説明

クロック制御回路およびマイクロコンピュータ

【課題】消費電力の低減を図る。
【解決手段】クロック補正回路30に第1クロック信号の周波数の補正を実施させる補正間隔を計時する補正間隔タイマ80と、クロック補正回路30による第1クロック信号の周波数の補正に要する補正時間を計時する補正時間タイマ70と、補正間隔タイマ80により計時される補正間隔毎に、補正時間タイマ70に補正時間の計時を開始させるとともに第2クロック発振回路20を動作状態にさせてクロック補正回路30に第1クロック信号の周波数の補正を実施させ、補正時間タイマ70により補正時間の計時が通知されると第2クロック発振回路20を停止状態にさせる制御手段40、50、60を備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、第1クロック信号よりも精度の高い第2クロック信号を用いて第1クロック信号の周波数を補正するクロック補正回路を有するクロック制御回路およびマイクロコンピュータに関するものである。
【背景技術】
【0002】
従来、メインクロックを生成するメインクロック発振部と、サブクロックを生成するサブクロック発振部と、メインクロック発振部により生成されたメインクロックを用いてサブクロック発振部により生成されたサブクロックの発振周波数を補正するサブクロック補正部を備えたクロック制御回路がある(例えば、特許文献1参照)。
【0003】
また、メインクロックを生成するメインクロック発振部と、メインクロックよりも周波数が低いサブクロックを生成するサブクロック発振部と、サブクロックの1周期に含まれるメインクロックのパルス数をカウントするパルスカウンタと、パルスカウンタがカウントしたパルス数と予め定められた基準パルス数とを用いて補正情報を算出する演算部と、補正情報に基づいてクロック補正信号を出力する休止信号カウンタと、クロック補正信号に基づいてメインクロックの出力を補正するゲートを備えたクロック補正回路もある(例えば、特許文献2参照)。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2004−213197号公報
【特許文献2】特開2006−309479号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
上記特許文献1に記載されたような装置には、CPUがスリープモードになるとメインクロック発振部の動作を停止させて消費電力を低減するようにしたものがある。
【0006】
しかし、このようなメインクロック発振部の動作を停止させる構成では、メインクロックを用いたサブクロックの発振周波数の補正ができなくなってしまうため、時間の経過に伴ってサブクロックの発振周波数が基準範囲を逸脱する可能性が高くなる。このため、予め設定された時間間隔(例えば、20秒間隔)でCPUのスリープモードを解除してウェイクアップさせ、このCPUの指示により定期的にメインクロック発振部を間欠動作させて、サブクロック補正部にサブクロック信号の発振周波数を補正させるようにしている。
【0007】
しかし、このように予め設定された時間間隔でCPUをウェイクアップさせることは、消費電力の増加の要因となる。
【0008】
また、上記特許文献2に記載された装置は、CPUを定期的にウェイクアップさせる構成とはなっていないものの、常時、メインクロック発振部とサブクロック発振部の両方を動作状態とする構成となっているため消費電力を低減するには限界がある。
【0009】
本発明は上記問題に鑑みたもので、高精度クロック発振回路より出力される高精度クロックを用いて低精度クロック発振回路より出力される低精度クロックを定期的に補正する回路における消費電力の低減を図ることを目的とする。
【課題を解決するための手段】
【0010】
上記目的を達成するため、請求項1に記載の発明は、第1クロック信号を生成する第1クロック発振回路(10)と、第1クロック信号よりも周波数および精度の高い第2クロック信号を生成する第2クロック発振回路(20)と、第2クロック信号を用いて第1クロック信号の周波数を補正するクロック補正回路(30)と、を備えたクロック制御回路(1)であって、第1クロックに同期して動作するカウンタを有し、当該カウンタを用いてクロック補正回路(30)に第1クロック信号の周波数の補正を実施させる補正間隔を計時する補正間隔タイマ(80)と、第1クロックに同期して動作するカウンタを有し、当該カウンタを用いてクロック補正回路(30)による第1クロック信号の周波数の補正に要する補正時間を計時する補正時間タイマ(70)と、補正間隔タイマ(80)により計時される補正間隔毎に、補正時間タイマ(70)に補正時間の計時を開始させるとともに第2クロック発振回路(20)を動作状態にさせてクロック補正回路(30)に第1クロック信号の周波数の補正を実施させ、補正時間タイマ(70)により補正時間の計時が通知されると第2クロック発振回路(20)を停止状態にさせる制御手段(40、50、60)と、を備えたことを特徴としている。
