説明

国際特許分類[H01M12/08]の内容

電気 (1,674,590) | 基本的電気素子 (808,144) | 化学的エネルギーを電気的エネルギーに直接変換するための方法または手段,例.電池 (142,747) | 混成電池;その製造 (557) | 燃料電池型式の半電池と二次電池型式の半電池とからなるもの (254)

国際特許分類[H01M12/08]に分類される特許

81 - 90 / 254


【課題】電解質中に存在するカチオンの電解質中の移動及び各電極における反応を抑えることで、サイクル特性に優れた空気電池を実現する。
【解決手段】電解質中に、負極と正極間のカチオンの移動を妨げるアニオン交換機能を付加し、カチオンの電解質中の移動及び各電極における反応を抑える。電解質は酸素原子を含有するアニオンを輸送し、カチオンの移動を阻害するアニオン交換機能をもつ高分子材料を有する。 (もっと読む)


【課題】リチウム空気電池を提供する。
【解決手段】リチウムを含む負極と、酸素を正極活物質として使用する正極と、有機系電解質と、を含み、該有機系電解質が、金属−リガンド錯体を含むリチウム空気電池である。前記金属−リガンド錯体は、正極とリチウム酸化物との間の電子移動を媒介する。また、前記金属−リガンド錯体の酸化還元電位は、リチウム金属に対して2ないし5Vである。前記金属は、元素周期律表の第3族ないし第15族からなる群から選択された一つ以上を含み、更に遷移金属を含む。前記リガンドは、二重結合または三重結合を含み、更に共役構造を含む。 (もっと読む)


【課題】デンドライトの発生を抑制できるリチウム二次電池用電解液、並びに当該電解液を備えるリチウム二次電池及びリチウム空気電池を提供する。
【解決手段】少なくともイオン液体とリチウム塩を含有するリチウム二次電池用電解液であって、前記電解液中の前記リチウム塩の濃度が0.37〜0.75mol/kgであることを特徴とする、リチウム二次電池用電解液。 (もっと読む)


【課題】セラミック製隔膜を取り付けるための開口孔を可能な限り大きく形成できると共に、立体成形体の開口孔の周縁部とセラミック製隔膜の周縁部とのヒートシール幅を可能な限り小さくすることができる空気電池用外装ケースの製造方法を提供する。
【解決手段】本発明の製造方法は、外装材8を、成形部11と開口孔形成用刃部12とを有した成形ダイス10の1ショットで外装材8を立体形状に成形すると共に開口孔2の形成を行って立体成形体7を得る成形工程と、下側シール盤の上面に設けられた収容凹部にセラミック製隔膜を載置すると共に、立体成形体を下側シール盤の上面に載置して、該立体成形体の開口孔の周縁部と収容凹部上の隔膜の周縁部とが重なり合うように配置し、この状態で上下のシール盤で挟圧して、立体成形体の開口孔の周縁部とセラミック製隔膜の周縁部とをヒートシールするヒートシール工程と、を含むことを特徴とする。 (もっと読む)


【課題】充電時の二次電池の負極における金属の偏析を抑制し、充放電サイクル特性に優れた二次電池を提供する。
【解決手段】負極、正極、及び前記負極と前記正極との間に介在する電解液を備える二次電池用の負極であって、該負極の前記正極側表面に、抵抗温度係数が異なる複数の部材が隣接する多孔質層を備える二次電池用負極、並びに、該二次電池用負極を備える空気二次電池。 (もっと読む)


【課題】放電の際に正極上に金属炭酸塩が生成されることを防止するとともに、電解液が正極を浸透して漏出することを防止する。
【解決手段】金属空気電池1は、金属を含むとともに放電の際に金属イオンを生成する負極3、導電性を有するペロブスカイト型酸化物、および、酸素還元反応を促進する触媒を含むとともに炭素を含まず、放電の際に酸素イオンを生成する多孔質の正極2、負極3と正極2との間に配置される電解質層4、並びに、正極2に設けられ、電解質層4に含まれる電解液に対する撥液性を有する撥液層29を備える。炭素を含有しない正極2を用いることにより、放電の際に正極2上に金属炭酸塩が生成されることを防止することができる。また、撥液層29が正極2に設けられることにより、電解液が正極2を浸透して漏出することを防止することができる。 (もっと読む)


【課題】放電時の酸素還元、及び充電時の酸素発生のいずれにおいても安定に機能する金属空気電池用空気極、並びに当該空気極を備える金属空気電池用膜・空気極接合体及び金属空気電池を提供する。
【解決手段】空気極触媒、空気極用電解質及び導電性材料を含有する金属空気電池用の空気極であって、前記空気極用電解質が層状複水酸化物を含有することを特徴とする、金属空気電池用空気極。 (もっと読む)


【課題】充電電圧を低減し、良好な充放電サイクル特性を有するリチウム空気二次電池用正極を提供する。
【解決手段】正極3を構成するカーボン、バインダー(PTFE粉末)に混合する触媒として、FeイオンとNiイオンとを少なくとも含む混合酸化物を用いる。ここで、Feイオン、Niイオンのそれぞれのモル数をNFe、NNiと表現したとき、NFe:NNi=2:1または1:2のモル比とし、前記混合酸化物をスピネル型酸化物とする。また、前記混合酸化物が、FeイオンとNiイオンとにLaイオンの酸化物をまたはLaイオンとアルカリ土類金属イオン(Caイオン、Srイオン、Baイオンのいずれか)との複合酸化物をさらに混合してなる。このとき、Laイオン、アルカリ土類金属イオンそれぞれのモル数をNLa、NMと表現したとき、(NFe+NNi):(NLa+NM)=1:1のモル比とし、前記混合酸化物をペロブスカイト型酸化物とする。 (もっと読む)


【課題】リチウム空気二次電池の空気極触媒として用いた際に、高い放電開始電圧及び放電容量を実現しうると共に、不可逆容量を低減可能なリチウム空気二次電池用空気極触媒、該空気極触媒の製造方法及び該空気極触媒を備えるリチウム空気二次電池を提供する。
【解決手段】RuO粒子が、カーボン上に担持されており、前記RuO粒子が、Ru原子‐O原子間距離が1.5〜2.0Åであり、隣接するRu原子間距離が2.6〜3.2Åであり、Ru原子に配位するO原子数が2.0〜4.0であり、且つ、隣接するRu原子数が1.2〜2.0である、層状結晶構造を有すると共に、2〜5nmの粒径を有することを特徴とする、リチウム空気二次電池用空気極触媒、リチウム空気二次電池用空気極触媒の製造方法並びにリチウム空気二次電池。 (もっと読む)


【課題】十分な電子伝導率を有し、電極特性にすぐれた鉄負極用の複合電極材を提供する。
【解決手段】炭素基材および酸化鉄粒子を含み、前記酸化鉄粒子はFe34を主成分とし、かつ炭素基材に担持されており、前記酸化鉄粒子のD90が50nm以下である、複合電極材。該複合電極材は、活物質であるFe34を主成分とする酸化鉄粒子の粒径が小さいため、電極反応の中間生成物であるFe(OH)2層に被覆された場合でも電子伝導率が著しく低下することがない。そのため、複合電極材を用いると、十分な電子伝導率と充放電サイクル特性を有する鉄負極が提供される。該複合電極材を有する負極は、金属空気電池用負極として好適に使用される。 (もっと読む)


81 - 90 / 254