説明

カーボンナノチューブの分散体およびその製造方法

【課題】カーボンナノチューブの分散体および分散方法の提供。
【解決手段】カーボンナノチューブ(CNT)とポリ(3-ヘキシルチオフェン)(P3HT)の複合体をポリジメチルシロキサン(PDMS)中に均一に分散してなるカーボンナノチューブ分散体。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、カーボンナノチューブの分散体およびその製造方法に関する。
【背景技術】
【0002】
近年、新たな電力源として、熱電効果を利用した発電機構の開発が行われるようになってきている。熱電効果は、電気伝導体や半導体などの金属中において、熱流の熱エネルギーと電流の電気エネルギーが相互に及ぼし合う効果の総称であり、ゼーベック効果、ペルティエ効果、トムソン効果の3つの効果をいう。このうち、ゼーベック効果は物体の温度差が電圧に直接変換される現象であり、電圧を温度差に変換するペルティエ効果とはちょうど逆の関係にある。
【0003】
ゼーベック効果によれば、温度差を電圧に変換することができ、これを利用して電気を発生させることができる。このような熱電発電システムを実現する熱電モジュールについては、これまでに様々な開発がなされてきている(例えば非特許文献1参照)。
【0004】
このような熱を電気に変換するシステムにおいては、熱を供給すれば発電し、熱の供給を止めれば発電も停止することとなり、熱の供給の有無を発電のスイッチとして用いることができる。
【0005】
そこで、効率よく短時間で熱することが可能な素材を加熱して熱源として用いることで、このようなスイッチ機能を実現できると考えられるが、そのような研究はほとんどなされていない。
【0006】
特許文献1は、カーボンナノチューブを含む熱電モジュールを開示しているが、その性能において改善が求められていた。
【0007】
カーボンナノチューブは、様々な分野における機械的及び機能的材料として期待されており、これら材料を製造する際、カーボンナノチューブの特性を発現させる為に、カーボンナノチューブを高濃度でポリマー中に分散させることが望ましい。通常、カーボンナノチューブをポリマー中に分散させるには、カーボンナノチューブを直接ポリマーに添加した後に混練するか、又はカーボンナノチューブを有機溶媒などに分散させ、これをポリマーに混練した後に、有機溶媒を除去するなどの方法が用いられている。
【0008】
カーボンナノチューブの分散性をさらに改良する技術が求められていた。
【先行技術文献】
【特許文献】
【0009】
【特許文献1】特開2010−123885
【非特許文献】
【0010】
【非特許文献1】L. E. Bell, Science 321, 1457-1461 (2008)
【発明の概要】
【発明が解決しようとする課題】
【0011】
カーボンナノチューブは、単独では、ポリマーや有機溶媒に分散しにくいという欠点を有している為、いずれの方法でもカーボンナノチューブを高濃度で安定的、且つ均一にポリマーに分散させるのは困難となっている。これはカーボンナノチューブ相互の凝集力(ファンデルワールス力) によって、束状及び縄状に凝集してしまうためである。また、カーボンナノチューブの原子レベルでの滑らかな表面が溶媒に対する親和性を低下させる要因となっている。
【0012】
本発明は、カーボンナノチューブを良好に分散させる方法及び分散液を提供することを目的とする。
【課題を解決するための手段】
【0013】
本発明者らは、ポリ(3-ヘキシルチオフェン)(P3HT)とカーボンナノチューブ(CNT)の複合体を形成し、これをPDMSに分散させることにより、CNTが均一にかつ高濃度で分散できることを見出した。
【0014】
本発明は、以下のカーボンナノチューブ分散体およびカーボンナノチューブが均一に分散したポリジメチルシロキサン(DMS)の製造方法を提供するものである。
項1.カーボンナノチューブ(CNT)とポリ(3-ヘキシルチオフェン)(P3HT)の複合体をポリジメチルシロキサン(PDMS)中に均一に分散してなるカーボンナノチューブ分散体。
項2.カーボンナノチューブ(CNT)とポリ(3-ヘキシルチオフェン)(P3HT)の複合体をジメチルシロキサン(DMS)中に均一に分散させ、必要に応じて架橋剤の存在下に硬化することを特徴とする、カーボンナノチューブが均一に分散したポリジメチルシロキサン(DMS)の製造方法。
【発明の効果】
【0015】
本発明は、導電性ポリマー[ポリ(3-ヘキシルチオフェン)(P3HT)]をカーボンナノチューブ表面に吸着させることで、ポリジメチルシロキサン(PDMS)中にカーボンナノチューブを均一に分散させることができることを見出した。