【0011】
このような構成によれば、第1クロックに同期して動作するカウンタを用いてクロック補正回路(30)に第1クロック信号の周波数の補正を実施させる補正間隔を計時する補正間隔タイマ(80)と、第1クロックに同期して動作するカウンタを用いてクロック補正回路(30)による第1クロック信号の周波数の補正に要する補正時間を計時する補正時間タイマ(70)と、補正間隔タイマ(80)により計時される補正間隔毎に、補正時間タイマ(70)に補正時間の計時を開始させるとともに第2クロック発振回路(20)を動作状態にさせてクロック補正回路(30)に第1クロック信号の周波数の補正を実施させ、補正時間タイマ(70)により補正時間の計時が通知されると第2クロック発振回路(20)を停止状態にさせるので、CPUを定期的にウェイクアップさせることなく、また、第2クロック発振回路(20)を常時動作状態とすることなく、クロック補正回路(30)による第1クロック信号の周波数の補正を実施させることができ、消費電力の低減を図ることができる。
【0012】
また、請求項2に記載の発明では、制御手段(40、50、60)は、第2クロック信号をクロックとして動作するCPU(90)が通常動作状態であるか低消費電力状態であるかを監視する動作状態制御部(40)と、動作状態制御部(40)よりCPU(90)が通常動作状態から低消費電力状態に変化したことを示す信号が入力されると停止状態から動作状態となり、補正間隔タイマ(80)により計時される補正間隔毎に、補正時間タイマ(70)に補正時間の計時を開始させるとともに第2クロック発振回路(20)を動作状態にさせてクロック補正回路(30)に第1クロック信号の周波数の補正を実施させ、補正時間タイマ(70)により補正時間の計時が通知されると第2クロック発振回路(20)を停止状態にさせるとともに自身も停止状態となる動作制御回路(50、60)と、を備えたことを特徴としている。
【0013】
このような構成によれば、動作状態制御部(40)により第2クロック信号をクロックとして動作するCPU(90)が通常動作状態であるか低消費電力状態であるかの監視が行われ、動作制御回路(50、60)は、CPU(90)が通常動作状態から低消費電力状態に変化したことを示す信号が入力されると停止状態から動作状態となり、補正間隔タイマ(80)により計時される補正間隔毎に、補正時間タイマ(70)に補正時間の計時を開始させるとともに第2クロック発振回路(20)を動作状態にさせてクロック補正回路(30)に第1クロック信号の周波数の補正を実施させ、補正時間タイマ(70)により補正時間の計時が通知されると第2クロック発振回路(20)を停止状態にさせるとともに自身も停止状態となる。すなわち、CPU(90)が低消費電力状態の場合、動作制御回路(50、60)は、停止状態となるので、更に、消費電力の低減を図ることができる。
【0014】
また、請求項3に記載の発明は、動作状態制御部(40)は、CPU(90)が低消費電力状態から通常動作状態に変化した場合、第2クロック発振回路(20)を動作状態にさせることを特徴としている。
【0015】
このような構成によれば、動作状態制御部(40)は、CPU(90)が低消費電力状態から通常動作状態に変化した場合、第2クロック発振回路(20)を動作状態にさせるので、CPU(90)が低消費電力状態から通常動作状態に変化した場合、瞬時に第2クロック発振回路(20)により生成された第2クロック信号をCPUへ供給することが可能である。
【0016】
また、請求項4に記載の発明は、請求項1ないし3のいずれか1つに記載されたクロック制御回路により生成された第2クロック信号をクロックとして動作するCPU(90)を備えたマイクロコンピュータであって、クロック制御回路おける制御手段(40、50、60)、補正時間タイマ(70)および補正間隔タイマ(80)が、CPU(90)と同一のチップ内に形成されていることを特徴としている。
【0017】
