説明

Fターム[4G140FA02]の内容

水素、水、水素化物 (21,792) | 被処理ガスの種類 (634) | 特定されたもの (465) | 生成プロセスにより特定されたもの (357)

Fターム[4G140FA02]の下位に属するFターム

Fターム[4G140FA02]に分類される特許

1 - 20 / 348



【課題】水素発生設備を提供する。
【解決手段】かかる水素発生設備は、水素、前記水素に混在する水気、及び前記水素に混在する有毒気体を発生させる水素発生装置と、水素純化装置と、を含む。前記水素純化装置は、前記水素が通過している時に、前記水素に混在する前記水気を除去する水気ろ過ユニットと、ろ過部を含む有毒気体ろ過ユニットと、を含む。前記ろ過部の表面には、複数の水酸基(-OH)があり、前記水素は、前記水気ろ過ユニットを通過した後に、前記有毒気体ろ過ユニットを通過している時に、前記水素に混在する前記有毒気体は、前記複数の水酸基と反応を行って除去される。 (もっと読む)


【課題】アンモニアの分解により水素を効率的且つ低コストに製造する。
【解決手段】反応器内に水素分離膜mで隔てられた空間A,Bを備え、空間Aにアンモニア分解触媒xが配置された製造手段を用い、空間Aにアンモニアを供給してアンモニア分解触媒xによりアンモニアを分解し、該アンモニアの分解により生成した水素を、水素分離膜mを透過させて空間Bに流入させ、水素を回収する。空間Aで生成した水素が速やかに水素分離膜mを透過して空間Bに移行するため、空間Aでのアンモニア分解反応が効果的に促進される。また、アンモニア分解とアンモニア分解ガスからの水素の分離・回収を同時に行うことができ、回収された水素は高純度であるため、別途精製等の操作を行う必要がない。 (もっと読む)


【課題】他のプロセスで製造された水素を用いることなく、CO及び/又はCOのメタン化により効率的且つ低コストにメタンを製造する。
【解決手段】反応器内に水素分離膜mで隔てられたアンモニア分解室A(アンモニア分解触媒xを設置)とメタン化反応室B(メタン化触媒yを設置)を設け、アンモニア分解室A内に導入されたアンモニアの分解で生じた水素のみを水素分離膜mを透過させてメタン化反応室Bに流入させ、このメタン化反応室B内に導入されているCO及び/又はCOと反応させ、メタンを生成させる。 (もっと読む)


【課題】体格の小型化を図りつつ、製造コストを低減することができる反応器を提供する。
【解決手段】未反応物を反応させて水素と窒素を生成する反応部32a、32bと、水素および窒素から窒素を選択的に吸蔵することにより、窒素を分離除去する除去部33a、33bとを備え、除去部33a、33bは、窒素を選択的に吸蔵する際に熱を放出する吸収剤330a、330bと、吸収剤330a、330bが放出する熱を除去する冷却手段35a、35bとを有する。 (もっと読む)


【課題】 CO透過型メンブレンリアクターに適用可能な二酸化炭素透過性とCO/H選択性に優れたCO促進輸送膜を安定して提供する。
【解決手段】 CO促進輸送膜は、ハイドロゲル膜で構成されたゲル層1を、親水性の多孔膜2に担持させて提供される。更に好ましくは、親水性の多孔膜2に担持されたゲル層1が疎水性の多孔膜3,4によって被覆支持されている。当該ゲル膜は、グリシンとともにアルカリ金属元素を含む脱プロトン化剤を含んでいる。当該脱プロトン化剤は、好ましくは、アルカリ金属元素の水酸化物または炭酸塩であり、更により好ましくは、当該アルカリ金属元素が、カリウム若しくはセシウム若しくはルビジウムの何れかである。 (もっと読む)


【課題】繰り返し使用できるイオン液体の存在下に、ギ酸から水素を継続的にかつ低コストで製造することができる水素発生システムを提供すること。
【解決手段】ギ酸とイオン液体の混合液体を収容し、加熱下でギ酸とイオン液体の混合液体中のギ酸を水素と二酸化炭素に分解する水素生成反応部;および水素生成反応部から供給された水素と二酸化炭素の混合物を水素と二酸化炭素とに分離可能な分離部を備え、分離処理後における水素を分離部から外部の水素送出先へ送出し、かつ二酸化炭素を分離部から外部の二酸化炭素送出先へ送出するかあるいは大気中に排出するように構成したことを特徴とする水素発生システム。 (もっと読む)