【0016】
本発明により得られたCNT-P3HT複合体を均一分散したPDMSは、光発熱体として好適に使用できる。
【図面の簡単な説明】
【0017】
【図1】CNTコンポジットフィルムのキャラクタリゼーション (a)概念図 SWNT表面を導電性ポリマーであるP3HTによってラッピングすることでPDMS中に均一かつ高濃度に分散化することができる。特開2009-196877では、PDMS中にSWNT複合体を最大で0.01 wt%分散化可能であったが、本発明の方法では0.06 wt%まで分散化することができた。 (b)(左) P3HT-SWNT-PDMSフィルムとPDMSフィルムの透明性に関するデジタルカメラ写真<異なるP3HT-SWNT複合体濃度のフィルム:(i) 0 mg/mL, (ii) 0.15 mg/mL, 0.3 mg/mL, (iV) 0.6 mg/mL> (右) P3HT-SWNT-PDMSのフレキシビリティーに関するデジカメ写真 P3HTでラッピングしたSWNT複合体は、PDMS中に均一に分散化可能であるため、黒色でありながら高い透明性を保つことができる。実際、いずれの濃度においても写真のようにAISTのロゴマークが透けて見える。また、作製したP3HT-SWNT-PDMSは、高いフレキシビリティーを有しているため棒状の物体等に巻きつけることも可能である。 (c)光学顕微鏡写真 (左) P3HT-SWNT-PDMSフィルム (右) SWNT-PDMSフィルム P3HT-SWNT-PDMSは、SWNTがフィルム中に均一に分散化しているため、SWNTに由来する黒い凝集物は見られない。一方、P3HT未修飾のSWNTは、PDMSに全く分散化できないため、SWNTに由来する黒い凝集物がフィルム中のいたるところで観察される。 (d)ラマンスペクトル解析 1: Fig. 1左の矢印1、2: Fig. 1右の矢印1、3: Fig. 1右の矢印3、4: SWNT粉末のラマンスペクトル、 5: PDMSのラマンスペクトル P3HT-SWNT複合体を内包したPDMSフィルム(1)からはSWNT(4)と同様のラマンスペクトルが得られ、当該領域にカーボンナノチューブがよく分散していることが裏付けられた。また、未修飾SWNTを内包したPDMSフィルムには、SWNTが凝集している部分(2)と全くSWNTが存在しない部分(3)があることがわかった。 (e)クロロホルム中(i)とPDMS中(ii)のP3HT-SWNTのUV-vis-NIR吸収スペクトル解析 P3HT-SWNT複合体を分散化させたクロロホルムおよびPDMSは、波長約500〜800nmにおいてピークが複数観測され、溶液中にカーボンナノチューブが均一に溶解していることが確認できた。略号 CNT:カーボンナノチューブ、P3HT:ポリ(3-ヘキシルチオフェン)、SWNT:単層カーボンナノチューブ、PDMS:ポリジメチルシロキサン
【図2】各種コンポジットとPDMS中の分散化状態 (a)各種コンポジットのデジカメ写真<(i) PDMS、(ii) C60-PDMS、(iii) グラファイト-PDMS、(iV) SWNT-PDMS、(V) P3HT-SWNT-PDMS> (b)各種コンポジットの光学顕微鏡写真 <(i) PDMS、(ii) C60-PDMS、(iii) グラファイト-PDMS、(iV) SWNT-PDMS、(V) P3HT-SWNT-PDMS> C60とP3HT-SWNT複合体はPDMS中に均一に分散化しているが、グラファイトと未修飾SWNTは、大きな凝集物がたくさん観察され、全く分散化できていないことがわかる。
【発明を実施するための形態】
【0018】
本発明で用いられるカーボンナノチューブは特に制限されるものではなく、多層のもの(多層カーボンナノチューブ、「MWNT」と呼ばれる)から単層のもの(単層カーボンナノチューブ、「SWNT」と呼ばれる)まで使用することができる。好ましくは、単層ウォール・カーボンナノチューブが用いられる。用いるSWNTの製造方法としては、特に制限されるものではなく、触媒を用いる熱分解法(気相成長法と類似の方法)、アーク放電法、レーザー蒸発法、HiPco法(High-pressure carbon monoxide process)及びCVD法(Chemical Vapor Deposition)等、公知のいずれの製造方法を用いても構わない。
【0019】
