説明

永久磁石及び永久磁石の製造方法

【課題】製造工程における作業効率の高効率化を図ることが可能となるとともに、成形工程においては微小トルクでの配向を行うことが可能となった永久磁石及び永久磁石の製造方法を提供する。
【解決手段】粉砕されたネオジム磁石の微粉末に対して、M−(OR)(式中、MはV、Mo、Zr、Ta、Ti、W又はNbであり、Rは炭素数2〜6のアルキル基のいずれかであり、直鎖でも分枝でも良い。xは任意の整数である。)で示される有機金属化合物を含む有機溶媒を添加してスラリー42を生成し、その後、成形装置50においてキャビティ54に注入したスラリー42に対して磁場を印加した状態で圧力を加えて成形し、その後に有機溶媒を揮発させて成形体を得る。次に、成形体を水素雰囲気において水素中仮焼処理を行い、800℃〜1180℃で焼成を行うことによって永久磁石を製造する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、永久磁石及び永久磁石の製造方法に関する。
【背景技術】
【0002】
近年、ハイブリッドカーやハードディスクドライブ等に使用される永久磁石モータでは、小型軽量化、高出力化、高効率化が要求されている。そして、上記永久磁石モータにおいて小型軽量化、高出力化、高効率化を実現するに当たって、永久磁石モータに埋設される永久磁石について、更なる磁気特性の向上が求められている。尚、永久磁石としてはフェライト磁石、Sm−Co系磁石、Nd−Fe−B系磁石、SmFe17系磁石等があるが、特に残留磁束密度の高いNd−Fe−B系磁石が永久磁石モータ用の永久磁石として用いられる。
【0003】
ここで、永久磁石の製造方法としては、一般的に粉末焼結法が用いられる。ここで、粉末焼結法は、先ず原材料を粗粉砕し、ジェットミル(乾式粉砕)により微粉砕した磁石粉末を製造する。その後、その磁石粉末を型に入れて、外部から磁場を印加しながら所望の形状にプレス成形する。そして、所望形状に成形された固形状の磁石粉末を所定温度(例えばNd−Fe−B系磁石では800℃〜1150℃)で焼結することにより製造する。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特許第3298219号公報(第4頁、第5頁)
【発明の概要】
【発明が解決しようとする課題】
【0005】
一方、Nd−Fe−B等のNd系磁石は、耐熱温度が低いことが問題であった。従って、Nd系磁石を永久磁石モータに用いる場合には、該モータを連続駆動させると磁石の残留磁束密度が徐々に低下することとなっていた。そこで、Nd系磁石を永久磁石モータに用いる場合には、Nd系磁石の耐熱性を向上させるために、磁気異方性の高いDy(ジスプロシウム)やTb(テルビウム)を添加し、磁石の保磁力を更に向上させることが図られている。
【0006】
その一方で、DyやTbを使用することなく、磁石の保磁力を向上させることも考えられる。例えば、永久磁石の磁気特性は、磁石の磁気特性が単磁区微粒子理論により導かれるために、焼結体の結晶粒径を微小にすれば磁気性能が基本的に向上することが知られている。ここで、焼結体の結晶粒径を微小にするためには、焼結前の磁石原料の粒径も微小にする必要がある。
【0007】
しかし、微小な粒径に微粉砕された磁石粒子は、かさ比重が非常に小さいので取扱いが難しいという問題があった。従って、粉砕後に磁石粉末の成形や配向を行う際に作業効率が悪化する問題があった。また、微小な粒径に微粉砕された磁石粒子は、微小トルクでの配向が難しいという問題もあった。
【0008】
本発明は前記従来における問題点を解消するためになされたものであり、粉砕された磁石粉末に溶媒を添加してスラリーを生成し、スラリーに対して磁場を印加した状態で成形することにより成形体を形成することにより、微小な粒径に微粉砕された磁石粒子であっても取り扱いが容易となり、製造工程における作業効率の高効率化を図ることが可能となるとともに、成形工程においては微小トルクでの配向を行うことが可能となり、磁気性能を向上させることが可能な永久磁石及び永久磁石の製造方法を提供することを目的とする。
【課題を解決するための手段】
【0009】
前記目的を達成するため本願の請求項1に係る永久磁石は、磁石原料を磁石粉末に粉砕する工程と、前記粉砕された磁石粉末に溶媒を添加してスラリーを生成する工程と、前記スラリーに対して磁場を印加した状態で成形することにより成形体を形成する工程と、前記成形体を焼結する工程と、により製造されることを特徴とする。
【0010】
また、請求項2に係る永久磁石は、請求項1に記載の永久磁石において、前記成形体を形成する工程では、前記成形体を形成する為のキャビティに対して磁場を印加した状態で前記スラリーを前記キャビティに注入することを特徴とする。
【0011】
また、請求項3に係る永久磁石は、請求項1に記載の永久磁石において、前記成形体を形成する工程では、前記成形体を形成する為のキャビティに前記スラリーを注入した後に前記キャビティに対して磁場を印加することを特徴とする。
【0012】
また、請求項4に係る永久磁石は、請求項1乃至請求項3のいずれかに記載の永久磁石において、前記溶媒は以下の構造式M−(OR)(式中、MはV、Mo、Zr、Ta、Ti、W又はNbであり、Rは炭素数2〜6のアルキル基のいずれかであり、直鎖でも分枝でも良い。xは任意の整数である。)で示される有機金属化合物を含む有機溶媒であることを特徴とする。
