光との自己結合効果によって生じる干渉の情報から、物体の物理量を計測する計測手段(電流−電圧変換増幅器5、フィルタ回路6、計数装置7、演算装置8)とを有する。 (もっと読む)


【課題】既設のインフラ設備の有効活用を図りつつ、通信機器と移動体との相対距離の検出精度の向上を図ること。
【解決手段】移動体に設けられ、路側に設置された通信機器からの光信号を受光する受光装置408において、光信号を受光する受光面501aを有し、光信号を電気信号に変換する受光部501と、移動体の移動により、受光面501aに対する光信号の入射角度が所定の入射角度以上になった場合に当該光信号を遮蔽する遮蔽部502と、を備え、受光面501aのうち遮蔽部502によって遮蔽されなかった領域からの電気信号を出力するようにした。受光装置408が出力した電気信号を用いることにより、通信機器と移動体との相対距離の算出精度の向上を図ることができる。 (もっと読む)


【課題】光検出器上におけるサーボ光の振り幅を円滑に抑制できるビーム照射装置およびレーザレーダを提供する。
【解決手段】サーボ光を受光する光検出器の前段に光を拡散する光拡散素子(拡散板107)を配し、光拡散素子上におけるサーボ光の入射位置を所定の面積領域(孔108a)を介して光検出器(PSD109)上に投影する光投影素子(ピンホール板108)をさらに配する。このように構成すると、光検出器上におけるサーボ光の振り幅が抑制される。よって、光検出器の小型化と低コスト化を実現できる。 (もっと読む)


【課題】被検出物体の有無の検出以外に光電センサから被検出物体の反射率を判別することができる反射型光電センサを提供する。
【解決手段】図2(a)に示すように投光手段から被検出物体に照射する光Pfを第1〜第6のパルス光Pf1〜Pf6に分割し、各パルス光の投光量Eを相違させて、変化率ε1の光Pfを被検出物体に照射する。被検出物体から反射されたパルス光を受光手段により受光し、図2(b)に示すパルス光Pgの受光量Wの変化率ε2を判別する。被検出物体の反射率δが異なると、図2(b)又は図2(c)に示すようにパルス光Pgの受光量Wの変化率ε2も変化するので、この両者の相関データに基づいて、判定されたパルス光Pgの受光量Wの変化率ε2に応じた被検出物体の反射率δを選択して判別する。 (もっと読む)


【課題】計測対象物に隠れる位置に較正用マーカが設置される場合でも、距離センサの位置を正確にキャリブレーションする。
【解決手段】計測対象物3の計測に適し位置が既知の特定位置座標に位置決めされた3以上の較正用マーカC1〜C3と、計測対象物に遮断されて較正用マーカの位置を計測できない場合でも計測できる位置に固定された3以上の特徴物A1〜A3,B1〜B3と、離れた位置から計測できる距離センサ10と、計測された位置座標を補正する補正装置12とを備える。距離センサ10を任意の較正位置D1に固定して較正用マーカC1〜C3の特定位置座標を計測し、距離センサ10の較正位置D1の位置座標を算出する。また、特徴物B1〜B3を較正位置D1の距離センサで計測し、特徴物の修正位置座標を算出する。さらに、距離センサを任意の位置D2〜D4に固定して、計測対象物と特徴物を計測し、計測対象物3の修正位置座標を算出する。 (もっと読む)


【課題】 高精度の距離検出を行うことが可能な裏面入射型測距センサ及び測距装置を提供する。
【解決手段】 裏面入射型測距センサ1は、二次元状に配列した複数の画素P(m,n)からなる撮像領域1Bを有する半導体基板1Aを備えている。各画素P(m,n)からは、上述の距離情報を有する信号d’(m,n)として2つの電荷量(Q1,Q2)が出力される。各画素P(m,n)は微小測距センサとして対象物Hまでの距離に応じた信号d’(m,n)を出力するので、対象物Hからの反射光を、撮像領域1Bに結像すれば、対象物H上の各点までの距離情報の集合体としての対象物の距離画像を得ることができる。可視光励起キャリア再結合領域1Cにおいて不要キャリアが消滅し、フォトゲート電極PGの直下領域にまで至らないため好ましく、また、近赤外光は10μm以上100μm以下の深さの領域で吸収される。 (もっと読む)


【課題】衝突警報などのために、車両などの移動体に搭載され、2台の撮像手段を用いて、第1の視差検出手段がそれらの視差を求め、距離計測手段がその視差から対象物までの距離を逐次求めるステレオ法による測距装置において、測距精度を向上する。
【解決手段】SAD法によるピクセル単位で高速に対応点探索が可能な第1の視差検出部12を有する測距部11とは別に、POC法によるサブピクセル以下の低速高精度に対応点探索を行う第2の視差検出部24を有する較正部21を設け、前記第2の視差検出部24で求められた視差量分布から、視差分布演算部25が無限遠点における視差を検出し、視差補正量計算部26がその無限遠点における視差の標準値との偏差を補正値として求め、前記測距部11にセットする。したがって、測距部11では、走行中のリアルタイム処理を実現しつつ、光軸ずれを較正部21で補償し、測距精度を向上することができる。 (もっと読む)


901 - 910 / 1,603