このような構成によれば、クロック制御回路おける制御手段(40、50、60)、補正時間タイマ(70)および補正間隔タイマ(80)が、CPU(90)と同一のチップ内に形成されるので、製造コストをほとんど増加させることなく、クロック制御回路おける制御手段(40、50、60)、補正時間タイマ(70)および補正間隔タイマ(80)を構成することができる。
【0018】
なお、この欄および特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
【図面の簡単な説明】
【0019】
【図1】本発明の一実施形態に係るクロック制御回路の構成を示す図である。
【図2】低精度クロック補正回路30を中心とする詳細な構成を示す図である。
【図3】高精度クロック発振回路の動作を示すタイムチャートである。
【図4】動作状態コントロール部の動作を示すタイムチャートである。
【図5】補正間隔タイマの動作を示すタイムチャートである。
【図6】高精度クロック発振動作制御回路の動作を示すタイムチャートである。
【図7】補正時間タイマの動作を示すタイムチャートである。
【図8】低精度クロック補正動作制御回路の動作を示すタイムチャートである。
【図9】低精度クロック補正回路の動作を示すタイムチャートである。
【発明を実施するための形態】
【0020】
本発明の一実施形態に係るクロック制御回路の構成を図1に示す。本クロック制御回路1は、低精度クロック発振回路(第1クロック発振回路)10、高精度クロック発振回路(第2クロック発振回路)20、低精度クロック補正回路30、動作状態コントロール部(動作状態制御部)40、低精度クロック補正動作制御回路50、高精度クロック発振動作制御回路60、補正時間タイマ70、補正間隔タイマ80を備えている。なお、動作状態コントロール部40には、CPU90が接続されている。
【0021】
なお、動作状態コントロール部40、低精度クロック補正動作制御回路50、高精度クロック発振動作制御回路60、補正時間タイマ70、補正間隔タイマ80は、AND回路、OR回路、NAND回路、インバータ回路等の論理回路および各種フリップフロップ回路を用いて構成されている。
【0022】
低精度クロック発振回路10は、比較的精度の低い低精度クロック信号(第1クロック信号に相当する)を生成し、生成した低精度クロック信号を信号線11より出力する。本実施形態における低精度クロック発振回路10は、CR発振回路により構成されており、常時、低精度クロック信号を出力する。
【0023】
また、低精度クロック発振回路10は、低精度クロック補正回路30より信号線31を介して入力される制御信号により低精度クロック信号の発振周波数を補正することが可能となっている。なお、この発振周波数の補正の詳細については後述する。
【0024】
高精度クロック発振回路20は、精度の高い高精度クロック信号(第2クロック信号に相当する)を生成し、生成した高精度クロック信号を信号線21より出力する。本実施形態における高精度クロック発振回路20は、水晶発振回路により構成されている。なお、高精度クロック信号の周波数は、低精度クロック信号よりも高くなっている。
【0025】
低精度クロック補正回路30は、高精度クロック信号を用いて低精度クロックの発振周波数を補正する回路である。図2に、低精度クロック補正回路30を中心とする詳細な構成を示す。低精度クロック補正回路30は、エッジ検出回路35a、パルスカウンタ35b、カウント数設定レジスタ35c、比較調整手段35d、抵抗調整回路35eを備えている。なお、低精度クロック発振回路10は、抵抗調整回路35eから制御信号により抵抗値が可変な可変抵抗器としてのラダー抵抗10a、コンデンサ10b、インバータ10cおよびバッファ10dを備えている。
【0026】
低精度クロック補正回路30のエッジ検出回路35aは、低精度クロック発振回路10より出力される低精度クロックSCLKのエッジを検出して検出信号を出力する。パルスカウンタ35bは、高精度クロック信号MCLKの出力パルスを計数するデジタルカウンタである。また、カウント数設定レジスタ35cは、低精度クロック信号SCLKの一周期に相当すべきMCLKパルスの適正なカウント数が格納されるレジスタである。すなわち、カウント数設定レジスタ35cに設定されるカウント数には、MCLKパルスがそのカウント数だけ発生する時間に応じて低精度クロック信号SCLKの発振周期が調整されるべき数値が設定される。
【0027】