【0013】
また、請求項5に係る永久磁石は、請求項1乃至請求項4のいずれかに記載の永久磁石において、前記磁石粉末は、単磁区粒子径の磁石粉末を含む磁石粉末であることを特徴とする。
尚、単磁区粒子径とは単磁区粒子(熱消磁状態で内部に磁壁が存在せず、一つの磁化方向のみが存在する小領域からなる粒子)が有する粒径であり、例えば0.2μm〜1.2μmの粒径の粒子とする。
【0014】
また、請求項6に係る永久磁石の製造方法は、磁石原料を磁石粉末に粉砕する工程と、前記粉砕された磁石粉末に溶媒を添加してスラリーを生成する工程と、前記スラリーに対して磁場を印加した状態で成形することにより成形体を形成する工程と、前記成形体を焼結する工程と、を有することを特徴とする。
【0015】
また、請求項7に係る永久磁石の製造方法は、請求項6に記載の永久磁石の製造方法において、前記成形体を形成する工程では、前記成形体を形成する為のキャビティに対して磁場を印加した状態で前記スラリーを前記キャビティに注入することを特徴とする。
【0016】
また、請求項8に係る永久磁石の製造方法は、請求項6に記載の永久磁石の製造方法において、前記成形体を形成する工程では、前記成形体を形成する為のキャビティに前記スラリーを注入した後に前記キャビティに対して磁場を印加することを特徴とする。
【0017】
また、請求項9に係る永久磁石の製造方法は、請求項5乃至請求項8のいずれかに記載の永久磁石の製造方法において、前記溶媒は以下の構造式M−(OR)(式中、MはV、Mo、Zr、Ta、Ti、W又はNbであり、Rは炭素数2〜6のアルキル基のいずれかであり、直鎖でも分枝でも良い。xは任意の整数である。)で示される有機金属化合物を含む有機溶媒であることを特徴とする。
【0018】
更に、請求項10に係る永久磁石の製造方法は、請求項5乃至請求項9のいずれかに記載の永久磁石の製造方法において、前記磁石粉末は、単磁区粒子径の磁石粉末を含む磁石粉末であることを特徴とする。
尚、単磁区粒子径とは単磁区粒子(熱消磁状態で内部に磁壁が存在せず、一つの磁化方向のみが存在する小領域からなる粒子)が有する粒径であり、例えば0.2μm〜1.2μmの粒径の粒子とする。
【発明の効果】
【0019】
前記構成を有する請求項1に記載の永久磁石によれば、粉砕された磁石粉末に溶媒を添加してスラリーを生成し、スラリーに対して磁場を印加した状態で成形することにより成形体が形成されるので、微小な粒径に微粉砕された磁石粒子であっても取り扱いが容易となり、製造工程における作業効率の高効率化を図ることが可能となる。また、成形工程においては、微小トルクで磁石粒子を配向させることが可能となり、磁気性能を向上させることが可能となる。
【0020】
また、請求項2に記載の永久磁石によれば、成形体を形成する工程において、成形体を形成する為のキャビティに対して磁場を印加した状態でスラリーをキャビティに注入するので、微小トルクでスラリー中の磁石粒子を配向させることが可能となり、磁気性能を向上させることが可能となる。
【0021】
また、請求項3に記載の永久磁石によれば、成形体を形成する工程において、成形体を形成する為のキャビティにスラリーを注入した後にキャビティに対して磁場を印加するので、微小トルクでスラリー中の磁石粒子を配向させることが可能となり、磁気性能を向上させることが可能となる。
【0022】
また、請求項4に記載の永久磁石によれば、スラリーを生成する際に用いる溶媒としてM−(OR)(式中、MはV、Mo、Zr、Ta、Ti、W又はNbであり、Rは炭素数2〜6のアルキル基のいずれかであり、直鎖でも分枝でも良い。xは任意の整数である。)で示される有機金属化合物を含む有機溶媒を用いるので、高融点金属であるV、Mo、Zr、Ta、Ti、W又はNbを焼結後に磁石の粒界に偏在させることが可能となる。その結果、粒界に偏在されたV、Mo、Zr、Ta、Ti、W又はNbが焼結時の磁石粒子の粒成長を抑制するとともに、焼結後における結晶粒子間での交換相互作用を分断することによって各結晶粒子の磁化反転を妨げ、磁気性能を向上させることが可能となる。
【0023】
また、請求項5に記載の永久磁石によれば、永久磁石を構成する結晶粒をそれぞれ単磁区構造とすることができる。その結果、永久磁石の磁気性能を大きく向上させることが可能となる。また、単磁区粒子径に微粉砕された磁石粒子であっても取り扱いが容易となり、製造工程における作業効率の高効率化を図ることが可能となる。
【0024】
また、請求項6に記載の永久磁石の製造方法によれば、粉砕された磁石粉末に溶媒を添加してスラリーを生成し、スラリーに対して磁場を印加した状態で成形することにより成形体を形成するので、微小な粒径に微粉砕された磁石粒子であっても取り扱いが容易となり、製造工程における作業効率の高効率化を図ることが可能となる。また、成形工程においては、微小トルクで磁石粒子を配向させることが可能となり、作業効率の高効率化を図ることが可能となる。
【0025】
また、請求項7に記載の永久磁石の製造方法によれば、成形体を形成する工程において、成形体を形成する為のキャビティに対して磁場を印加した状態でスラリーをキャビティに注入するので、微小トルクでスラリー中の磁石粒子を配向させることが可能となり、磁気性能を向上させることが可能となる。
