説明

オフガス供給方法

【課題】 PSA法を利用して、複数の吸着塔により混合ガスから目的ガスを濃縮分離する際、当該吸着塔から排出されるオフガスを途切れることなくオフガス消費ユニットに供給するとともに、目的ガスの濃縮分離を行うシステムのコンパクト化を図ることができるオフガス供給方法を提供する。
【解決手段】 本発明は、複数のステップからなるサイクルが繰り返し行われる圧力変動吸着法を利用して、吸着剤が充填された複数の吸着塔(A,B,C)により混合ガスから目的ガスを濃縮分離する際において、当該吸着塔(A,B,C)から排出されるオフガスをオフガス消費ユニット(1)に供給するためのオフガス供給方法を提供する。この方法によれば、前記サイクルを構成する全てのステップにおいて、前記吸着塔(A,B,C)の少なくとも1つから前記オフガスを排出させることにより、当該オフガスを前記オフガス消費ユニット(1)に途切れることなく供給し続けることになる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、圧力変動吸着法を利用して、混合ガスから目的ガスを濃縮分離する際に排出されるオフガスのリサイクル技術に関する。具体的には、本発明は、オフガスをオフガス消費ユニットに供給する方法に関する。
【背景技術】
【0002】
混合ガス中から水素ガスなどの目的ガスを濃縮分離する方法として、圧力変動吸着法(以下、PSA法と称する。)などが知られている。PSA法は、吸着剤を充填した吸着塔を2〜4塔設け、各吸着塔において、吸着工程、減圧工程、脱着工程、洗浄工程および昇圧工程を含むサイクルを繰り返すことにより行われる。このようなPSA法を利用して混合ガスから目的ガスを濃縮分離する技術は、例えば、特開2000−313605号公報から公知となっている。
【0003】
上記特許文献に開示されている技術は、図7a〜7iに示したように、適宜の吸着剤が充填された3つの吸着塔A,B,Cを含む装置を用いて、ステップI〜IXからなるサイクルを繰り返し行うことにより、目的ガスの濃縮分離と、吸着塔A,B,Cから排出されるオフガスのオフガス使用ユニット(改質器)への供給とを行う技術である。これらのステップについて、以下に説明する。
【0004】
図7aに示したように、ステップIにおいては、吸着塔Aでは吸着工程、吸着塔Bでは洗浄工程、吸着塔Cでは第1減圧工程が行われる。具体的には、吸着塔Aに混合ガスが導入され、塔内において吸着剤により不要ガス成分が除去されて、製品ガス(濃縮分離された目的ガス)が塔外に排出される。吸着塔Cは、吸着工程(後述のステップIX参照)を終えたばかりであり、そこから導出される残留ガスが洗浄ガスとして洗浄工程にある吸着塔Bに導入される。これにより、吸着塔Cの減圧と同時に、吸着塔Bの洗浄が行われる。
【0005】
図7bに示したように、ステップIIにおいては、吸着塔Aでは吸着工程、吸着塔Bでは第1昇圧工程(均圧工程)、吸着塔Cでは第2減圧工程(均圧工程)が行われる。具体的には、吸着塔Aでは、ステップIに引き続き、吸着剤により不要ガス成分が除去されて製品ガスが塔外に排出される。吸着塔Cは、ステップIに引き続き、残留ガスを吸着塔Bに導入し、吸着塔Bは、洗浄工程(ステップI参照)を終え、吸着塔Cから導入されるガスを蓄える。これにより、吸着塔Cの減圧と同時に、吸着塔Bの昇圧が行われ、吸着塔Bと吸着塔Cとの均圧化が図られる。
【0006】