比較調整手段35dは、エッジ検出回路35aからエッジ検出信号を受けると、パルスカウンタ35bによるパルスのカウント数とカウント数設定レジスタ35cに格納されたカウント数とを比較し、両カウント数の比較結果に基づいて、低精度クロック信号SCLKの発振周期を調整するための調整信号を出力するように構成されている。
【0028】
抵抗調整回路35eは、比較調整手段35dからの調整信号に基づいて制御信号を生成し、この制御信号をもって低精度クロック発振回路10のラダー抵抗10aの抵抗値を調整する回路である。
【0029】
なお、低精度クロック補正回路30の動作については、特開2001−111389に詳細に開示されているが、以下、その概略について述べる。低精度クロック信号SCLKの一周期が経過して、そのクロックパルスのエッジがエッジ検出回路35aによって検出されると、検出信号が比較調整手段35dに出力される。すると、比較調整手段35dは、パルスカウンタ35bで積算されている前回の検出信号から積算されたパルス数とカウント数設定レジスタ35cに格納されているカウント数とを読み出して両者を比較する。
【0030】
ここで、カウント数設定レジスタ35cに設定されているカウント数は、低精度クロック信号SCLKの一周期に相当すべきパルスの適正な積算値である。そこで、比較調整手段35dは、高精度クロック信号MCLKパルスが低精度クロック信号SCLKの一周期のうちにいくつ積算されたかをもって、低精度クロック信号SCLKの一周期が適正な設定値よりもどの程度大きいかあるいは小さいかを判定することができる。比較調整手段35dは、その判定結果に基づいて、低精度クロック信号SCLKの発振周期を調整するための調整信号を生成し、調整抵抗生成回路35eは、この調整信号に基づいて制御信号を生成出力してラダー抵抗10aの抵抗値を調整する。
【0031】
図1の説明に戻り、高精度クロック発振回路20には、信号線41を介して動作状態コントロール部40より発振開始または発振停止を指示する信号が入力されるとともに、信号線61を介して高精度クロック発振動作制御回路60より発振開始または発振停止を指示する信号が入力されるようになっている。
【0032】
高精度クロック発振回路20は、図3に示すように、動作状態コントロール部40より入力される発振開始または発振停止を指示する信号に応じて動作状態または停止状態となる。また、高精度クロック発振動作制御回路60より入力される発振開始または発振停止を指示する信号によっても動作状態または停止状態となる。なお、高精度クロック発振回路20は、動作状態コントロール部40と高精度クロック発振動作制御回路60のいずれかより発振開始を指示する信号が入力されていれば動作状態となる。
【0033】
動作状態コントロール部40は、低精度クロック発振回路10により生成された低精度クロック信号に同期して動作するようになっている。また、動作状態コントロール部40は、高精度クロック信号の周波数を逓倍した周波数で同期発振する信号を出力するPLL周波数逓倍回路(図示せず)を有しており、このPLL周波数逓倍回路より出力される信号はCPU90のメインクロック端子(図示せず)へ入力される。
【0034】
動作状態コントロール部40は、信号線91を介してCPU90より入力されるウェイクアップ状態(通常動作状態)であるかスリープ状態(低消費電力状態)であるかを示す信号や、スリープ状態のCPU90を間欠的にウェイクアップさせるためのウェイクアップタイマ(図示せず)より定期的に入力されるウェイクアップ要求等のウェイクアップ要因情報に基づいてCPU90の動作状態(通常動作状態またはスリープ状態)を管理し、CPU90の動作状態に応じてCPU90のメインクロック端子に入力するメインクロック信号の送出または停止を行う。
【0035】
動作状態コントロール部40は、信号線91を介してCPU90より入力される信号に基づいてCPU90が通常動作状態であると認識すると、信号線41を介して高精度クロック発振回路20に発振開始を指示する信号を送出し、信号線21を介して高精度クロック発振回路20より入力される高精度クロック信号をPLL周波数逓倍回路(図示せず)により逓倍した信号を、信号線42より出力する。また、信号線43を介して低精度クロック補正回路30に動作開始を指示する信号を送出し、信号線44を介して高精度クロック発振動作制御回路60へ動作停止を指示する信号を送出する。
【0036】