【課題】水素等の流体分離特性に優れつつ、シールするための強度を備えた流体分離材料及びその製造方法を提供する。
【解決手段】ロッド30の周囲にCVD法によりガラス微粒子を堆積させてガラス微粒子堆積体25を作製し、ガラス微粒子堆積体25からロッド30を引き抜いて筒状の多孔質ガラス支持体21を作製し、多孔質ガラス支持体21の表面にシリカガラス分離膜層22を形成して水素分離材料20を製造する方法であって、多孔質ガラス支持体21の軸方向両端部を緻密化する緻密化工程を含む。 (もっと読む)


【課題】 多種多様なバイオマスからバイオオイルを製造し、バイオオイルから水性ガスを製造プロセスにおいて、バイオオイルを効率よく改質して、水性ガスを収率良く製造する装置を提供する。
【解決手段】 非磁性体で形成された筒状の容器であって、前記容器の一端に設けられバイオオイル生成装置と連通する入口と、バイオオイル生成装置から供給されるバイオオイルを常圧で気化させる膨脹部と、前記容器の内部に設けられ磁性体で形成された発熱体と、前記容器の他端に設けられ固体と気体とを分離する気体・固体分離装置に連通する出口と、を有し、外周に高周波電磁誘導コイルが卷回された外管と、
前記外管の内部に設けられ、水素透過膜を有し、前記外管を貫通して水素ガス出口と連通する1以上の内管と、を有するバイオオイル改質装置。 (もっと読む)


【課題】水素含有ガスから水素を選択的に透過して分離するための水素分離膜であって、Nb−W系合金からなる水素分離膜を提供する。
【解決手段】水素含有ガスから水素を選択的に透過して分離するための水素分離膜であって、NbにWを添加して合金化したNb−W合金膜からなることを特徴とする水素分離膜、および、NbにWとTaを添加して合金化したNb−W−Ta合金膜からなることを特徴とする水素分離膜。 (もっと読む)


【課題】製造に必要なエネルギーを低く抑えつつ、ナノ炭素を量産することができ、また二酸化炭素の発生量を抑えることができるナノ炭素の製造方法及び製造装置を提供する。
【解決手段】流動触媒、又は流動媒体を併用する流動触媒1が収容され、低級炭化水素と酸素とが供給されて自己燃焼可能な流動層反応器2と、流動層反応器2に接続され、流動層反応器2内に低級炭化水素と酸素とを供給するガス供給部5と、流動層反応器2に接続され、流動層反応器2内の排ガスを外部に排出する排ガス路8と、流動層反応器2に接続され、流動層反応器2内に流動触媒、又は流動媒体を併用する流動触媒1を補給する補給部2aとを有するナノ炭素の製造装置を用い、流動触媒、又は流動媒体を併用する流動触媒1に低級炭化水素と酸素とを供給して流動層を形成し、低級炭化水素と酸素との自己燃焼を伴う低級炭化水素の分解反応によって、ナノ炭素と水素とを生成する。 (もっと読む)


【課題】水素製造プロセス等におけるCOの回収において、CO透過度およびCO分離選択性に優れたCO膜分離回収システムを提供する。
【解決手段】本発明のCOの膜分離回収システムは、CO膜分離モジュール(1)の前段に脱水処理モジュール(2)を具備し、かつ、CO膜分離モジュール(1)は、CO選択的透過性を示す多孔質基体上に製膜した親水性ゼオライト膜(3)を具備し、親水性ゼオライト膜(3)は、100〜800℃の加熱処理により脱水処理されたものであることを特徴とする。 (もっと読む)


【課題】
COG中の炭化水素を従来の水蒸気改質法で改質しようとした場合、COGを圧縮して高圧にしなければならないし、COG中の炭化水素もおよそ30%と改質原料としては濃度が低いため改質量の割には装置が大きくなり経済性に問題がある。
【解決手段】
改質装置の運転圧力を500mmAq以下とすることで、COGの圧縮は必要なくなり、工場内の廃蒸気を使用することにより装置全体の熱効率を上げることができる。また反応器の構造をルーバを使用して縦型充填層にすることにより触媒の取替えが容易となり触媒の寿命をこだわる必要がなくなる。 (もっと読む)


【課題】 COを排出しない合成ガスの製造方法を提供する。
【解決手段】 炭化水素ガスを改質して合成ガスを製造する方法であって、スチーム及び/又は炭酸ガスが添加された軽質炭化水素ガスをシェル&チューブ熱交換器型リフォーマーにおいて触媒が充填されているチューブ側に供給すると共に、そのシェル側に例えば太陽熱や原子力の核熱を熱源とする溶融塩などの熱媒体を循環させて改質反応を起こし、チューブ側から排出される生成ガスから炭酸ガスを抜き出してチューブ側の上流にリサイクルする。 (もっと読む)