図7cに示したように、ステップIIIにおいては、吸着塔Aでは吸着工程、吸着塔Bでは第2昇圧工程、吸着塔Cでは脱着工程(ブローダウン工程)が行われる。具体的には、吸着塔Aでは、ステップIおよびステップIIに引き続き混合ガスが導入され、製品ガスが塔外に排出される。この際、製品ガスの一部は吸着塔Bに導入されて、当該吸着塔Bでは引き続き昇圧が行われる。また、吸着塔Cでは、塔内に残留するガスが排出されるとともに、それによる減圧により吸着剤に吸着されていた不要ガス成分が脱着して塔外に排出される。
【0007】
ステップIV〜VIにおいては、図7d〜7fに示したように吸着塔AではステップI〜IIIにおける吸着塔Cと同様に第1減圧工程、第2減圧工程および脱着工程がそれぞれ行われる。吸着塔BではステップI〜IIIにおける吸着塔Aと同様に吸着工程が通して行われる。吸着塔CではステップI〜IIIにおける吸着塔Bと同様に洗浄工程、第1昇圧工程および第2昇圧工程が行われる。
【0008】
ステップVII〜IXにおいては、図7g〜7iに示したように吸着塔AではステップI〜IIIにおける吸着塔Bと同様に洗浄工程、第1昇圧工程および第2昇圧工程が行われる。吸着塔BではステップI〜IIIにおける吸着塔Cと同様に第1減圧工程、第2減圧工程および脱着工程が行われる。吸着塔CではステップI〜IIIにおける吸着塔Aと同様に吸着工程が通して行われる。
【0009】
以上に説明したステップI〜IXを各吸着塔A,B,Cにおいて繰り返し行うことにより、混合ガスから不要ガス成分が除去され、目的ガス濃度の高い製品ガスが連続的に得られる。
【0010】
一方、ステップIにおける吸着塔B、ステップIIIにおける吸着塔C、ステップIVにおける吸着塔C、ステップVIにおける吸着塔A、ステップVIIにおける吸着塔A、ステップIXにおける吸着塔Bから排出されるオフガスは、オフガス貯蔵タンク(図示せず)を介した上で、燃料として改質器に供給される。ここで、オフガス貯蔵タンクを介するようにした理由は、ステップII,V,VIIIでは、いずれの吸着塔からもオフガスの排出がなくなるので、他のステップにおいて排出されるオフガスの一部をオフガス貯蔵タンクに貯蔵することにより、吸着塔からのオフガスの排出が途切れるステップII,V,VIIIにおいても、オフガスを改質器に途切れることなく供給し続けることができるようにするためである。
【0011】
しかしながら、オフガス貯蔵タンクは、一般的に吸着塔の5倍以上の容積を有しており、目的ガスの濃縮分離を行うシステムのコンパクト化推進において重大な阻害要因となっていた。また、上記特許文献に開示されている技術においては、オフガス貯蔵タンクの容積を減少させると、圧力変動が大きくなるため当該タンクの小型化を図ることが困難であった。
【先行技術文献】
【特許文献】
【0012】
【特許文献1】特開2000−313605号公報
【発明の概要】
【発明が解決しようとする課題】
【0013】
そこで、本発明の目的は、PSA法を利用して、複数の吸着塔により混合ガスから目的ガスを濃縮分離する際、当該吸着塔から排出されるオフガスを途切れることなくオフガス消費ユニットに供給するとともに、目的ガスの濃縮分離を行うシステムのコンパクト化を図ることができるオフガス供給方法を提供することにある。
【課題を解決するための手段】
【0014】
本発明によれば、複数のステップからなるサイクルが繰り返し行われる圧力変動吸着法を利用して、吸着剤が充填された複数の吸着塔により混合ガスから目的ガスを濃縮分離する際において、当該吸着塔から排出されるオフガスをオフガス消費ユニットに供給するためのオフガス供給方法が提供される。