【0026】
また、請求項8に記載の永久磁石の製造方法によれば、成形体を形成する工程において、成形体を形成する為のキャビティにスラリーを注入した後にキャビティに対して磁場を印加するので、微小トルクでスラリー中の磁石粒子を配向させることが可能となり、磁気性能を向上させることが可能となる。
【0027】
また、請求項9に記載の永久磁石の製造方法によれば、スラリーを生成する際に用いる溶媒としてM−(OR)(式中、MはV、Mo、Zr、Ta、Ti、W又はNbであり、Rは炭素数2〜6のアルキル基のいずれかであり、直鎖でも分枝でも良い。xは任意の整数である。)で示される有機金属化合物を含む有機溶媒を用いるので、高融点金属であるV、Mo、Zr、Ta、Ti、W又はNbが焼結後に粒界に偏在した磁石を製造することが可能となる。その結果、粒界に偏在されたV、Mo、Zr、Ta、Ti、W又はNbが焼結時の磁石粒子の粒成長を抑制するとともに、焼結後における結晶粒子間での交換相互作用を分断することによって各結晶粒子の磁化反転を妨げ、磁気性能を向上させることが可能となる。
【0028】
更に、請求項10に記載の永久磁石の製造方法によれば、結晶粒をそれぞれ単磁区構造とした永久磁石を製造することが可能となる。その結果、製造された永久磁石の磁気性能を大きく向上させることが可能となる。また、単磁区粒子径に微粉砕された磁石粒子であっても取り扱いが容易となり、製造工程における作業効率の高効率化を図ることが可能となる。
【図面の簡単な説明】
【0029】
【図1】本発明に係る永久磁石を示した全体図である。
【図2】本発明に係る永久磁石の粒界付近を拡大して示した模式図である。
【図3】強磁性体の磁区構造を示した模式図である。
【図4】本発明に係る永久磁石の粒界付近を拡大して示した模式図である。
【図5】本発明に係る永久磁石の製造方法における製造工程を示した説明図である。
【図6】実施例1の永久磁石の焼結後のSEM写真及び主相の元素分析結果を示した図である。
【図7】実施例1の永久磁石の焼結後のSEM写真及び粒界相の元素分析結果を示した図である。
【図8】実施例1、2と比較例1〜3の永久磁石の永久磁石中の残存炭素量を示した図である。
【図9】実施例1の永久磁石の焼結後の外観像及び外周付近のSEM写真をそれぞれ示した図である。
【図10】比較例4の永久磁石の焼結後の外観像及び外周付近のSEM写真をそれぞれ示した図である。
【図11】実施例1と比較例5、6の永久磁石について、仮焼温度の条件を変更して製造した複数の永久磁石中の炭素量を示した図である。
【発明を実施するための形態】
【0030】
以下、本発明に係る永久磁石及び永久磁石の製造方法について具体化した実施形態について以下に図面を参照しつつ詳細に説明する。
【0031】
[永久磁石の構成]
先ず、本発明に係る永久磁石1の構成について説明する。図1は本発明に係る永久磁石1を示した全体図である。尚、図1に示す永久磁石1は円柱形状を備えるが、永久磁石1の形状は成形に用いるキャビティの形状によって変化する。
本発明に係る永久磁石1としては例えばNd−Fe−B系磁石を用いる。また、永久磁石1を形成する各結晶粒子の界面(粒界)には、永久磁石1の保磁力を高める為のNb(ニオブ)、V(バナジウム)、Mo(モリブデン)、Zr(ジルコニウム)、Ta(タンタル)、Ti(チタン)又はW(タングステン)が偏在する。尚、各成分の含有量はNd:25〜37wt%、Nb、V、Mo、Zr、Ta、Ti、Wのいずれか(以下、Nb等という):0.01〜5wt%、B:1〜2wt%、Fe(電解鉄):60〜75wt%とする。また、磁気特性向上の為、Co、Cu、Al、Si等の他元素を少量含んでも良い。
【0032】
具体的に、本発明に係る永久磁石1は、図2に示すように永久磁石1を構成するNd結晶粒子35の結晶粒の表面部分(外殻)において、Ndの一部を高融点金属であるNb等で置換した層36(以下、高融点金属層36という)を生成することにより、Nb等をNd結晶粒子35の粒界に対して偏在させる。図2は永久磁石1を構成するNd結晶粒子35を拡大して示した図である。尚、高融点金属層36は、非磁性となることが好ましい。
【0033】
ここで、本発明ではNb等の置換は、後述のように粉砕された磁石粉末を成形する前にNb等を含む有機金属化合物が添加されることにより行われる。具体的には、Nb等を含む有機金属化合物を添加した磁石粉末を焼結する際に、湿式分散によりNd磁石粒子の粒子表面に均一付着された該有機金属化合物中のNb等が、Nd結晶粒子35の結晶成長領域へと拡散侵入して置換が行われ、図2に示す高融点金属層36を形成する。尚、Nd結晶粒子35は、例えばNdFe14B金属間化合物から構成され、高融点金属層36は例えばNbFeB金属間化合物から構成される。
【0034】
また、本発明では、特に後述のようにM−(OR)(式中、MはV、Mo、Zr、Ta、Ti、W又はNbであり、Rは炭素数2〜6のアルキル基のいずれかであり、直鎖でも分枝でも良い。xは任意の整数である。)で表わされるNb等を含む有機金属化合物(例えば、ニオブエトキシド、ニオブプロポキシド、バナジウムプロポキシドなど)を有機溶媒に添加し、湿式状態で磁石粉末に混合する。それにより、Nb等を含む有機金属化合物を有機溶媒中で分散させ、Nd磁石粒子の粒子表面にNb等を含む有機金属化合物を均一付着することが可能となる。