カーボンナノチューブとポリ(3-ヘキシルチオフェン)(P3HT)の複合体(以下、「CNT複合体」と称することがある)をポリジメチルシロキサン(PDMS)中に含むカーボンナノチューブ分散体は、前記複合体がPDMS中に分散したものである。分散の度合いはできるだけ均一であることが好ましく、少なくとも目視によってカーボンナノチューブ濃度に偏りがあることが確認できないことが必要である。分散の度合いが低いと、光の吸収効率が低下し、光熱変換の効率が低下するため好ましくない。
【0020】
本発明の分散体は、PDMS中においてCNT量として0.001〜1重量%、好ましくは0.005〜0.5重量%、より好ましくは0.01〜0.1重量%、特に0.01〜0.08重量%程度分散することができる。
【0021】
本発明のCNT-P3HT複合体におけるカーボンナノチューブ(CNT)とP3HTの比率は、カーボンナノチューブ100重量部に対し、P3HTを100〜1000重量部、好ましくは500〜650重量部程度含む。
【0022】
PDMSは、ジメチルシロキサン(DMS)を必要に応じて架橋剤の存在下に硬化(重合)して得られるものである。架橋剤としては、トリメトキシメチルシラン、トリエトキシフェニルシラン、テトラメトキシシラン、テトラエトキシシラン、テトラ−n−プロボキシシラン、テトラブトキシシラン等が挙げられ、具体的にはSylgard 184(Dow Corning)などが使用できる。
【0023】
架橋剤は、DMS100重量部に対し、5〜10重量部、好ましくは9〜10重量部使用することができる。
【0024】
PDMS硬化の条件は特に限定されないが、70〜80℃で、1〜12時間程度反応させればよい。
【0025】
CNT複合体は、ジメチルシロキサン(DMS)への分散性が高く、カーボンナノチューブをPDMSに分散させたコンポジットの製造に適している。このようなコンポジットは、例えばジメチルシロキサン(DMS)中にCNT複合体と必要に応じて架橋剤(例えばSylgard 184; Dow Corning)を分散させて、必要に応じて水、酸或いは塩基などの触媒を用い、室温若しくは加熱下に重合(硬化)することで、CNT複合体が均一に分散したポリジメチルシロキサン(PDMS)を得ることができる。CNT複合体はジメチルシロキサン(DMS)との相溶性が高く、均一な溶液を得ることができる。
【0026】
このようにして製造される分散体は、カーボンナノチューブが光を吸収し、発熱することによって光発熱体として好適である。
【0027】
該分散体に照射する光の種類は、可視〜近赤外領域の波長(400〜1100nm)を有する光であれば、特に限定されない。さらに、該分散体は、1100nm以上の波長の光も吸収して発熱する。
【0028】
照射する光の強さは、コンポジットが溶解しない限り、特に制限されるものではない。本発明のコンポジットは〜1W程度のレーザー出力にも十分耐えることができる。
【実施例】
【0029】
以下、本発明を具体的に説明するが、本発明は下記の例に限定されるものではない。
本明細書において、以下の略号を用いる。
CNT:カーボンナノチューブ、P3HT:ポリ(3-ヘキシルチオフェン)、SWNT:単層カーボンナノチューブ、PDMS:ポリジメチルシロキサン
実施例1
P3HT-SWNT-PDMSコンポジットの合成
P3HT-SWNT-PDMS分散体は、次の方法により作製した。SWNT(5 mg)[high-pressure carbon monoxide(Hipco)super-purified SWNTs(purity > 95%); Carbon Nanotechnologies]とP3HT(2.5 mg)(regioregular; Ardrich)をクロロホルム(40 mL)に添加し、15 min間、氷冷下(> 8℃)で超音波処理(USD-2R; AS ONE)を施した。得られたP3HT-SWNT複合体溶液を遠心分離(11,000 rpm, 15 min, 4℃)(1720; Kubota)に掛け、上澄みを注意深く回収した。回収した本上澄み溶液(30 mL)をPDMS(30 g)(Sylgard 184; Dow Corning)に添加し、氷冷下、超音波処理を1 min施した。ロータリー真空エバポレーター(EYELA Auto Jack NAJ; Tokyo Rikakikai)によりクロロホルムを90℃で完全に除去した。室温に戻した後、本溶液に架橋剤(Sylgard 184; Dow Corning)を(架橋剤:PDMS = 1:10)の割合で添加し、5 minほど良く混合した。30 min間、真空乾燥させることで気泡を取り除いた。最後に、P3HT-SWNT/PDMS/架橋剤を容器に注ぎ、オーブン(70℃、45 min)に入れ、硬化させた。その他のカーボン材料を封入したPDMSコンポジットに関しては、基本的には、P3HT-SWNT-PDMSコンポジットと同様の手法により作製した。なお、C60-PDMSコンポジットに関しては、溶媒にトルエンを用いた。PDMS中のカーボン材料濃度は、80 μg/mLである。クロロホルム及びPDMSコンポジット中のP3HT-SWNT複合体の分散性評価は、顕微レーザーラマン(波長: 532 nm)(NRS-3100; JASCO)とUV-Vis-NIR分光光度計(UV-3100PC; Shimadzu)を用いて行った。