この方法において、前記各吸着塔では、混合ガス中の不要ガス成分を吸着剤により吸着して目的ガス濃度の高い製品ガスを排出する吸着工程と、吸着塔内の圧力を第1の中間圧力まで低下させる第1減圧工程と、吸着塔内の圧力を第2の中間圧力まで低下させる第2減圧工程と、吸着剤に吸着した不要ガス成分を脱着し排出する脱着工程と、吸着塔内に洗浄ガスを導入して塔内に残留するガスを排出する洗浄工程と、吸着塔内の圧力を上昇させる第1昇圧工程と、吸着塔混合ガス入口および製品ガス出口を共に閉鎖する待機工程と、吸着塔内の圧力をさらに上昇させる第2昇圧工程と、が順次繰り返される。前記第2減圧工程にある吸着塔の製品ガス出口から排出される残留ガスを前記第1昇圧工程にある他の吸着塔に導入するとともに、前記第2減圧工程にある吸着塔の混合ガス入口から前記オフガス消費ユニットにオフガスを供給される。これにより、前記サイクルを構成する全てのステップにおいて、前記吸着塔の少なくとも1つから前記オフガスを排出させることにより、当該オフガスを前記オフガス消費ユニットに途切れることなく供給し続けることができる。
【0015】
以上の構成によると、オフガスを塔外へ排出し続けることができるので、オフガス貯蔵タンクなどにより当該オフガスを多量に蓄えなくても、オフガス消費ユニットなどへ途切れることなくオフガスを供給し続けることができる。したがって、目的ガス精製システムのコンパクト化における重大な阻害要因であるオフガス貯蔵タンクを小型化する、あるいは取り除くことができ、ひいては目的ガス精製システムのコンパクト化を図ることができる。
【0016】
好ましくは、オフガス消費ユニットに供給されるオフガスは、流量制御が行われる。このような構成にしたことにより、ステップごとに、あるいは経時的に、オフガスの排出圧力や組成が急激に変化する場合においても、当該変化を緩和させることができる。したがって、オフガス消費ユニットへのオフガスの供給をより安定して行うことができる。
【0017】
好ましくは、流量制御は、各吸着塔とオフガス消費ユニットとの間を繋ぐガス流路に設けられた流量制御弁の開度を変化させることにより行われる。
【0018】
好ましくは、前記各吸着塔は、前記第2減圧工程、前記脱着工程および前記洗浄工程において前記オフガス消費ユニットにオフガスを供給する。
【0019】
好ましくは、前記オフガス消費ユニットに供給される前記オフガスは、前記各吸着塔と前記オフガス消費ユニットとの間を繋ぐガス流路に設けられた流量制御弁により流量制御される。また、流量制御弁の開度は、前記洗浄工程において最大となり、前記第2減圧工程において最小となり、前記脱着工程においては徐々に増加する。
【0020】
好ましくは、前記オフガス消費ユニットは、前記混合ガスが製造される改質手段の燃焼部を構成している。
【0021】
好ましくは、前記目的ガスは、水素ガスであり、前記混合ガスは、水素ガスと、水素ガス以外の可燃性ガス成分とを含む。
【0022】
本発明のその他の特徴および利点は、添付図面に基づいて説明する実施形態から明らかとなろう。
【図面の簡単な説明】
【0023】
【図1】図1は、本発明を説明するための参考例に係るオフガスの供給方法を実現するための3塔式のPSAシステムの概略構成図である。
【図2】図2は、前記3塔式のPSAシステムを用いて目的ガスを濃縮分離する際の各ステップ(ステップ1〜9)において、各吸着塔で行われている工程およびそのときの弁の開閉状態を示すタイミング図である。
【図3】図3は、前記各ステップ(ステップ1〜9)に対応するガスの流れ図である。
【図4】図4は、前記PSAシステムから排出されるオフガスの流量を制御するための流量制御弁における開度の経時変化を示すグラフである。
【図5】図5は、本発明の実施形態に係るオフガス供給方法を実現するための4塔式のPSAシステムを用いて目的ガスを濃縮分離する際の各ステップ(ステップ1’〜12’)において、各吸着塔で行われている工程を示すタイミング図である。