【0035】
ここで、上記M−(OR)(式中、MはV、Mo、Zr、Ta、Ti、W又はNbであり、Rは炭素数2〜6のアルキル基のいずれかであり、直鎖でも分枝でも良い。xは任意の整数である。)の構造式を満たす有機金属化合物として金属アルコキシドがある。金属アルコキシドとは、一般式M(OR)(M:金属元素、R:有機基、n:金属又は半金属の価数)で表される。また、金属アルコキシドを形成する金属又は半金属としては、W、Mo、V、Nb、Ta、Ti、Zr、Ir、Fe、Co、Ni、Cu、Zn、Cd、Al、Ga、In、Ge、Sb、Y、lanthanideなどが挙げられる。但し、本発明では特に、高融点金属を用いる。更に、後述のように焼結時における磁石の主相との相互拡散防止する目的から、高融点金属の内でも特にV、Mo、Zr、Ta、Ti、W又はNbを用いることが好ましい。
【0036】
また、アルコキシドの種類は特に限定されることなく、例えば、メトキシド、エトキシド、プロポキシド、イソプロポキシド、ブトキシド、炭素数4以上のアルコキシド等が挙げられる。但し、本発明では後述のように低温分解で残炭を抑制する目的から、低分子量のものを用いる。また、炭素数1のメトキシドについては分解し易く、取扱いが困難であるので、特に炭素数が2〜6のアルコキシドであるエトキシド、メトキシド、イソプロポキシド、プロポキシド、ブトキシドなどを用いることが好ましい。
【0037】
また、圧粉成形により成形された成形体を適切な焼成条件で焼成すれば、Nb等が結晶粒子35内へと拡散浸透(固溶化)することを防止できる。それにより、本発明では、Nb等を添加したとしても焼結後に粒界のみにNb等を偏在させることができる。その結果、結晶粒全体としては(すなわち、焼結磁石全体としては)、コアのNdFe14B金属間化合物相が高い体積割合を占めた状態となる。それにより、その磁石の残留磁束密度(外部磁場の強さを0にしたときの磁束密度)の低下を抑制することができる。
【0038】
また、一般的に、焼結後の各Nd結晶粒子35が密な状態にあると、各Nd結晶粒子35間で交換相互作用が伝搬することが考えられる。その結果、外部から磁場が加わった場合に各結晶粒子の磁化反転が容易に生じ、仮に焼結後の結晶粒子をそれぞれ単磁区構造とすることができたとしても、保磁力は低下する。しかしながら、本発明では、Nd結晶粒子35の表面にコーティングされた非磁性の高融点金属層36によって、Nd結晶粒子35間での交換相互作用を分断され、外部から磁場が加わった場合でも各結晶粒子の磁化反転を妨げる。
【0039】
また、Nd結晶粒子35の表面にコーティングされた高融点金属層36は、永久磁石1の焼結時においてはNd結晶粒子35の平均粒径が増加する所謂粒成長を抑制する手段としても機能する。以下に、高融点金属層36による永久磁石1の粒成長抑制の機構について図3を用いて説明する。図3は強磁性体の磁区構造を示した模式図である。
【0040】
一般的に、結晶と別の結晶との間に残された不連続な境界面である粒界は過剰なエネルギをもつため、高温ではエネルギを低下させようとする粒界移動が起こる。従って、高温(例えばNd−Fe−B系磁石では800℃〜1150℃)で磁石原料の焼結を行うと、小さな結晶粒子は収縮して消失し、残った結晶粒子の平均粒径が増加する所謂粒成長が発生する。
【0041】
ここで、本発明では、M−(OR)(式中、MはV、Mo、Zr、Ta、Ti、W又はNbであり、Rは炭素数2〜6のアルキル基のいずれかであり、直鎖でも分枝でも良い。xは任意の整数である。)で表わされる有機金属化合物を添加することにより、図3に示すように磁石粒子の界面に高融点金属であるNb等が偏在化される。そして、この偏在化された高融点金属により、高温時に発生する粒界の移動が妨げられ、粒成長を抑制することができる。
【0042】
また、Nd結晶粒子35の粒径Dは0.3μm程度とすることが望ましい。また、高融点金属層36の厚さdが2nm程度あれば、焼結時のNd結晶粒子35の粒成長を抑制でき、また、焼結後におけるNd結晶粒子35間での交換相互作用を分断することができる。但し、高融点金属層36の厚さdが大きくなりすぎると、磁性を発現しない非磁性成分の含有率が大きくなるので、残留磁束密度が低下することとなる。
【0043】
尚、高融点金属をNd結晶粒子35の粒界に対して偏在させる構成としては、図4に示すようにNd結晶粒子35の粒界に対して高融点金属からなる粒37を点在させる構成としても良い。図4に示す構成であっても、同様の効果(粒成長抑制、交換相互作用の分断)を得ることが可能となる。尚、高融点金属がNd結晶粒子35の粒界に対してどのように偏在しているかは、例えばSEMやTEMや3次元アトムプローブ法により確認することができる。
【0044】