また、動作状態コントロール部40は、信号線91を介してCPU90より入力される信号に基づいてCPU90の状態がスリープ状態であると認識すると、図4に示すように、信号線41を介して高精度クロック発振回路20に発振停止を指示する信号を送出し、信号線42よりCPU90へ出力するメインクロック信号を停止させる。更に、信号線43を介して低精度クロック補正回路30に動作停止を指示する信号を送出し、信号線44を介して高精度クロック発振動作制御回路60へ動作開始を指示する信号を送出する。
【0037】
補正間隔タイマ80は、CPU90がスリープ状態中に低精度クロック補正回路30により間欠的に実施される低精度クロック信号の周波数の補正間隔(例えば、20秒)を計時する。補正間隔タイマ80は、低精度クロック信号に同期して動作する補正間隔カウンタ(図示せず)を有しており、この補正間隔カウンタを用いて低精度クロック補正回路30により実施される低精度クロック信号の周波数の補正間隔を計時する。
【0038】
補正間隔タイマ80は、信号線63を介して高精度クロック発振動作制御回路60よりタイマ開始を指示する信号が入力されると、図5に示すように、補正間隔の計時を開始し、補正間隔カウンタのカウント値が補正間隔に相当するカウント数になると補正間隔タイマ満了信号を送出する。
【0039】
また、補正間隔タイマ80は、信号線63を介して高精度クロック発振動作制御回路60よりタイマ停止を指示する信号が入力されると、補正間隔の計時を停止するとともに補正間隔カウンタのカウント値が0に戻るようになっている。
【0040】
高精度クロック発振動作制御回路60は、低精度クロック発振回路10により生成された低精度クロック信号に同期して動作するようになっている。また、高精度クロック発振動作制御回路60は、信号線44を介して動作状態コントロール部40より動作開始を指示する信号を受信すると動作状態となり、動作停止を指示する信号を受信すると停止状態となる。
【0041】
なお、本実施形態において、低精度クロック補正動作制御回路50、高精度クロック発振動作制御回路60、補正時間タイマ70および補正間隔タイマ80は、それぞれ低精度クロック信号の入力部にゲート回路を備えており、このゲート回路を制御することにより動作状態または停止状態が切り替わるようになっている。
【0042】
高精度クロック発振動作制御回路60が停止状態の場合、高精度クロック発振回路20は発振停止となり、低精度クロック補正動作制御回路50は停止状態となり、間隔補正タイマ80も停止状態となる。
【0043】
また、高精度クロック発振動作制御回路60は、信号線44を介して動作状態コントロール部40より動作開始を指示する信号が入力され動作状態になると、図6に示すように、信号線63を介して間隔補正タイマ80へタイマ開始を指示する信号を送出する。
【0044】
なお、間隔補正タイマ80は、図5に示したように、このタイマ開始を指示する信号を受信すると補正間隔の計時を開始し、補正間隔が経過すると、信号線81を介して高精度クロック発振動作制御回路60へ補正間隔タイマ満了信号を送出する。
【0045】
高精度クロック発振動作制御回路60は、信号線81を介してこの補正間隔タイマ満了信号が入力されると、図6に示したように、信号線62を介して低精度クロック補正動作制御回路50へ動作開始を指示する信号を送出する。
【0046】
補正時間タイマ70は、低精度クロック発振回路30の補正に要する補正時間(例えば、2ミリ秒)を計時するためのものである。補正時間タイマ70は、低精度クロック信号に同期して動作する補正時間カウンタ(図示せず)を有しており、この補正時間カウンタを用いて補正時間を計時し、補正時間カウンタのカウント値が補正時間に相当するカウント数になると補正時間タイマ満了信号を送出する。
【0047】
補正時間タイマ70は、信号線53を介して低精度クロック補正動作制御回路50よりタイマ開始を指示する信号を受信すると、図7に示すように、補正時間の計時を開始し、補正時間カウンタのカウント値が補正時間に相当するカウント数になると補正時間タイマ満了信号を送出する。
【0048】
また、補正時間タイマ70は、信号線53を介して低精度クロック補正動作制御回路50よりタイマ停止を指示する信号が入力されると、補正時間の計時を停止するとともに補正時間タイマのカウント値が0に戻るようになっている。
【0049】
低精度クロック補正動作制御回路50は、低精度クロック発振回路10により生成された低精度クロック信号に同期して動作するようになっている。
【0050】