【図6】図6は、前記各ステップ(ステップ1’〜12’)に対応するガスの流れ図である。
【図7】図7は、従来のオフガス供給方法を実現するための3塔式のPSAシステムを用いて目的ガスを濃縮分離する際の各ステップ(ステップI〜IX)に対応するガスの流れ図である。
【発明を実施するための形態】
【0024】
以下、本発明の参考例と好ましい実施形態について、添付図面を参照して具体的に説明する。
【0025】
本発明の参考例に係るオフガス供給方法は、たとえば図1に示した3塔式のPSAシステムを用いて実施することができる。この図に示した3塔式のPSAシステムX1は、主として、改質手段1と、精製手段2と、オフガス供給手段3とを具備している。改質手段1は、燃焼部10と改質部11とを含む。精製手段2は、3つの吸着塔A,B,Cと、混合ガス用配管20と、製品ガス用配管21と、残留ガス回収用配管22と、ガス導入用配管23と、製品ガス逆流用配管24とを含む。オフガス供給手段3は、オフガス供給用配管30を備えている。
【0026】
各吸着塔A,B,Cには、吸着剤が充填されている。吸着剤としては、カーボン(炭酸ガスやメタンガスを除去するのに適する)、ゼオライト(一酸化炭素や窒素ガスを除去するのに適する)、アルミナ(水蒸気を除去するのに適する)などが例示される。もちろん、例示した吸着剤は2種以上を併用してもよく、また例示したもの以外の吸着剤を使用してもよい。
【0027】
各配管20〜24には、自動弁a〜qがそれぞれ設けられている。残留ガス回収用配管22、製品ガス逆流用配管24およびオフガス供給用配管30には流量制御弁40,41,42がそれぞれ設けられている。また、自動弁a〜qの開閉および流量制御弁40,41,42の開度を制御する制御手段(図示せず)も設けられている。以下に説明するように、自動弁a〜qの開閉状態の選択および流量制御弁40,41,42の開度の制御をすることにより、各吸着塔A,B,Cにおいて吸着工程、第1減圧工程、第2減圧工程、脱着工程、洗浄工程、第1昇圧工程および第2昇圧工程が行われる。
【0028】
具体的には、図2に示したようなタイミングで、各吸着塔A,B,Cにおいて各工程(ステップ1〜9)が行われる。各ステップにおける自動弁a〜qの開閉状態は、図2に示されており、各ステップにおけるガス流れは、図3a〜3iに模式的に示されている。また、図4は、ステップ1〜3までの各ステップにおける流量制御弁42の開度制御の一例を示す。図4に示した例によれば、流量制御弁42の開度は、ステップ1では100%(一定)であり、ステップ2では10%(一定)であり、ステップ3では40%(ステップ3開始時)〜100%(ステップ3終了時)までほぼ直線的に経時変化する。但し、流量制御弁42の開度は、必要に応じて任意に定めればよい。同様に、流動制御弁40,41の開度も、必要に応じて任意に定めればよい。
【0029】
なお、図2においては以下の略号が用いられている。
AD: 吸着工程
第1DP: 第1減圧工程
第2DP: 第2減圧工程
DE: 脱着工程
SC: 洗浄工程
第1PR: 第1昇圧工程
第2PR: 第2昇圧工程
【0030】
ステップ1においては、図2に示したように吸着塔Aでは吸着工程、吸着塔Bでは洗浄工程、吸着塔Cでは第1減圧工程が行われており、図3aに示したようなガス流れ状態とされている。
【0031】
図1および図3aに示したように、吸着塔Aには、改質手段1における改質部11から混合ガス用配管20および自動弁aを介して混合ガスが導入される。吸着塔Aでは、吸着剤により不要ガス成分が除去されて製品ガスが塔外に排出される。製品ガスは、自動弁iおよび製品ガス用配管21を介して回収される。
【0032】