また、高融点金属層36はNb化合物、V化合物、Mo化合物、Zr化合物、Ta化合物、Ti化合物又はW化合物(以下、Nb等化合物という)のみから構成される層である必要はなく、Nb等化合物とNd化合物との混合体からなる層であっても良い。その場合には、Nd化合物を添加することによって、Nb等化合物とNd化合物との混合体からなる層を形成する。その結果、Nd磁石粉末の焼結時の液相焼結を助長することができる。尚、添加するNd化合物としては、NdH、酢酸ネオジム水和物、ネオジム(III)アセチルアセトナート三水和物、2−エチルヘキサン酸ネオジム(III)、ネオジム(III)ヘキサフルオロアセチルアセトナート二水和物、ネオジムイソプロポキシド、リン酸ネオジニウム(III)n水和物、ネオジムトリフルオロアセチルアセトナート、トリフルオロメタンスルホン酸ネオジム等が望ましい。
【0045】
[永久磁石の製造方法]
次に、本発明に係る永久磁石1の製造方法について図5を用いて説明する。図5は本発明に係る永久磁石1の製造方法における製造工程を示した説明図である。
【0046】
先ず、所定分率のNd−Fe−B(例えばNd:26.7wt%、Fe(電解鉄):72.3wt%、B:1.0wt%)からなる、インゴットを製造する。その後、インゴットをスタンプミルやクラッシャー等によって200μm程度の大きさに粗粉砕する。若しくは、インゴットを溶解し、ストリップキャスト法でフレークを作製し、水素解砕法で粗粉化する。
【0047】
次いで、粗粉砕した磁石粉末を、(a)酸素含有量が実質的に0%の窒素ガス、Arガス、Heガスなど不活性ガスからなる雰囲気中、又は(b)酸素含有量が0.0001〜0.5%の窒素ガス、Arガス、Heガスなど不活性ガスからなる雰囲気中で、ジェットミル41により微粉砕し、単磁区粒子径(例えば0.2μm〜1.2μm)の平均粒径を有する微粉末とする。尚、酸素濃度が実質的に0%とは、酸素濃度が完全に0%である場合に限定されず、微粉の表面にごく僅かに酸化被膜を形成する程度の量の酸素を含有しても良いことを意味する。また、微粉末は単磁区粒子径の磁石粒子が主成分となっていれば良く、単磁区粒子径以外の磁石粒子が含まれていても良い。
【0048】
一方で、ジェットミル41で微粉砕された微粉末に添加する有機金属化合物溶液(有機溶媒)を作製する。ここで、有機金属化合物溶液には予めNb等を含む有機金属化合物を添加し、溶解させる。尚、溶解させる有機金属化合物としては、M−(OR)(式中、MはV、Mo、Zr、Ta、Ti、W又はNbであり、Rは炭素数2〜6のアルキル基のいずれかであり、直鎖でも分枝でも良い。xは任意の整数である。)に該当する有機金属化合物(例えば、ニオブエトキシド、ニオブプロポキシド、バナジウムプロポキシドなど)を用いる。また、溶解させるNb等を含む有機金属化合物の量は特に制限されないが、焼結後の磁石に対するNb等の含有量が0.001wt%〜10wt%、好ましくは0.01wt%〜5wt%となる量とするのが好ましい。
【0049】
続いて、ジェットミル41にて分級された微粉末に対して上記有機金属化合物溶液を添加する。それによって、磁石原料の微粉末と有機金属化合物溶液とが混合されたスラリー42を生成する。尚、有機金属化合物溶液の添加は、窒素ガス、Arガス、Heガスなど不活性ガスからなる雰囲気で行う。
【0050】
その後、生成したスラリー42を、成形装置50において形成されたキャビティ54に対して注入する。図5に示すように、成形装置50は、円筒状のモールド51と、モールド51に対して上下方向に摺動する下パンチ52と、同じくモールド51に対して上下方向に摺動する上パンチ53とを有し、これらに囲まれた空間がキャビティ54を構成する。また、成形装置50には一対の磁界発生コイル55、56がキャビティ54の上下位置に配置されており、磁力線をキャビティ54に充填されたスラリー42に印加する。印加させる磁場は例えば1MA/mとする。
【0051】
そして、圧粉成形を行う際には、スラリー42をキャビティ54に注入する前から、磁界発生コイル55、56によってキャビティ54に対して磁場が印加された状態とする。その状態で、先ず、キャビティ54に対して磁場が印加された状態でスラリー42をキャビティ54に注入する。その後、下パンチ52及び上パンチ53を駆動し、キャビティ54に充填されたスラリー42に対して矢印61方向に圧力を加え、成形する。それによって、加圧と同時にキャビティ54に充填されたスラリー42に対して、加圧方向と平行な矢印62方向に磁界発生コイル55、56によってパルス磁場を印加する。その結果、所望の方向に磁場を配向させる。尚、磁場を配向させる方向は、スラリー42から成形される永久磁石1に求められる磁場方向を考慮して決定する必要がある。
そして、本発明に係る永久磁石1の製造方法では、上記のように溶媒を添加してスラリー状とした磁石粉末に対して磁場を印加した状態で成形装置50により成形するので、単磁区粒子径(粒径0.2μm〜1.2μm)のような微小な粒径に微粉砕された磁石粒子であっても取り扱いが容易となり、製造工程における作業効率の高効率化を図ることが可能となる。また、成形工程においては、微小トルクで磁石粒子を配向させることが可能となり、磁気性能を向上させることが可能となる。
【0052】
尚、上記成形工程では、キャビティ54にスラリー42を注入した後に、磁界発生コイル55、56によってキャビティ54内のスラリー42に対して磁場を印加する構成としても良い。そのような構成としても、加圧と同時にキャビティ54に充填されたスラリー42に対して、加圧方向と平行な矢印62方向に磁界発生コイル55、56によってパルス磁場を印加することが可能となる。また、加圧方向に対して印加方向が垂直となるように磁界発生コイル55、56を配置しても良い。
