説明

国際特許分類[H01F1/053]の内容

国際特許分類[H01F1/053]の下位に属する分類

国際特許分類[H01F1/053]に分類される特許

51 - 60 / 680


【課題】少ない量の重希土類元素RHを効率よく活用し、磁石が比較的厚くとも、磁石全体にわたって主相結晶粒の外郭部に重希土類元素RHを拡散させたR−Fe−B系希土類焼結磁石を提供する。
【解決手段】まず軽希土類元素RL(NdおよびPrの少なくとも1種)を主たる希土類元素Rとして含有するR2Fe14B型化合物結晶粒を主相として有するR−Fe−B系希土類焼結磁石体を用意する。次に、焼結磁石体の表面に金属元素M(MはAl、Ga、In、Sn、Pb、Bi、Zn、およびAgからなる群から選択された少なくとも1種)を含有するM層を堆積した後、重希土類元素RH(Dy、Ho、およびTbからなる群から選択された少なくとも1種)を含有するRH層をM層上に堆積する。この後、焼結磁石体を加熱し、表面から金属元素Mを焼結磁石の内部に拡散させ、また、表面から重希土類元素RHを焼結磁石体の内部に拡散させる。 (もっと読む)


【課題】磁気特性の高い永久磁石を製造することが可能な希土類磁石用合金及び希土類磁石用合金の製造方法を提供する。
【解決手段】希土類磁石用合金は、R214B相(RはNdを含む1種類以上の希土類元素を表し、TはFe又はFe及びCoを含む1種以上の遷移金属元素を表す)を含む主相と、R相及びR1+δ44相を含む粒界相とを有し、粒界相におけるR相の体積%とR1+δ44相の体積%との和に対するR1+δ44相の体積%の割合が0.25以上である。 (もっと読む)


【課題】磁性材料を、低コストで、かつ、作業性および生産性よく製造することのできるアモルファス金属、および、そのアモルファス金属を用いて得られる磁性材料を提供すること。
【解決手段】希土類元素、鉄およびホウ素を含有するアモルファス金属において、希土類元素の原子割合を、22〜44原子%の範囲とし、ホウ素の原子割合を、6〜28原子%の範囲とする。また、このようなアモルファス金属を、その結晶化温度より30℃低い温度以上の温度で、または、アモルファス金属がガラス遷移現象を示す場合は、ガラス遷移温度以上の温度で、熱処理することにより、磁性材料を得る。 (もっと読む)


【課題】製造工程における作業効率の高効率化を図ることが可能となるとともに、成形工程においては微小トルクでの配向を行うことが可能となった永久磁石及び永久磁石の製造方法を提供する。
【解決手段】粉砕されたネオジム磁石の微粉末に対して、M−(OR)(式中、MはV、Mo、Zr、Ta、Ti、W又はNbであり、Rは炭素数2〜6のアルキル基のいずれかであり、直鎖でも分枝でも良い。xは任意の整数である。)で示される有機金属化合物を含む有機溶媒を添加してスラリー42を生成し、その後、成形装置50においてキャビティ54に注入したスラリー42に対して磁場を印加した状態で圧力を加えて成形し、その後に有機溶媒を揮発させて成形体を得る。次に、成形体を水素雰囲気において水素中仮焼処理を行い、800℃〜1180℃で焼成を行うことによって永久磁石を製造する。 (もっと読む)


【課題】永久磁石中にα−Feが生成されることを抑制することが可能な永久磁石及び永久磁石の製造方法を提供する。
【解決手段】粗粉砕された磁石粉末をジェットミル粉砕分級システム32へと搬送し、所定の範囲(例えば0.1μm〜5.0μm)の粒径のものを分級して回収し、回収された磁石粉末に対して、M−(OR)x(式中、Mは希土類元素であるNd、Pr、Dy、Tbの内、少なくとも一種を含む。Rは炭素数2〜6のアルキル基のいずれかであり、直鎖でも分枝でも良い。xは任意の整数である。)で示される有機金属化合物が添加された有機金属化合物溶液を加え、磁石の粒子表面に対して均一に有機金属化合物を付着させた後に、成形及び焼結を行うことによって永久磁石を製造する。 (もっと読む)