吸着塔Bには、自動弁n、残留ガス回収用配管22、流量制御弁40、自動弁p、ガス導入用配管23および自動弁jを介して、吸着塔Cから排出された残留ガス(洗浄ガス)が導入される。吸着塔Cは、先に吸着工程を行っているのに対して、吸着塔Bは先に脱着工程を行っていたから(図3iに示されるステップ9参照)、吸着塔Cの塔内の方が吸着塔Bの塔内よりも高圧となっている。そのため、吸着塔Cの残留ガスを吸着塔Bに導入することにより、吸着塔Cの塔内が第1の中間圧力まで減圧され、吸着塔Bからは塔内に残留するガスが排出される。このガスは、自動弁d、オフガス供給用配管30および流量制御弁42を介して改質手段1における燃焼部10に供給される。
【0033】
吸着最高圧力を100%、脱着最低圧力を0%と仮定した場合、吸着塔C(第1減圧工程)における上記第1中間圧力は、35%〜85%の範囲とされる。
【0034】
ステップ2においては、図2に示したように吸着塔Aでは吸着工程、吸着塔Bでは第1昇圧工程、吸着塔Cでは第2減圧工程が行われており、図3bに示したようなガス流れ状態とされている。
【0035】
図1および図3bに示したように、吸着塔Aでは、ステップ1に引き続いて混合ガスが導入され、製品ガスが塔外に排出される。製品ガスは、ステップ1と同様にして回収される。
【0036】
一方、吸着塔Cから導出される残留ガスは、自動弁n、残留ガス回収用配管22、流量制御弁40、自動弁p、ガス導入用配管23および自動弁jを介して吸着塔Bに導入されるとともに、自動弁f、オフガス供給用配管30および流量制御弁42を介して燃焼部10に供給される。すなわち、ステップ2では、吸着塔Bと吸着塔Cとの間で均圧化を図るために自動弁dを閉じることにより、吸着塔Bからのオフガスの供給が遮断されるが、自動弁fを開くことにより、吸着塔Cから自動弁f、オフガス供給用配管30および流量制御弁42を介して燃焼部10にオフガスが供給される。この結果、燃焼部10にはステップ1から途切れることなくオフガスが供給され続ける。また、吸着塔Cの塔内が第1の中間圧力よりも低い第2の中間圧力までさらに減圧されるとともに、吸着塔Bの昇圧が行われる。
【0037】
吸着最高圧力を100%、脱着最低圧力を0%と仮定した場合、吸着塔C(第2減圧工程)における第2中間圧力は、50%〜15%の範囲とされる。
【0038】
ステップ3においては、図2に示したように吸着塔Aでは吸着工程、吸着塔Bでは第2昇圧工程、吸着塔Cでは脱着工程が行われており、図3cに示したようなガス流れ状態とされている。
【0039】
図1および図3cに示したように、吸着塔Aでは、ステップ1および2から引き続き混合ガスが導入され、製品ガスが塔外に排出される。製品ガスは、ステップ1と同様にして回収されるが、その一部が製品ガス逆流用配管24、自動弁q、流量制御弁41、ガス導入用配管23および自動弁jを介して吸着塔Bに導入され、吸着塔Bの塔内のさらなる昇圧が行われる。
【0040】
一方、吸着塔Cでは、図2に示したように、自動弁e,m,n,oが閉鎖され、自動弁fが開放状態とされており、脱着最低圧力まで塔内からオフガス(吸着剤から脱着した不要ガス成分も含む)が排出される。このオフガスは、自動弁f、オフガス供給用配管30および流量制御弁42を介して燃焼部10に供給される。したがって、燃焼部10にはステップ2から途切れることなくオフガスが供給され続ける。
【0041】
ステップ4〜6においては、図2および図3d〜3fに示したように、吸着塔Aではステップ1〜3における吸着塔Cと同様にして第1減圧工程、第2減圧工程および脱着工程が行われる。吸着塔Bではステップ1〜3における吸着塔Aと同様にして吸着工程が通して行われる。吸着塔Cではステップ1〜3における吸着塔Bと同様にして洗浄工程、第1昇圧工程および第2昇圧工程が行われる。