【0053】
次に、成形装置50により湿式状態で圧粉成形された磁石粉末を真空乾燥などで乾燥することにより有機溶媒を揮発させ、成形体71を得る。その後、水素雰囲気において200℃〜900℃、より好ましくは400℃〜900℃(例えば600℃)で数時間(例えば5時間)保持することにより水素中仮焼処理を行う。仮焼中の水素の供給量は5L/minとする。この水素中仮焼処理では、有機金属化合物を熱分解させて、仮焼体中の炭素量を低減させる所謂脱カーボンが行われる。また、水素中仮焼処理は、仮焼体中の炭素量が1000ppm以下、より好ましくは500ppm以下とする条件で行うこととする。それによって、その後の焼結処理で永久磁石1全体を緻密に焼結させることが可能となり、残留磁束密度や保磁力を低下させることが無い。
【0054】
続いて、水素中仮焼処理によって仮焼された成形体71を焼結する焼結処理を行う。焼結処理では、所定の昇温速度で800℃〜1180℃程度まで昇温し、2時間程度保持する。この間は真空焼成となるが真空度としては10−4Torr以下とすることが好ましい。その後冷却し、再び600℃で2時間熱処理を行う。そして、焼結の結果、永久磁石1が製造される。
【実施例】
【0055】
以下に、本発明の実施例について比較例1〜6と比較しつつ説明する。
(実施例1)
実施例1のネオジム磁石粉末の合金組成は、wt%でNd/Fe/B=26.7/72.3/1.0とする。また、粉砕したネオジム磁石粉末に溶媒として有機金属化合物のニオブプロポキシドを5wt%含む有機溶媒を添加した。また、仮焼処理は水素雰囲気において600℃で5時間保持することにより行った。そして、仮焼中の水素の供給量は5L/minとする。尚、他の工程は上述した[永久磁石の製造方法]と同様の工程とする。
【0056】
(実施例2)
添加する有機溶媒中に含まれる有機金属化合物をニオブエトキシドとした。他の条件は実施例1と同様である。
【0057】
(比較例1)
添加する有機溶媒中に含まれる有機金属化合物をオレイン酸バナジウムとした。他の条件は実施例1と同様である。
【0058】
(比較例2)
添加する有機溶媒中に含まれる有機金属化合物をジスプロシウムアセチルアセトナートとした。他の条件は実施例1と同様である。
【0059】
(比較例3)
添加する有機溶媒中に含まれる有機金属化合物をステアリン酸亜鉛とした。他の条件は実施例1と同様である。
【0060】
(比較例4)
比較例1のネオジム磁石粉末の合金組成は、wt%で実施例1と同じくNd/Fe/B=26.7/72.3/1.0とする。但し、水素中仮焼処理に関する工程は行わずに製造した。他の条件は実施例1と同様である。
【0061】
(比較例5)
比較例2のネオジム磁石粉末の合金組成は、wt%で実施例1と同じくNd/Fe/B=26.7/72.3/1.0とする。但し、仮焼処理を水素雰囲気ではなくHe雰囲気で行った。他の条件は実施例1と同様である。
【0062】
(比較例6)
比較例3のネオジム磁石粉末の合金組成は、wt%で実施例1と同じくNd/Fe/B=26.7/72.3/1.0とする。但し、仮焼処理を水素雰囲気ではなく真空雰囲気で行った。他の条件は実施例1と同様である。
【0063】
(実施例の永久磁石における元素分析結果検討)
図6は実施例1の永久磁石の焼結後のSEM写真及び主相の元素分析結果を示した図である。図7は実施例1の永久磁石の焼結後のSEM写真及び粒界相の元素分析結果を示した図である。
図6に示すように実施例1の永久磁石では、主相からNbが検出されない。また、図7に示すように、粒界相からNbが検出されている。即ち、実施例1の永久磁石では、粒界相から主相へとNbが拡散しておらず、粒界相において、Ndの一部をNbで置換したNbFeB金属間化合物の相が主相粒子の表面に生成されていることが分かる。即ち、実施例1では、磁石の粒界にNbを偏在させることができることが分かる。また、焼結の際にNbが主相に固溶しないので、固相焼結により粒成長を抑制することが可能となる。
【0064】
(有機金属化合物の種類に基づく実施例と比較例との比較検討)
図8は実施例1、2と比較例1〜3の永久磁石の永久磁石中の残存炭素量[wt%]をそれぞれ示した図である。
また、図8に示すように、実施例1及び実施例2は比較例1〜3と比較して磁石粒子中に残存する炭素量をより大きく低減させることができることが分かる。特に、実施例1及び実施例2では、磁石粒子中に残存する炭素量を500ppm以下とすることができる。
【0065】
即ち、M−(OR)(式中、MはV、Mo、Zr、Ta、Ti、W又はNbであり、Rは炭素数2〜6のアルキル基のいずれかであり、直鎖でも分枝でも良い。xは任意の整数である。)で示される有機金属化合物を含む有機溶媒を添加した場合には、その他の有機金属化合物を含む有機溶媒を添加した場合と比較して、磁石粒子中の炭素量をより大きく低減させることができることが分かる。即ち、添加する有機溶媒に含まれる金属有機化合物を、M−(OR)(式中、MはV、Mo、Zr、Ta、Ti、W又はNbであり、Rは炭素数2〜6のアルキル基のいずれかであり、直鎖でも分枝でも良い。xは任意の整数である。)で示される有機金属化合物とすることにより、水素中仮焼処理において脱カーボンを容易に行うことが可能となり、結果として、磁石全体の緻密焼結や保磁力の低下を防止することが可能となる。