【課題】高い強度を有するとともに、高温下で使用しても磁気特性を高く維持することができる希土類ボンド磁石を提供すること。
【解決手段】一体的に形成された希土類ボンド磁石10であって、重希土類元素を有するR−T−B系合金(Rは希土類元素を示し、TはFe及び/又はCoを示す。)を含有する磁性粒子を含む第1の領域12と、軽希土類元素を有するR−T−B系合金を含有する磁性粒子を含む第2の領域14と、を備えており、第1の領域12は、第2の領域14よりも希土類元素全体に対する重希土類元素の質量比率が高い磁性粒子を含有する希土類ボンド磁石10。 (もっと読む)


【課題】還元拡散法を利用し希土類−鉄合金粉末を均一に窒化することで、磁気特性を向上させる希土類−鉄−窒素系磁石粉末の製造方法、及び得られる希土類−鉄−窒素系磁石粉末を提供。
【解決手段】希土類酸化物粉末、鉄粉末、及び該希土類酸化物を還元するための還元剤を混合し、この混合物を還元拡散法により非酸化性雰囲気中で加熱焼成して希土類−鉄母合金を含む還元拡散反応生成物を得て、次に、該還元拡散反応生成物を湿式処理装置に装入し、水洗、デカンテーション、酸洗して崩壊させるとともに還元拡散反応生成物から還元剤を除去し、引き続き乾燥した後、得られた希土類−鉄母合金粉末を窒化処理して下記の一般式(1)で表される希土類−鉄−窒素系磁石粉末を得る製造方法において、前記還元拡散反応生成物の湿式処理から乾燥工程までを一貫して非酸化性雰囲気中で行うことを特徴とする希土類−鉄−窒素系磁石粉末を得る製造方法などにより提供。
Fe(100−a−b) ・・・(1)
(式(1)中、Rは1種類または2種以上の希土類元素であり、またa、bは原子%で、4≦a≦18、10≦b≦17を満たす。) (もっと読む)


【課題】 Sm−Co型磁石の鉄濃度の向上を図った上で焼結性および焼結体密度を改善し磁化を向上した永久磁石と、それを用いた可変磁束モータおよび可変磁束発電機を提供することを目的とする。
【解決手段】 本実施形態の永久磁石は、組成式:R(FepqCurCo1-p-q-rZ’ (式中、RはYを含む希土類元素から選ばれる少なくとも1種の元素、MはTi、ZrおよびHfから選ばれる少なくとも1種の元素を示し、p、q、rおよびzはそれぞれ原子比で0.25≦p≦0.6、0.005≦q≦0.1、0.01≦r≦0.1、6≦z≦9、0.003≦z’≦0.6を満足する数である)で表される焼結体を有し、この焼結体は前記Rを含む酸化物の凝集体がほぼ一様に分散していることを特徴としている。 (もっと読む)


【課題】成形体の酸化および水分の吸着を防止するとともに、その保存性を向上して高い磁気特性を有する希土類焼結磁石、およびその製造方法を提供する。
【解決手段】粉砕されたネオジム磁石の微粉末を構造式M−(OR)(式中、Mは希土類元素であるNd、Pr、Dy、Tbの内、少なくとも一種を含む。Rは炭素数2〜6のアルキル基のいずれかであり、直鎖でも分枝でも良い。xは任意の整数である。)で示される有機金属化合物を含む有機溶媒中に回収してスラリー42を生成し、その後、成形装置50においてキャビティ54に注入したスラリー42に対して磁場を印加した状態で圧力を加えて成形し、その後に有機溶媒を揮発させて成形体を得る。次に、成形体を水素雰囲気において水素中仮焼処理を行い、800℃〜1180℃で焼成を行うことによって永久磁石を製造する。 (もっと読む)


【課題】製造工程における作業効率の高効率化を図ることが可能となるとともに、成形工程においては微小トルクでの配向を行うことが可能となった永久磁石及び永久磁石の製造方法を提供する。
【解決手段】粉砕されたネオジム磁石の微粉末に対して、M−(OR)(式中、MはV、Mo、Zr、Ta、Ti、W又はNbであり、Rは炭素数2〜6のアルキル基のいずれかであり、直鎖でも分枝でも良い。xは任意の整数である。)で示される有機金属化合物を含む有機溶媒を添加してスラリー42を生成し、その後、成形装置50においてキャビティ54に注入したスラリー42に対して磁場を印加した状態で圧力を加えて成形し、その後に有機溶媒を揮発させて成形体を得る。次に、成形体を水素雰囲気において水素中仮焼処理を行い、800℃〜1180℃で焼成を行うことによって永久磁石を製造する。 (もっと読む)


51 - 60 / 680