【0042】
ステップ7〜9においては、図2および図3g〜3iに示したように、吸着塔Aではステップ1〜3における吸着塔Bと同様にして洗浄工程、第1昇圧工程および第2昇圧工程が行われる。吸着塔Bではステップ1〜3における吸着塔Cと同様にして第1減圧工程、第2減圧工程および脱着工程が行われる。吸着塔Cではステップ1〜3における吸着塔Aと同様にして吸着工程が通して行われる。
【0043】
以上に説明したステップ1〜9を各吸着塔A,B,Cにおいて繰り返し行うことにより、混合ガスから不要ガス成分が除去され、目的ガス濃度の高い製品ガスが連続的に得られるとともに、各吸着塔A,B,Cからオフガスを排出し続ける。この結果、オフガスを燃焼部10に途切れることなく供給し続けることができる。したがって、本参考例におけるPSAシステムX1には、多大な設置面積を要するオフガス貯蔵タンクを設ける必要がなく、当該システムX1のコンパクト化を達成することができる。なお、目的ガスを水素ガスとした場合、混合ガスとしては、水素ガスと、水素ガス以外の可燃性ガス成分とを含むものが好ましい。
【0044】
次に、本発明の実施形態に係るオフガス供給方法について、図5〜図6を参照しつつ説明する。図5は、各ステップ(後述するステップ1’〜12’参照)において各吸着塔で行われている工程の内容を示す。図6は、目的ガスを濃縮分離する際の各ステップに対応するガスの流れを模式的に表す。本発明の実施形態におけるPSAシステムと上記参考例におけるPSAシステムX1との構造上の相違は、吸着塔Dを追加して4塔式にしたことにある。吸着塔Dの追加に伴い、自動弁の追加などが行われるが、その他の構成は、参考例と同様であるため、実施形態における詳細なシステムの構造および各ステップにおける弁の開閉状態についての説明は省略する。
【0045】
なお、図5においては以下の略号が用いられている。
AD: 吸着工程
第1DP: 第1減圧工程
第2DP: 第2減圧工程
DE: 脱着工程
SC: 洗浄工程
第1PR: 第1昇圧工程
第2PR: 第2昇圧工程
WA: 待機工程
【0046】
本発明の実施形態では、各吸着塔A,B,C,Dにおいて吸着工程、第1減圧工程、第2減圧工程、脱着工程、洗浄工程、第1昇圧工程、待機工程および第2昇圧工程が行われる。具体的には、図5に示したようなタイミングで、各吸着塔A,B,C,Dにおいて各工程(ステップ1’〜12’)が行われる。
【0047】
ステップ1’においては、図5に示したように吸着塔Aでは吸着工程、吸着塔Bでは第2昇圧工程、吸着塔Cでは洗浄工程、吸着塔Dでは第1減圧工程が行われており、図6aに示したようなガス流れ状態とされている。
【0048】
図6aに示したように、吸着塔Aには、改質部(図示せず)から混合ガスが導入される。吸着塔Aでは、吸着剤により不要ガス成分が除去されて製品ガスが塔外に排出され、回収される。また、この製品ガスの一部が吸着塔Bに導入され、吸着塔Bの塔内の昇圧が行われる。
【0049】
吸着塔Cには、吸着塔Dから排出された残留ガス(洗浄ガス)が導入される。吸着塔Dは、先に吸着工程を行っているのに対して吸着塔Cは先に脱着工程を行っていたから(図6lに示される後述のステップ12’参照))、吸着塔Dの塔内の方が吸着塔Cの塔内よりも高圧となっている。そのため、吸着塔Dの残留ガスを吸着塔Cに導入することにより、吸着塔Dの塔内が第1の中間圧力まで減圧され、吸着塔Cからは塔内に残留するガスが排出される。排出されたオフガスは、燃焼部(図示せず)に供給される。
【0050】
吸着最高圧力を100%、脱着最低圧力を0%と仮定した場合、吸着塔D(第1減圧工程)における第1中間圧力は、35%〜85%の範囲とされる。