低精度クロック補正動作制御回路50は、信号線62を介して高精度クロック発振動作制御回路60より動作開始を指示する信号が入力され動作状態になると、図8に示すように、信号線51を介して低精度クロック補正回路30へ動作開始を示す信号を送出し、信号線52を介して高精度クロック発振動作制御回路60へ補正が未完了であることを示す信号を送出し、更に、信号線53を介して補正時間タイマ70へタイマ開始を指示する信号を送出する。
【0051】
補正時間タイマ70は、このタイマ開始を指示する信号を受信すると補正時間を計時し、補正時間が経過すると、信号線71を介して低精度クロック補正動作制御回路50へ補正時間タイマ満了信号を送出する。
【0052】
低精度クロック補正動作制御回路50は、信号線71を介してこの補正時間タイマ満了信号を受信すると、信号線51を介して低精度クロック補正回路30に動作停止を示す信号を送出するとともに、信号線52を介して高精度クロック発振動作制御回路60へ補正が完了したことを示す信号を送出する。
【0053】
低精度クロック補正回路30は、図9に示すように、信号線51を介して低精度クロック補正動作制御回路50より動作停止を示す信号が入力されると停止状態となり、動作開始を示す信号が入力されると動作状態となる。また、信号線43を介して低精度クロック補正回路30に動作開始を指示する信号が入力されると動作状態となり、動作停止を示す信号が入力されると停止状態となる。
【0054】
なお、高精度クロック発振動作制御回路60は、図6に示したように、信号線52を介して低精度クロック補正動作制御回路50より補正が未完了であることを示す信号が入力されると、信号線61を介して高精度クロック発振回路20へ発振開始を指示する信号を送出し、信号線63を介して補正間隔タイマ80へ動作停止を指示する信号を送出する。
【0055】
また、高精度クロック発振動作制御回路60は、信号線52を介して低精度クロック補正動作制御回路50より補正が完了したことを示す信号が入力されると、信号線61を介して高精度クロック発振回路20へ発振停止を指示する信号を送出し、信号線62を介して低精度クロック補正動作制御回路50へ動作停止を指示する信号を送出し、更に、信号線63を介して補正間隔タイマ80へ動作開始を指示する信号を送出する。
【0056】
次に、本クロック制御回路1の動作について説明する。CPU90が通常動作状態となっている場合、動作状態コントロール部40は、信号線91を介してCPU90より入力される信号等に基づいてCPU90が通常動作状態であると認識し、信号線41を介して高精度クロック発振回路20に発振開始を指示する信号を送出する。したがって、高精度クロック発振回路20により高精度クロック信号が生成される。また、PLL周波数逓倍回路により高精度クロック信号の周波数を逓倍して周波数で同期発振する信号がCPU90のメインクロック端子(図示せず)へ入力される。
【0057】
また、動作状態コントロール部40は、信号線43を介して低精度クロック補正回路30に動作開始を指示する信号を送出し、低精度クロック補正回路30に低精度クロック信号の周波数の補正を実施させる。
【0058】
また、このようにCPU90が通常動作状態となっている場合、動作状態コントロール部40は、信号線44を介して高精度クロック発振動作制御回路60へ動作停止を指示する信号を送出する。この信号により、低精度クロック補正動作制御回路50、高精度クロック発振動作制御回路60、補正時間タイマ70および補正間隔タイマ80は停止状態となる。
【0059】
次に、CPU90がスリープ状態となると、動作状態コントロール部40は、信号線91を介してCPU90より入力される信号等に基づいてCPU90がスリープ状態になったと認識し、信号線41を介して高精度クロック発振回路20に発振停止を指示する信号を送出するとともに、信号線42よりCPU90へ出力するメインクロック信号を停止させる。したがって、高精度クロック発振回路20から高精度クロックは出力されなくなり、信号線42よりCPU90へメインクロック信号が出力されなくなる。
【0060】
また、動作状態コントロール部40は、信号線43を介して低精度クロック補正回路30に動作停止を指示する信号を送出し、信号線44を介して高精度クロック発振動作制御回路60へ動作開始を指示する信号を送出する。これにより、低精度クロック補正回路30は停止状態を継続し、高精度クロック発振動作制御回路60は動作状態となる。
【0061】
高精度クロック発振動作制御回路60は動作状態になると、補正間隔タイマ80に補正間隔の計時開始を指示する信号を送出する。これにより、補正間隔タイマ80は補正間隔の計時を開始する。