【課題】GTL(Gas−To−Liquid)プロセスの合成ガス製造工程に用いる合成ガス製造装置(リフォーマー)への金属成分の混入を防ぐ。
【解決手段】天然ガスとスチームおよび/または二酸化炭素を含むガスとを合成ガス製造装置内で改質反応して合成ガスを製造する合成ガス製造工程を含むGTLプロセスの合成ガス製造装置への金属混入抑制方法であって、該合成ガス製造工程で製造された該合成ガス中の炭酸ガスを分離回収し、分離回収された該炭酸ガスを該合成ガス製造工程における改質反応の原料ガスにリサイクルする際に、該リサイクルされる炭酸ガス中に含まれるニッケルの濃度が0.05ppmv以下であることを特徴とする合成ガス製造装置への金属混入抑制方法。 (もっと読む)


【課題】水素分離材料の支持体として好適に使用できるシリカ系多孔質体を提供すること、特に、良好なガス透過性能を有しながら耐衝撃性が向上したガラス管を提供すること。
【解決手段】ガラス管10は、その平均気孔率が40%以上70%以下であり、少なくとも長手方向の一部の軸方向に垂直な断面における気孔率が内周側から外周側に向かって傾斜を有するとともに最内層気孔率が最外層気孔率よりも高くなるように形成されている。 (もっと読む)


【課題】高温・高圧下での水素透過率、強度及び耐応力緩和特性に優れたCu−Pd合金を提供する。
【解決手段】組成式:PdaCubc (X:Al、Ga及びInの少なくとも1種、a:41〜50at%、b:1−a−c、c:0.2〜2at%)で表され、600℃でのβ相の割合が5%以上である水素透過性銅合金。 (もっと読む)


【課題】変動の大きな排熱を熱源として利用する場合であっても、DMEの水蒸気改質反応により高品質の水素を安定して継続的に製造することができる水素製造方法及び水素製造システムを提供する。
【解決手段】DME改質反応器3と、DME改質反応器3に水蒸気を供給する水蒸発器10と、DME改質反応器3にDMEを供給するDME気化器6と、水蒸発器10により供給される水蒸気の流量を調整する調整弁11と、水素の生成量を測定する水素流量計31とを備え、水素流量計31による測定結果に基づき、調整弁11による水蒸気の流量の調整を制御する。 (もっと読む)


【課題】排ガスから、二酸化炭素をエネルギー効率よく分離することができる水素製造装置を提供すること。
【解決手段】改質ガスを得る改質部1を備え、改質ガスを二酸化炭素を含む排ガスと水素とに分離して水素を製造する水素分離部2を備え、排ガスから二酸化炭素を吸収する吸収部31と、吸収された二酸化炭素を分離回収する分離回収部32とを有するとともに、吸収部31で二酸化炭素を吸収した二酸化炭素吸収液と、分離回収部32で二酸化炭素を分離回収された二酸化炭素吸収液との間で熱交換を行う熱交換部33を有する二酸化炭素回収部3とを備え、改質ガスが改質部1から水素分離部2に移送される第一部位P1において改質ガスの保有する熱を、吸収部31から分離回収部32に移送される過程で熱交換部33で熱交換済みの二酸化炭素吸収液に供給する第一熱回収手段R1を備えた。 (もっと読む)


【課題】本発明は、製品水素の損失を低減するとともに、改質ガスから高い回収率で高純度水素を回収可能なPSA方式高純度水素製造方法を提供することを目的とする。
【解決手段】第1のPSA装置2と、第2のPSA装置3と、高純度水素(製品水素)Cを一時貯蔵するバッファタンク4と、第2のPSA装置3から排出されるオフガスD中の水素を吸蔵放出するための水素吸蔵合金が充填された水素貯蔵タンク5a、5b、5cとを備え、CO吸着剤及びHO吸着剤の再生用洗浄ガス並びに第1のPSA装置2の各PSA吸着塔2a、2b、2cの昇圧用ガスとして、水素貯蔵タンク5a、5b、5c内の水素を用い、(CO及びHO)以外の不要ガス吸着剤の再生用洗浄ガス及び第2のPSA装置3の各PSA吸着塔3a、3b、3cの昇圧用ガスとして、バッファタンク4内の高純度水素(製品水素)Cと水素貯蔵タンク5a、5b、5c内の水素を用いる。 (もっと読む)


1 - 20 / 348