ステップ2’においては、図5に示したように吸着塔Aでは吸着工程、吸着塔Bでは第2昇圧工程、吸着塔Cでは第1昇圧工程、吸着塔Dでは第2減圧工程が行われており、図6bに示したようなガス流れ状態とされている。
【0051】
図6bに示したように、吸着塔Aには、ステップ1’に引き続いて混合ガスが導入され、製品ガスが塔外に排出される。製品ガスは、ステップ1’と同様にして回収される。また、この製品ガスの一部が、引き続き吸着塔Bに導入され、吸着塔Bの塔内の昇圧が行われる。
【0052】
一方、吸着塔Dから導出される残留ガスは、吸着塔Cに導入されるとともに、燃焼部(図示せず)に供給される。すなわち、ステップ2’では、吸着塔Cと吸着塔Dとの間で均圧化を図るために、吸着塔Cからのオフガスの排出が遮断されるが、吸着塔Dから燃焼部(図示せず)にオフガスが供給される。この結果、燃焼部には途切れることなくオフガスが供給され続ける。また、これにより、吸着塔Dの塔内が第1の中間圧力よりも低い第2の中間圧力まで、さらに減圧されるとともに、吸着塔Cの昇圧が行われる。
【0053】
吸着最高圧力を100%、脱着最低圧力を0%とした場合、吸着塔D(第2減圧工程)における第2中間圧力は、50%〜15%の範囲とされる。
【0054】
ステップ3’においては、図5に示したように吸着塔Aでは吸着工程、吸着塔Bでは第2昇圧工程、吸着塔Cでは待機工程、吸着塔Dでは脱着工程が行われており、図6cに示したようなガス流れ状態とされている。
【0055】
図6cに示したように、吸着塔Aには、ステップ1’および2’に引き続き混合ガスが導入され、製品ガスが塔外に排出される。製品ガスは、ステップ1’と同様にして回収される。また、この製品ガスの一部が吸着塔Bに導入され、吸着塔Bの塔内の昇圧が行われる。
【0056】
一方、吸着塔Dでは、脱着最低圧力まで塔内からオフガス(吸着剤から脱着した不要ガス成分を含む)が排出される。排出されたオフガスは、燃焼部(図示せず)に供給される。また、吸着塔Cは、ガスの授受のない待機状態にある。
【0057】
ステップ4’〜6’においては、図5および図6d〜6fに示したように、吸着塔Aではステップ1’〜3’における吸着塔Dと同様にして第1減圧工程、第2減圧工程および脱着工程が行われる。吸着塔Bではステップ1’〜3’における吸着塔Aと同様にして吸着工程が通して行われる。吸着塔Cではステップ1’〜3’における吸着塔Bと同様にして第2昇圧工程が通して行われる。吸着塔Dではステップ1’〜3’における吸着塔Cと同様にして洗浄工程、第1昇圧工程および待機工程が行われる。
【0058】
ステップ7’〜9’においては、図5および図6g〜6iに示したように、吸着塔Aではステップ1’〜3’における吸着塔Cと同様にして洗浄工程、第1昇圧工程および待機工程が行われる。吸着塔Bではステップ1’〜3’における吸着塔Dと同様にして第1減圧工程、第2減圧工程および脱着工程が行われる。吸着塔Cではステップ1’〜3’における吸着塔Aと同様にして吸着工程が通して行われる。吸着塔Dではステップ1’〜3’における吸着塔Bと同様にして第2昇圧工程が通して行われる。
【0059】
ステップ10’〜12’においては、図5および図6j〜6lに示したように、吸着塔Aではステップ1’〜3’における吸着塔Bと同様にして第2昇圧工程が通して行われる。吸着塔Bではステップ1’〜3’における吸着塔Cと同様にして洗浄工程、第1昇圧工程および待機工程が行われる。吸着塔Cではステップ1’〜3’における吸着塔Dと同様にして第1減圧工程、第2減圧工程および脱着工程が行われる。吸着塔Dではステップ1’〜3’における吸着塔Aと同様にして吸着工程が通して行われる。
