説明

国際特許分類[G21K5/08]の内容

物理学 (1,541,580) | 核物理;核工学 (13,075) | 他に分類されない粒子線または電磁放射線の取扱い技術;照射装置;ガンマ線またはX線顕微鏡 (3,185) | 照射装置 (1,473) | 照射されるターゲットまたは物体の保持具 (277)

国際特許分類[G21K5/08]に分類される特許

41 - 50 / 277


【課題】プラズマ温度、密度を簡便に制御して、発光効率を高めることを技術的課題とする。
【解決手段】レーザー光(6a)を照射するレーザー光源(6)と、前記レーザー光源(6)からのレーザー光(6a)が照射されて励起され、プラズマを生成して極端紫外光を放射するターゲット材(T)であって、第1の元素と、波長200nm以下の領域において前記第1の元素のスペクトル分布のスペクトル強度が最も強いスペクトル成分を含み且つ最も強いスペクトル成分におけるスペクトル分布の波形の半値全幅よりも広い半値全幅のスペクトル分布を有する第2の元素と、を少なくとも含む多元系の前記ターゲット材(T)と、を備えた極端紫外光源(1)。 (もっと読む)


【課題】装置の大型化や機構の複雑さを伴わず、従来と同じ機構で複数の異なる特性X線を発生させ、異なるエネルギを有する蛍光X線に応じて最適な特性X線を励起源として用いることで、効率よく蛍光X線を検出できるX線管球を提供する。
【解決手段】ハウジング2と、ハウジング2の内部に設けられた電子線源3と、ハウジング2の内部において電子線源3と対向するように設けられ、電子線源3側から順に重い元素を含むように積層された複数のターゲット層を有するターゲット4とを備える。電子線源3を陰極、ターゲット4を陽極として印加される加速電圧を切り替えることにより、電子線源3からターゲットに照射される電子線が、複数のターゲット層のそれぞれの内部に留まるように照射し、特性X線を発生させる。 (もっと読む)


【課題】
重イオン加速器に関する。重イオン加速器は電荷と質量の比が完全電離の状態でも2前後で、電場加速では電子や陽子に比べて核子あたりの加速効率は良いとはいえない。本発明は重イオン加速器の類例のないほどの超小型化を可能にする。あるいは大型にすることで、類例のないほどの高エネルギー重イオンを可能にする。
本発明はその応用の一つとして、重粒子線によるがん治療装置に大きなインパクトを与える。エネルギーが400MeV/u(uは核子を表す)強の重粒子線は放射線耐性の強いあるいは、低酸素腫瘍で、従来の放射線治療の効果が少ない悪性の腫瘍に治療効果が高い事がしられている。しかし、そのための重粒子線癌治療装置は規模が大きく、これを収容する建屋も既存の病院に収まらないほど長大で、初期コストも維持費も極めて割高なため、悪性腫瘍の治療などには極めて良い成績がしられているのも関わらず、一般への普及が遅れている。にもかかわらず、そのすぐれた治療効果から重粒子線加速器の小型化の実現とその普及はがんの放射線治療医学界から切望されていることである。
【解決手段】 重イオンを内包した高密度の中空電子雲あるいは電子リングを本発明で提案しているような特殊で新しいレーザー照射技術等によって瞬時に生成し、中空電子雲を直のRF電場により重イオンと共に瞬時に引き出し・加速する方法を提供することで、高い加速効率かつ極めて小型の安価な加速器を実現可能せしめる。その応用のひとつとして要望の強い、既設の病院のサイズに設置可能な重粒子の超小型テーブルトップ重イオン加速器を実現せしめる。 (もっと読む)


【課題】核医学診断イメージングに使用する放射線核種テクネチウム99mを中性子照射によって生成する際、容易に取り出すための溶出カプセルおよび溶出方法を提供する。
【解決手段】カプセル1は、第1端部12、第2端部14、及び中間部16を有する多径管10で構成され、ワッシャー20、60及びフィルタ30、40、70、80が端部12、14で端部キャップ50,90で密封される。中間部16は、中性子線束供給源によって物質が照射されるように保持され、これらカプセル構成要素は、中性子に対して低核断面積を有する物質からなり、カプセル1は照射工程が行われた後、安全に処理される。カプセル1はまた、溶出及び照射コラムのように対称構造を有するように構成されているので、照射工程が行われた後、カプセル1の中間部16内部の物質を溶出するために同じカプセルが使用される。 (もっと読む)