【0030】
CNTコンポジットフィルムのキャラクタリゼーション
CNT(図ではSWNT)表面を導電性ポリマーであるP3HTによってラッピングすることでPDMS中に均一かつ高濃度に分散化することができる。特開2009-196877では、PDMS中にCNT複合体を最大で0.01 wt%分散化可能であったが、本発明では0.06 wt%まで分散化することができる。CNTの高濃度分散化により、光発熱の効率を高めることができる。
本発明のP3HT-CNT-PDMSフィルムは、濃度を濃くしていくと((i) 0 mg/mL, (ii) 0.15 mg/mL, 0.3 mg/mL, (iV) 0.6 mg/mL)黒色が濃くなるが透明なフィルムであり(図1b左)、このフィルムは高いフレキシビリティーを有し、棒状の物体等に巻きつけることも可能である(図1b右)。
P3HT-SWNT-PDMSは、SWNTがフィルム中に均一に分散化しているため、SWNTに由来する黒い凝集物は見られない。一方、P3HT未修飾のSWNTは、PDMSに全く分散化できないため、SWNTに由来する黒い凝集物がフィルム中のいたるところで観察される(図1c右:SWNT-PDMSフィルムの光学顕微鏡写真)。
P3HT-SWNT複合体を内包したPDMSフィルム(1)からはSWNT(4)と同様のラマンスペクトルが得られ、当該領域にカーボンナノチューブがよく分散していることが裏付けられた。また、未修飾SWNTを内包したPDMSフィルムには、SWNTが凝集している部分(2)と全くSWNTが存在しない部分(3)があることがわかった(図1d)。図1d中、1: Fig. 1左の矢印1、2: Fig. 1右の矢印1、3: Fig. 1右の矢印3、4: SWNT粉末のラマンスペクトル、5: PDMSのラマンスペクトルを各々示す。
P3HT-SWNT複合体を分散化させたクロロホルムおよびPDMSは、波長約500〜800nmにおいてピークが複数観測され、溶液中にカーボンナノチューブが均一に溶解していることが確認できた(図1e)。なお図1eにおいて、(i)クロロホルム中のP3HT-SWNTのUV-vis-NIR吸収スペクトル解析、(ii)PDMS中のP3HT-SWNTのUV-vis-NIR吸収スペクトル解析を各々示す。
【0031】
各種コンポジットとPDMS中の分散化状態
各種コンポジットのデジカメ写真を図2aに示す。図2において、(i) PDMS、(ii) C60-PDMS、(iii) グラファイト-PDMS、(iV) SWNT-PDMS、(V) P3HT-SWNT-PDMSである。
各種コンポジットの光学顕微鏡写真を図2bに示す。図2bにおいて、(i) PDMS、(ii) C60-PDMS、(iii) グラファイト-PDMS、(iV) SWNT-PDMS、(V) P3HT-SWNT-PDMSである。C60とP3HT-SWNT複合体はPDMS中に均一に分散化しているが(図2a)、グラファイトと未修飾SWNTは、大きな凝集物がたくさん観察され、全く分散化できていないことがわかる。

【特許請求の範囲】
【請求項1】
カーボンナノチューブ(CNT)とポリ(3-ヘキシルチオフェン)(P3HT)の複合体をポリジメチルシロキサン(PDMS)中に均一に分散してなるカーボンナノチューブ分散体。
【請求項2】
カーボンナノチューブ(CNT)とポリ(3-ヘキシルチオフェン)(P3HT)の複合体をジメチルシロキサン(DMS)中に均一に分散させ、必要に応じて架橋剤の存在下に硬化することを特徴とする、カーボンナノチューブが均一に分散したポリジメチルシロキサン(DMS)の製造方法。

【図1】
image rotate

【図2】
image rotate


【公開番号】特開2012−102209(P2012−102209A)
【公開日】平成24年5月31日(2012.5.31)
【国際特許分類】
【出願番号】特願2010−250785(P2010−250785)
【出願日】平成22年11月9日(2010.11.9)
【出願人】(301021533)独立行政法人産業技術総合研究所 (6,529)
【Fターム(参考)】