【0062】
そして、補正間隔が経過して補正間隔タイマ80より補正間隔タイマ満了信号を受信すると、信号線62を介して低精度クロック補正動作制御回路50へ動作開始を指示する信号を送出する。これにより、低精度クロック補正動作制御回路50は動作状態となる。
【0063】
低精度クロック補正動作制御回路50は動作状態になると、信号線51を介して低精度クロック補正回路50へ動作開始を指示する信号を送出するとともに、補正時間タイマ70に補正時間の計時の開始を指示する信号を送出する。これにより、低精度クロック補正回路50は低精度クロック信号の周波数の補正を開始し、補正時間タイマ70は補正時間の計時を開始する。
【0064】
そして、低精度クロック補正回路50による低精度クロック信号の周波数の補正が完了した後、補正時間タイマ70より補正時間タイマ満了信号を受信すると、低精度クロック補正動作制御回路50は、低精度クロック補正回路30に動作停止を示す信号を送出するとともに、高精度クロック発振動作制御回路60へ補正が完了したことを示す信号を送出する。これにより、低精度クロック補正回路30は停止状態となり、高精度クロック発振動作制御回路60は、高精度クロック発振回路20へ発振停止を指示する信号を送出し、低精度クロック補正動作制御回路50は停止状態となり、補正間隔タイマ80は補正間隔の計時を開始する。
【0065】
そして、再度、補正間隔が経過して補正間隔タイマ80より補正間隔タイマ満了信号を受信すると、信号線62を介して低精度クロック補正動作制御回路50へ動作開始を指示する信号を送出する。これにより、低精度クロック補正動作制御回路50は動作状態となる。
【0066】
上記した処理を繰り返し実施し、低精度クロック補正回路30による低精度クロック信号の周波数の補正が間欠的に実施される。
【0067】
上記した構成によれば、第1クロックに同期して動作するカウンタを用いてクロック補正回路30に第1クロック信号の周波数の補正を実施させる補正間隔を計時する補正間隔タイマ80と、第1クロックに同期して動作するカウンタを用いてクロック補正回路30による第1クロック信号の周波数の補正に要する補正時間を計時する補正時間タイマ70と、補正間隔タイマ80により計時される補正間隔毎に、補正時間タイマ70に補正時間の計時を開始させるとともに高精度クロック発振回路20を動作状態にさせてクロック補正回路30に第1クロック信号の周波数の補正を実施させ、補正時間タイマ70により補正時間の計時が通知されると第2クロック発振回路20を停止状態にさせるので、CPUを定期的にウェイクアップさせることなく、また、第2クロック発振回路20を常時動作状態とすることなく、クロック補正回路30による第1クロック信号の周波数の補正を実施させることができ、消費電力の低減を図ることができる。なお、一般ユーザが所有する自動車の多くは一日の大半が駐車した状態であり、このような自動車に搭載される各車載機器に本クロック制御回路を適用することで、大きな電力量低減効果を得ることが可能である。
【0068】
また、動作状態コントロール部40により第2クロック信号をクロックとして動作するCPU90が通常動作状態であるか低消費電力状態であるかの監視が行われ、高精度クロック発振動作制御回路50および低精度クロック補正動作制御回路60は、CPU90が通常動作状態から低消費電力状態に変化したことを示す信号が入力されると停止状態から動作状態となり、補正間隔タイマ80により計時される補正間隔毎に、補正時間タイマ70に補正時間の計時を開始させるとともに第2クロック発振回路20を動作状態にさせてクロック補正回路30に第1クロック信号の周波数の補正を実施させ、補正時間タイマ70により補正時間の計時が通知されると第2クロック発振回路20を停止状態にさせるとともに自身も停止状態となる。すなわち、CPU90が通常動作状態の場合、高精度クロック発振動作制御回路50および低精度クロック補正動作制御回路60は、停止状態となるので、更に、消費電力の低減を図ることができる。
【0069】
また、動作状態コントロール部40は、CPU90が低消費電力状態から通常動作状態に変化した場合、第2クロック発振回路20を動作状態にさせるので、CPU90が低消費電力状態から通常動作状態に変化した場合、瞬時に第2クロック発振回路20により生成された第2クロック信号をCPUへ供給することが可能である。
【0070】