【0066】
(水素中仮焼処理の有無に基づく実施例と比較例との比較検討)
図9及び図10は上記実施例1と比較例4の永久磁石の焼結後の外観像及び外周付近のSEM写真をそれぞれ示す。
外観像を比較すると、実施例1では磁石全体が緻密に焼結されているのに比較して、比較例4では中心部付近は緻密に焼結されているものの外周部は緻密に焼結されていない。その結果、比較例4では中心部と外周部の焼結時における体積収縮率の差によって中心部に亀裂が生じている。
【0067】
また、実施例1と比較例4の各SEM写真を比較すると、実施例1では基本的にネオジム磁石の主相(NdFe14B)91と白い斑点状に見える粒界相92から焼結後の永久磁石が形成されているのに対し、比較例4は主相91や粒界相92の間に空隙93が多数形成されている。ここで、空隙93は焼結時において残留しているカーバイドによって生じるものである。即ち、NdとCとの反応性が非常に高いため、焼結工程において高温まで有機金属化合物中のC含有物が残ると、カーバイドを形成する。その結果、形成されたカーバイドによって空隙93が生じる。そして、このような空隙93が生じると、永久磁石の磁気性能は著しく低下する。また、空隙が生じなかった場合でも、形成されたカーバイドによって焼結後の磁石の主相内にαFeが析出し、磁石特性を大きく低下させる問題もある。
【0068】
一方、水素中仮焼処理を行っている実施例1では、仮焼処理によって有機金属化合物が熱分解して、含有する炭素を予め焼失(炭素量を低減)させることができる。尚、仮焼する際の温度は200℃〜900℃、より好ましくは400℃〜900℃とすることによって、含有する炭素を必要量以上焼失させることができ、焼結後に磁石内に残存する炭素量を1000ppm以下、より好ましくは500ppm以下とするとすることが可能となる。そして、炭素量を1000ppm以下、より好ましくは500ppm以下とすれば、実施例1では焼結工程でカーバイドがほとんど形成されることがなく、比較例4のような空隙が生じる虞もない。その結果、図9に示すように、焼結処理で永久磁石1全体を緻密に焼結させることが可能となり、永久磁石の磁気性能が低下することがない。また、焼結後の磁石の主相内にαFeが析出することなく、磁石特性を大きく低下させることがない。また、保磁力向上に寄与するNb等のみを選択的に主相粒界に偏在させることも可能となる。尚、本発明はこのように低温分解で残炭を抑制するという観点から、添加する有機金属化合物としては低分子量のもの(炭素数2〜6のアルキル基から構成されるもの)が好ましく用いられる。
【0069】
(水素中仮焼処理の条件に基づく実施例と比較例との比較検討)
図11は実施例1と比較例5、6の永久磁石について、仮焼温度の条件を変更して製造した複数の永久磁石中の炭素量[wt%]を示した図である。尚、図11では仮焼中の水素及びヘリウムの供給量を1L/minとし、3時間保持した結果を示す。
図11に示すように、He雰囲気や真空雰囲気で仮焼した場合と比較して、水素雰囲気で仮焼した場合には磁石粒子中の炭素量をより大きく低減させることができることが分かる。また、図11からは、磁石粉末を水素雰囲気で仮焼する際の仮焼温度を高温にすれば炭素量がより大きく低減し、特に400℃〜900℃とすることによって炭素量を1000ppm以下とすることが可能であることが分かる。
【0070】
以上説明したように、本実施形態に係る永久磁石1及び永久磁石1の製造方法では、粉砕された磁石粉末に溶媒を添加してスラリー42を生成し、その後、成形装置50においてキャビティ54に注入したスラリー42に対して磁場を印加した状態で圧力を加えて成形し、その後に有機溶媒を揮発させて成形体を得るので、単磁区粒子径(粒径0.2μm〜1.2μm)のような微小な粒径に微粉砕された磁石粒子であっても取り扱いが容易となり、製造工程における作業効率の高効率化を図ることが可能となる。また、成形工程においては、微小トルクで磁石粒子を配向させることが可能となり、磁気性能を向上させることが可能となる。
また、添加する溶媒は、M−(OR)(式中、MはV、Mo、Zr、Ta、Ti、W又はNbであり、Rは炭素数2〜6のアルキル基のいずれかであり、直鎖でも分枝でも良い。xは任意の整数である。)で表わされる有機金属化合物を含む有機溶媒とするので、高融点金属であるV、Mo、Zr、Ta、Ti、W又はNbを焼結後に磁石の粒界に偏在させることが可能となる。その結果、粒界に偏在されたV、Mo、Zr、Ta、Ti、W又はNbが焼結時の磁石粒子の粒成長を抑制するとともに、焼結後における結晶粒子間での交換相互作用を分断することによって各結晶粒子の磁化反転を妨げ、磁気性能を向上させることが可能となる。
また、有機金属化合物を含む有機溶媒が添加された磁石を、焼結前に水素雰囲気で仮焼することにより、有機金属化合物を熱分解させて磁石粒子中に含有する炭素を予め焼失(炭素量を低減)させることができ、焼結工程でカーバイドがほとんど形成されることがない。その結果、焼結後の磁石の主相と粒界相との間に空隙を生じさせることなく、また、磁石全体を緻密に焼結することが可能となり、保磁力が低下することを防止できる。また、焼結後の磁石の主相内にαFeが析出することなく、磁石特性を大きく低下させることがない。