【0060】
以上に説明したステップ1’〜12’を各吸着塔A,B,C,Dにおいて繰り返し行うことにより、混合ガスから不要ガス成分が除去され、目的ガス濃度の高い製品ガスが連続的に得られる。また、各吸着塔A,B,C,Dからオフガスを排出し続けるため、当該オフガスを燃焼部(図示せず)に途切れることなく供給し続けることができる。したがって、本発明の実施形態におけるPSAシステムには、多大な設置面積を要するオフガス貯蔵タンクを設ける必要がなく、当該システムのコンパクト化を達成することができる。なお、目的ガスを水素ガスとした場合、混合ガスとしては、水素ガスと、水素ガス以外の可燃性ガス成分とを含むものが好ましい。
【0061】
以上、本発明の具体的な実施形態を説明したが、本発明はこれに限定されるものではなく、発明の思想から逸脱しない範囲内で種々な変更が可能である。

【特許請求の範囲】
【請求項1】
複数のステップからなるサイクルが繰り返し行われる圧力変動吸着法を利用して、吸着剤が充填された複数の吸着塔により混合ガスから目的ガスを濃縮分離する際において、当該吸着塔から排出されるオフガスをオフガス消費ユニットに供給するためのオフガス供給方法であって、
前記各吸着塔では、混合ガス中の不要ガス成分を吸着剤により吸着して目的ガス濃度の高い製品ガスを排出する吸着工程と、吸着塔内の圧力を第1の中間圧力まで低下させる第1減圧工程と、吸着塔内の圧力を第2の中間圧力まで低下させる第2減圧工程と、吸着剤に吸着した不要ガス成分を脱着し排出する脱着工程と、吸着塔内に洗浄ガスを導入して塔内に残留するガスを排出する洗浄工程と、吸着塔内の圧力を上昇させる第1昇圧工程と、吸着塔混合ガス入口および製品ガス出口を共に閉鎖する待機工程と、吸着塔内の圧力をさらに上昇させる第2昇圧工程と、が順次繰り返され、
前記第2減圧工程にある吸着塔の製品ガス出口から排出される残留ガスを前記第1昇圧工程にある他の吸着塔に導入するとともに、前記第2減圧工程にある吸着塔の混合ガス入口から前記オフガス消費ユニットにオフガスを供給することにより、
前記サイクルを構成する全てのステップにおいて、前記吸着塔の少なくとも1つから前記オフガスを排出させることにより、当該オフガスを前記オフガス消費ユニットに途切れることなく供給し続けることを特徴とする、オフガス供給方法。
【請求項2】
前記オフガス消費ユニットに供給される前記オフガスは、流量制御が行われる、請求項1に記載のオフガス供給方法。
【請求項3】
前記流量制御は、前記各吸着塔と前記オフガス消費ユニットとの間を繋ぐガス流路に設けられた流量制御弁の開度を変化させることにより行われる、請求項2に記載のオフガス供給方法。
【請求項4】
前記オフガス消費ユニットは、前記混合ガスが製造される改質手段の燃焼部を構成している、請求項1に記載のオフガス供給方法。
【請求項5】
前記目的ガスは、水素ガスであり、前記混合ガスは、水素ガスと、水素ガス以外の可燃性ガス成分とを含む、請求項1に記載のオフガス供給方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2011−161444(P2011−161444A)
【公開日】平成23年8月25日(2011.8.25)
【国際特許分類】
【出願番号】特願2011−102988(P2011−102988)
【出願日】平成23年5月2日(2011.5.2)
【分割の表示】特願2005−502833(P2005−502833)の分割
【原出願日】平成16年2月16日(2004.2.16)
【出願人】(000195661)住友精化株式会社 (352)
【Fターム(参考)】