【課題】空気への放熱量を確保し、熱的に安定状態が保たれるようにすることのできるビームダンプの積層構造を提供する。
【解決手段】ダンプターゲット11の周囲に外側に向かって積層される熱伝導性を有する複数の板状部材13a,13b,13c,13dを備えたビームダンプ10の積層構造であって、対向する板状部材13aと13b、13bと13c、13cと13dの接触面には互いに交差する排気用溝がそれぞれ形成され、板状部材13b,13c,13dには各排気用溝の交差部分に連通する排気用貫通孔が形成され、排気用貫通孔に排気設備19が接続されており、排気設備19によって排気用貫通孔を介して各排気用溝内が排気されて真空状態に保たれることにより、積層された各板状部材13a,13b,13c,13dが固定される。 (もっと読む)


【課題】周囲の空気への放熱量を確保し、熱的に安定状態を保つビームダンプの積層構造を提供する。
【解決手段】ビームダンプ10の積層構造は、荷電粒子ビームが照射されるダンプターゲット11と、ダンプターゲット11の周囲に外側に向かって積層される熱伝導性を有する複数の板状部材13a,13b,13c,13dとを備え、対向する板状部材13a,13b,13c,13dの接触面には互いに嵌合可能な凹部及び凸部がそれぞれ形成される。 (もっと読む)


【課題】濃縮235Uを使用せず、高強度で半減期の長い燃料廃棄物を多量に発生させることなく、効率よく廉価に放射性モリブデンの安定供給ができる技術を提供する。
【解決手段】100Moをターゲット核として含む原料ターゲットに、加速器からの高速中性子を照射し、1個の中性子の照射により2個の中性子を放出する(n,2n)反応を起させ、99Moを生成させることを特徴とする。原料ターゲットのターゲット核として、原子炉内で235Uの核分裂反応で生成された廃棄物100Moを用いることが生成効率をより一層向上させる観点から好ましい。 (もっと読む)


【課題】濃縮235Uを使用せず、高強度で半減期の長い放射性廃棄物を多量に発生させることなく、効率よく廉価に放射性同位元素の安定供給ができる技術を提供する。
【解決手段】固体又は液体の原料ターゲットに加速器からの高速中性子を照射し、1個の中性子の照射により3個の中性子を放出する(n,3n)反応を起させ、放射性同位元素を直接にあるいはベータ崩壊により生成させることを特徴とする。 (もっと読む)


【課題】濃縮235Uを使用せず、高強度で半減期の長い放射性廃棄物を多量に発生させることなく、効率よく廉価に放射性同位元素の安定供給ができる技術を提供する。
【解決手段】試料容器に封入した気体原料ターゲットに加速器からの高速中性子を照射し、気体原料ターゲットの種類に応じて下記のいずれかの反応を起させ、放射性同位元素を生成させることを特徴とする。
(1)(n,2n)反応:1個の中性子の照射により2個の中性子を放出する反応
(2)(n,p)反応:1個の中性子の照射により1個の陽子を放出する反応
(3)(n,np)反応:1個の中性子の照射により1個の中性子と1個の陽子を放出する反応
(4)(n,n’)反応:1個の中性子の照射により入射中性子のエネルギーと異なるエネルギーの1個の中性子を放出する反応 (もっと読む)


【課題】濃縮235Uを使用せず、高強度で半減期の長い放射性廃棄物を多量に発生させることなく、効率よく廉価に放射性同位元素の安定供給ができる技術を提供する。
【解決手段】固体又は液体の原料ターゲットに加速器からの高速中性子を照射し、1個の中性子の照射により2個の中性子を放出する(n,2n)反応を起させ、放射性同位元素(但し、Moを除く)を直接にあるいはベータ崩壊により生成させることを特徴とする。 (もっと読む)


41 - 50 / 277