更に、成形体を仮焼する工程は、特に200℃〜900℃、より好ましくは400℃〜900℃の温度範囲で成形体を所定時間保持することにより行うので、磁石粒子中に含有する炭素を必要量以上焼失させることができる。
その結果、焼結後に磁石に残存する炭素量が1000ppm以下、より好ましくは500ppm以下となるので、磁石の主相と粒界相との間に空隙が生じることなく、また、磁石全体を緻密に焼結した状態とすることが可能となり、残留磁束密度が低下することを防止できる。
【0071】
尚、本発明は前記実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の改良、変形が可能であることは勿論である。
また、磁石粉末の粉砕条件、混練条件、焼結条件などは上記実施例に記載した条件に限られるものではない。
【0072】
また、上記実施例では、磁石粉末に添加する溶媒として、M−(OR)(式中、MはV、Mo、Zr、Ta、Ti、W又はNbであり、Rは炭素数2〜6のアルキル基のいずれかであり、直鎖でも分枝でも良い。xは任意の整数である。)で示される有機金属化合物を含む有機溶媒を用いているが、有機金属化合物を添加しない有機溶媒を用いても良い。また、反応性の低い溶媒であれば他の溶媒であっても良い。例えば、防錆オイル等を用いることも可能である。
【0073】
また、上記実施例では、スラリー42をキャビティ54に注入した状態で磁場を印加して配向を行う構成としているが、本発明はキャビティ54に限定されずに自由な境界条件に対して用いることが可能となる。
【符号の説明】
【0074】
1 永久磁石
35 Nd結晶粒子
36 高融点金属層
37 高融点金属粒
91 主相
92 粒界相
93 空隙

【特許請求の範囲】
【請求項1】
磁石原料を磁石粉末に粉砕する工程と、
前記粉砕された磁石粉末に溶媒を添加してスラリーを生成する工程と、
前記スラリーに対して磁場を印加した状態で成形することにより成形体を形成する工程と、
前記成形体を焼結する工程と、により製造されることを特徴とする永久磁石。
【請求項2】
前記成形体を形成する工程では、前記成形体を形成する為のキャビティに対して磁場を印加した状態で前記スラリーを前記キャビティに注入することを特徴とする請求項1に記載の永久磁石。
【請求項3】
前記成形体を形成する工程では、前記成形体を形成する為のキャビティに前記スラリーを注入した後に前記キャビティに対して磁場を印加することを特徴とする請求項1に記載の永久磁石。
【請求項4】
前記溶媒は以下の構造式
M−(OR)
(式中、MはV、Mo、Zr、Ta、Ti、W又はNbであり、Rは炭素数2〜6のアルキル基のいずれかであり、直鎖でも分枝でも良い。xは任意の整数である。)
で示される有機金属化合物を含む有機溶媒であることを特徴とする請求項1乃至請求項3のいずれかに記載の永久磁石。
【請求項5】
前記磁石粉末は、単磁区粒子径の磁石粉末を含む磁石粉末であることを特徴とする請求項1乃至請求項4のいずれかに記載の永久磁石。
【請求項6】
磁石原料を磁石粉末に粉砕する工程と、
前記粉砕された磁石粉末に溶媒を添加してスラリーを生成する工程と、
前記スラリーに対して磁場を印加した状態で成形することにより成形体を形成する工程と、
前記成形体を焼結する工程と、を有することを特徴とする永久磁石の製造方法。
【請求項7】
前記成形体を形成する工程では、前記成形体を形成する為のキャビティに対して磁場を印加した状態で前記スラリーを前記キャビティに注入することを特徴とする請求項6に記載の永久磁石の製造方法。
【請求項8】
前記成形体を形成する工程では、前記成形体を形成する為のキャビティに前記スラリーを注入した後に前記キャビティに対して磁場を印加することを特徴とする請求項6に記載の永久磁石の製造方法。
【請求項9】
前記溶媒は以下の構造式
M−(OR)
(式中、MはV、Mo、Zr、Ta、Ti、W又はNbであり、Rは炭素数2〜6のアルキル基のいずれかであり、直鎖でも分枝でも良い。xは任意の整数である。)
で示される有機金属化合物を含む有機溶媒であることを特徴とする請求項5乃至請求項8のいずれかに記載の永久磁石の製造方法。
【請求項10】
前記磁石粉末は、単磁区粒子径の磁石粉末を含む磁石粉末であることを特徴とする請求項5乃至請求項9のいずれかに記載の永久磁石の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図7】
image rotate

【図10】
image rotate

【図11】
image rotate

【図6】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2011−216732(P2011−216732A)
【公開日】平成23年10月27日(2011.10.27)
【国際特許分類】
【出願番号】特願2010−84431(P2010−84431)
【出願日】平成22年3月31日(2010.3.31)
【出願人】(000003964)日東電工株式会社 (5,557)
【Fターム(参考)】