なお、本発明は上記実施形態に限定されるものではなく、本発明の趣旨に基づいて種々なる形態で実施することができる。
【0071】
例えば、上記実施形態では、本クロック制御回路における動作状態コントロール部40、低精度クロック補正動作制御回路50、高精度クロック発振動作制御回路60、補正時間タイマ70および補正間隔タイマ80を、CPU90と別々に構成したが、例えば、各回路40〜80をCPU90と同一チップ内に形成したマイクロコンピュータとして構成してもよい。このように、各回路40〜80をCPU90と同一チップ内に形成することで、製造コストをほとんど増加させることなく、各回路40〜80を構成することができる。
【0072】
また、上記実施形態では、可変抵抗器の抵抗値を可変させてクロック信号の周波数の補正を行う低精度クロック補正回路を用いて本クロック制御回路を構成したが、このような可変抵抗器を有するクロック補正回路を用いることなく、例えば、特許文献2に記載されたような、ゲートを用いてクロック信号のパルス数を補正するクロック補正回路を用いて本クロック制御回路を構成してもよい。
【符号の説明】
【0073】
1 クロック制御回路
10 低精度クロック発振回路
20 高精度クロック発振回路
30 低精度クロック補正回路
40 動作状態コントロール部
50 低精度クロック補正動作制御回路
60 高精度クロック発振動作制御回路
70 補正時間タイマ
80 補正間隔タイマ
90 CPU

【特許請求の範囲】
【請求項1】
第1クロック信号を生成する第1クロック発振回路(10)と、前記第1クロック信号よりも周波数および精度の高い第2クロック信号を生成する第2クロック発振回路(20)と、前記第2クロック信号を用いて前記第1クロック信号の周波数を補正するクロック補正回路(30)と、を備えたクロック制御回路(1)であって、
前記第1クロックに同期して動作するカウンタを有し、当該カウンタを用いて前記クロック補正回路(30)に前記第1クロック信号の周波数の補正を実施させる補正間隔を計時する補正間隔タイマ(80)と、
前記第1クロックに同期して動作するカウンタを有し、当該カウンタを用いて前記クロック補正回路(30)による前記第1クロック信号の周波数の補正に要する補正時間を計時する補正時間タイマ(70)と、
前記補正間隔タイマ(80)により計時される前記補正間隔毎に、前記補正時間タイマ(70)に前記補正時間の計時を開始させるとともに前記第2クロック発振回路(20)を動作状態にさせて前記クロック補正回路(30)に前記第1クロック信号の周波数の補正を実施させ、前記補正時間タイマ(70)により前記補正時間の計時が通知されると前記第2クロック発振回路(20)を停止状態にさせる制御手段(40、50、60)と、を備えたことを特徴とするクロック制御回路。
【請求項2】
前記制御手段(40、50、60)は、前記第2クロック信号をクロックとして動作するCPU(90)が通常動作状態であるか低消費電力状態であるかを監視する動作状態制御部(40)と、
前記動作状態制御部(40)より前記CPU(90)が通常動作状態から低消費電力状態に変化したことを示す信号が入力されると停止状態から動作状態となり、前記補正間隔タイマ(80)により計時される前記補正間隔毎に、前記補正時間タイマ(70)に前記補正時間の計時を開始させるとともに前記第2クロック発振回路(20)を動作状態にさせて前記クロック補正回路(30)に前記第1クロック信号の周波数の補正を実施させ、前記補正時間タイマ(70)により前記補正時間の計時が通知されると前記第2クロック発振回路(20)を停止状態にさせるとともに自身も停止状態となる動作制御回路(50、60)と、を備えたことを特徴とする請求項1に記載のクロック制御回路。
【請求項3】
前記動作状態制御部(40)は、前記CPU(90)が低消費電力状態から通常動作状態に変化した場合、前記第2クロック発振回路(20)を動作状態にさせることを特徴とする請求項2に記載のクロック制御回路。
【請求項4】
請求項1ないし3のいずれか1つに記載された前記クロック制御回路により生成された前記第2クロック信号をクロックとして動作するCPU(90)を備えたマイクロコンピュータであって、
前記クロック制御回路おける前記制御手段(40、50、60)、前記補正時間タイマ(70)および前記補正間隔タイマ(80)が、前記CPU(90)と同一のチップ内に格納されていることを特徴とするマイクロコンピュータ。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate