説明

シャントシステムに一体化された圧力・流量複合センサー

【課題】患者の側脳室から過剰な流体を迂回部位に迂回させるために患者に埋め込まれるためのシャントシステムを提供する。
【解決手段】本シャントは、ICPを測定するための圧力トランスデューサ、シャント内を流れるCSFの流量を測定するための流量トランスデューサ、およびテレメトリ回路を含む。アンテナを備えた遠隔読み取り装置が、埋め込まれたシャントに選択的に問い合わせし、かつ誘導電力を供給するために、提供される。問い合わせがあると、圧力測定値および流量測定値は、較正され、多重化され、かつ搬送信号によって遠隔読み取り装置/アンテナに戻り送信される。読み取り装置/アンテナは、搬送波から圧力および流量データを抽出し、さらに、信号を逆多重化することによってデータを分離する。読み取り装置は、さらに、局所的な気圧を提供するための気圧計を含み、この情報を、埋め込まれたトランスデューサからのデータと共に使用する。

【発明の詳細な説明】
【開示の内容】
【0001】
〔発明の背景〕
〔発明の分野〕
本発明は、概して、水頭症の治療に使用される装置に関し、より詳細には、治療療法中に過剰な流体を迂回させかつ監視するのを支援するために使用されるセンサーおよびシャントの改良に関する。
【0002】
〔関連技術の説明〕
背景:
人の脳は4つの脳室を含む。各々の脳室は、骨質で非弾性の領域内で脳および脊髄を洗い緩衝する脳脊髄液(CSF)を産生する脈絡叢を含む。
【0003】
正常で健康な人では、CSFは、脳および脳室の中および周りを、ならびに脊髄の周りを連続的に循環し、かつ循環系中に連続的に排出され、そのため制御された圧力が該系内で絶えず維持される。CSFは側脳室からモンロー孔を経て第3脳室に流れ込み、それから脳幹の中脳水道を経て第4脳室に流れ込む。そこから、CSFは通常、脊髄の中心管の中に、または3つの小孔、すなわち中央のマジャンディ孔および2つの側部ルシュカ孔を経てくも膜下腔の槽の中に入ることができる。
【0004】
第3および第4の脳室間の水道は、上記孔と同様非常に小さく、従って両方とも、一般に先天異常、あるいは腫瘍または感染症等が原因の局所成長に起因して、ふさがれまたは制限されやすく、それによって正常なCSFの流れを阻害する。CSFの流れが妨げられると、連続的なCSFの産生は、流体が脳室内にたまるにつれて、頭蓋内圧力を増加させる。
【0005】
あるいは、同様な患者の頭蓋内圧力の増加は、CSF流体の過剰産生に、先天性奇形に、または頭部の損傷または感染症の合併症に起因し、あるいは、場合によっては、吸収不良によって生じる。いずれにせよ、結果は同じであり、脳室内のCSF流体の増加および頭蓋内圧力の増加である。この状態は水頭症と呼ばれる。
【0006】
CSFが脳室に蓄積すると、増加した流体の体積は、患者の頭蓋骨がこの予定外の流体膨張に従わないので、患者の脳組織を圧縮する。残念なことに、この圧縮は、ますます多くの脳組織を破壊し、また、神経機能が事実上停止するにつれて、さまざまな二次的症状が患者に明らかとなる。これらには、頭痛、嘔吐、めまい、不明瞭な発語、光線恐怖症/光過敏症、および、より深刻な場合では、発作、意識喪失、および死さえ含まれる。
【0007】
水頭症はしばしば、脳室中にまたは腰椎槽中に迂回カテーテルを挿入することによって治療される。そのようなカテーテルまたはシャントは調節弁によって遠位カテーテルに接続され、該遠位カテーテルは、CSFが再吸収されることができ脳内の過剰な圧力が解放される別の腔にCSFを分流する。一般的な迂回部位の例は、脳室腹腔シャントまたは腰椎腹腔シャントを経る腹部の腹膜、および脳室心房シャントを経る心臓の心房を含む。
【0008】
水頭症を治療するために一般に使用されるシャントは、スピッツホルター(Spitz-Holter)シャントと呼ばれる。これは、患者の脳と患者の心臓との間に位置付けられる導管である。この装置はとても小さい一方向弁を含み、該弁は、制御された量のCSFが側脳室を出て心臓に入るのを可能にし、それによって、脳の組織に損傷をもたらす圧力の増加を防止する。この装置は、1950年代後期から何百万という人々がこの潜在的に致死的な病状に打ち勝つのを支援してきた。
【0009】
過度の頭蓋内圧力および関連した脳室拡張の症状は、この処置により軽減されることができるが、シャント装置がふさがれてシャントが故障するのは珍しいことではない。
【0010】
約50%のシャントが、シャントの動作原理および水頭症の原因と無関係に、埋め込み後最初の5年以内に故障する。そのようなシャントの故障は、当初の水頭症症状が再発するのを回避するために、患者内のシャントシステムの修正を必要とする。故障の主な原因は、シャントシステムの汚染、シャントの閉塞、ならびにシャントシステム内のCSFの過剰排出および過少排出である。
【0011】
過剰排出は、シャントシステム中の過度のCSF平均流量を生じさせる。この状態は、異常に低い頭蓋内圧力、脳実質の崩壊、およびくも膜下出血を生じさせることもある。
【0012】
同様に、過少排出はシャントシステム中の不十分なCSF平均流量を生じさせる。過少排出は、当然のことながらすべての必要な流体が患者の側脳室から除去されないので、内在する水頭症の症状を再発させることもある。過剰なおよび過少の排出状態は、シャントが生理学的なCSF流路を回復するのに失敗し、患者の健康が引き続き危険な状態にあることの現れである。これらの要因は、いずれにしても、シャントが埋め込まれた患者におけるCSF流体力学の決定的なパラメータのよりよき理解を可能にするツールが、成功をもたらすシャント設計、選択、および埋め込み戦略に非常に有益であることを示している。
【0013】
いくらかのシャントシステムは、米国マサチューセッツ州、RaynhamのCodman & Shurtleff, Inc.から市販されている、いわゆる「コッドマンハキム(Codman Hakim)弁」を使用する。コッドマンハキム弁は、医者が埋め込み後に弁開口圧力を非侵襲的に調節するのを可能にする。少なくとも2回のそのような弁調整が25%よりも多くの場合で必要とされる。最適なシャント設定を予測するのに適したツールがないことが、医師をして経験的な調整戦略に従わせる。外科医の経験に基づいて、シャント設定は埋め込み後にある値に固定される。長期にわたる患者の追跡が過剰または過少排出に起因する可能性のある症状を示せば、シャント設定はそれに応じて、無症状状態に達するまで修正される。「どのような結果になるか様子を見る」手法に従うのではなく、シャント内の流体状態の定量的なフィードバックを医師に提供するツールは、弁調整戦略を大いに改善するであろう。それはまた、患者の長期転帰を改善するであろう。
【0014】
上に示すように、水頭症に関する2つの重要なパラメータは、頭蓋内圧力(ICP)とシャント中のCSFの流量である。頭蓋内圧力の値は、水頭症治療の成功(または失敗)の直接の指標である。
【0015】
シャントシステムの目的は、CSFの生理学的流路および生理学的頭蓋内圧力レベルを回復することである。シャントシステムの埋め込み後に頭蓋内圧力を非侵襲的に監視する機能は、患者の状態についての直接的なフィードバックおよび療法の成功を提供するであろう。
【0016】
上述のように、シャントシステムにおけるCSFの流量はまた、その値によってシャントが正しく動作し、詰まっていないことを確認することもできる重要なパラメータである。今日現在、医師は、患者の状態および/または脳室のサイズを評価するために、患者の診断に依存し、また高価な撮像技術(例えば、MRI)に依存しなければならない。この現在の評価の方法は、水頭症状の現在の状態、および、間接的に、適正に機能するシャントシステムについて洞察力を提供することもできるが、この評価方法は人を誤らせることもある。例えば、シャントが埋め込まれたが未だ水頭症の兆候を示す患者は、シャントシステムが閉塞して苦しんでいるのかもしれず、あるいは、たとえシャントシステムが適正に動作しているように見えても、不適切に選択されたシャントシステム(例えば、高すぎる抵抗または高すぎる開口圧力)が埋め込まれて苦しんでいるのかもしれない。ゆえに、シャントシステムの埋め込み後にCSF流量を非侵襲的に監視する機能は、シャントシステムの開存性について直接的なフィードバックを提供するであろう。
【0017】
CSFがシャント内を流れるときに観察される圧力変動と、シャントシステム中のCSF流量の変動との組合せにより、頭蓋冠の内容物(脳組織および第一近似の脊髄鞘)のコンプライアンスが入手できるようにされる。コンプライアンスは脳の弾性の測定値である。コンプライアンスが高ければ高いほど、弾性は低いことになる。
【0018】
コンプライアンスCは以下の式に基づいて計算される。
【数1】

【0019】
ここで、αVは、圧力変動値αPに関連した体積の変動値である。
【0020】
体積変動値ΔVは、頭蓋冠における血液体積の変動に起因する体積変動が無視できるものと仮定して、以下の式によりシャント内の流量Q(t)とリンクされる。
【数2】

【0021】
ここで、Q平均は、患者が動いていないときのシャント内の平均流量である。Q平均は、通例、すべての産生CSFがシャントシステムによって排出されると仮定して、CSFの産生速度に対応する。
【0022】
従って、コンプライアンスの式は以下のように書き換えることもできる。
【数3】

【0023】
この式から、脳コンプライアンスは、シャント内のCSF流量およびICPに基づいて測定することもできることが明らかである。
【0024】
コンプライアンスは、それを測定することが脳への直接の接近を必要とすることから、人の患者についてはめったに測定されることのないパラメータである。現在の技術では、コンプライアンスは、脳に直接プローブを挿入すること(侵襲的な過程)によってのみ測定されることができる。そのような侵襲的なICPおよびコンプライアンスの測定を可能にする製品は、ドイツ国ハンブルグに本拠を置く会社、Spiegelberg(GmbH & Co.)KGによって市販されている。この装置は、ICPおよび脳コンプライアンスを計算するために、患者の脳内の標的部位に挿入された先端にバルーンが付いたカテーテルを、制御されたやり方で膨張させかつ収縮させる。残念なことに、カテーテルは患者に侵襲的に挿入されなければならず、従って、脳コンプライアンスは慎重に計画されたごく少数の場合にのみ測定されることができる。
【0025】
〔先行技術センサー〕
CSFの圧力測定を支援するために、シャントシステムに直接一体化することができる、限られた数の圧力センサーが開発されているが、そのような圧力センサーの商業的流通はその後中止されている。これらのセンサーは、Radionics, Incによって販売されたコズマンセンサー(Cosman sensor)、および日本で販売されたミヤケセンサー(Miyake sensor)と呼ばれる日本のセンサーを含む。
【0026】
現存するセンサーの臨床的使用は、以下の要因によって制約されてきた。センサーハウジングのサイズ、問い合わせ手順の複雑さ、埋め込み手順の複雑さ、センサー測定の経時的な安定性、およびセンサーの寿命である。これらの欠点はこれらセンサーの臨床的環境での広範な使用を制約してきた。
【0027】
コズマンの米国特許第4,676,255号、第4,660,568号、第4,653,508号、第4,593,703号、第4,378,809号、第4,281,667号、第4,206,761号、および第4,206,762号は、頭蓋内圧力を表示するために、患者の頭蓋骨内に埋め込まれるよう設計されるセンサーを開示する。この装置は、テレメトリによって問い合わせすることもできる最初の独立型埋め込み可能圧力センサーの1つであった。
【0028】
コズマンセンサーは、保護シリコーンゴムカプセル内に位置される圧力トランスデューサ、送信器、および制御回路を含む。カプセルは、トランスデューサがICPを受け、かつ皮下圧力を受けるようにシャントシステムに取り付けられる。この装置の具体的な詳細は本発明の範囲を超えるが、手短に言えば、動作時、トランスデューサは、L−C回路(誘導性および容量性)を使用して、皮下圧力とICPとの差圧を測定することができる。回路のインダクタンスは、皮下圧力とICPとの差圧と共に変動する。センサーは、L−C回路の周波数を効果的に「読み取る」外部読み取り装置によって問い合わせられる。そして、加圧カフがセンサーに隣接した皮膚の上に適用され、皮下圧力が頭蓋内圧力と等しくなってトランスデューサが平衡化されるまで圧力が増加される。外部カフ圧力は平均ICPの読み取り値を示し、インダクタンスの変動、従ってトランスデューサの共振周波数の変動は、ICPの短期間変動の読み取り値を示す。このシステムは商業的に流通され、多数の臨床的応用例で使用された。このシステムの主な制約は、読み取り過程の複雑さであり、また外部カフによるセンサーの加圧に依存するという事実である。この要因はまた、このセンサーの短期間測定のための使用をも制約する。
【0029】
ミヤケセンサーと呼ばれる別のセンサーは、ミヤケセンサーがICPの絶対値を検出する点を除き、上述のコズマンセンサーと同じ原理に基づく。トランスデューサの概念も、内蔵された気圧計に基づき外部読み取りユニットを使用して気圧に対する相対ICP値を計算する点で類似しており、それによって、コズマンセンサーのような加圧カフの使用を不要にする。このセンサーも商業的に流通され、多数の臨床的応用例で使用されてきた。このセンサーの第一の制約はそのサイズであり、装置の突出を最小にするために、患者の頭蓋骨のバー穴に埋め込まなければならない。
【0030】
インサイトシステム(Insite system)と呼ばれる別のシステムは、完全に異なった概念に基づいて作動する。このシステムは、概念上、従来の心臓ペースメーカーに非常に類似している。ここで、トランスデューサはチタンカプセルに接続されるカテーテルの遠位端に位置され、該チタンカプセルは、バッテリーと、信号調節電子機器およびテレメトリ電子機器とを包含する。
【0031】
インサイトセンサーは独立型システムであり、シャントに取り付けられない。そのような概念の1つの重要な利点は、圧力データのオンボードでの記憶が可能なことであり、該圧力データは要求があり次第外部読み取りユニットによってダウンロードされることもできる。埋め込み手順の複雑さおよびサイズがそのようなシステムの主な制約である。また、シャントとセンサーとは患者内の2つの異なった部位に埋め込まれなければならず、また、インサイトインプラントはオンボードの電力(バッテリー)を必要とするので、その有効動作寿命はバッテリーの容量によって制約される。
【0032】
臨床医または医師が患者の脳内のICPを測定するのを可能にするいくつかの先行技術装置および発明があるが、これらの装置の各々は上述のように不十分であり、いずれもリアルタイムでICP、シャント中のCSF流量、および脳コンプライアンスを測定できるものではない。
【0033】
本発明の一つの目的は、埋め込み型シャントと、これに対応する、先行技術の欠陥を克服する外部読み取り装置を提供することである。
【0034】
本発明の別の目的は、ICP、患者のCSFの流量、および脳コンプライアンスのリアルタイム測定を可能にするシステムを提供することである。
【0035】
本発明のさらに別の目的は、水頭症の治療のための、圧力センサーおよび流量センサーの両方を含む埋め込み型シャントを提供することである。
【0036】
〔発明の概要〕
よって、本発明は、患者の側脳室から過剰な流体を迂回部位に迂回させるために患者に埋め込まれるためのシャントシステムを提供する。本シャントは、ICPを測定するための圧力トランスデューサ、シャント内を流れるCSFの流量を測定するための流量トランスデューサ、およびテレメトリ回路を含む。アンテナを備えた遠隔読み取り装置が、埋め込まれたシャントに問い合わせと誘導電力供給とを同時に行うために、提供される。問い合わせがあると、圧力測定値および流量測定値は、オンボードの較正パラメータによって補償され、多重化され、かつ搬送信号によって遠隔読み取り装置/アンテナに戻り送信される。読み取り装置/アンテナは、搬送波から圧力および流量データを抽出し、さらに、信号を逆多重化する(demultiplexing)ことによってデータを分離する。読み取り装置は、さらに、局所的な気圧を提供するための気圧計を含み、この情報を、埋め込まれたトランスデューサからのデータと共に使用して、リアルタイムの調整されたICP、シャント内CSF流量、および脳コンプライアンスを計算し、表示する。
【0037】
添付の図面は本発明の実施の形態の例を示す。これらは、本発明がどのように上述の利点および目的を達成するかを図示する。
【0038】
〔好ましい実施の形態の詳細な説明〕
概観および導入として、本発明は、患者の側脳室から過剰な流体を患者の身体のどこか別の場所の迂回部位に迂回させる水頭症治療療法の一部として使用されるシャントの改良に関する。この特許出願の背景の項で述べたように、そのような流体迂回システム内のCSFの圧力および流量の両方を要求があり次第測定できることは望ましいであろう。上に示したように、「脳コンプライアンス(brain compliance)」と呼ばれるパラメータは、患者の水頭症状態を治療するために使用される療法の全体的な成功を決定する上で有益な値であることもでき、またこのパラメータは、CSF圧力と、瞬間流量および定常流量が共に分っていれば、計算されることもできる。この目的のために、この発明の改良されたシャントは、これら3つのすべてのパラメータの非侵襲的なリアルタイム測定を可能にする。さらにこの発明によれば、読み取り装置と共に使用されたときに、CSF圧力値および流量値は外部制御ユニットにリレーされることもできる。この制御ユニットは、次に、局所的な気圧測定値を考慮に入れた後で脳コンプライアンスのリアルタイム値を計算し、表示し、さらに、CSF圧力値および流量値を表示するために使用されることもできる。医師は、必要ならばシャントシステムが望ましい読み取り値を生じるまで、調整するためにこの情報を使用することもできる。本発明による、そのようなこれらパラメータのシャントからの即座のフィードバックは、より迅速でより成功率の高い治療療法を確実にし、かつ患者にとってより不快感の少ない、より危険性の低い結果となるであろう。
【0039】
図1を参照する。本発明によれば、シャント組立体10は、2つの主な構成部品、すなわち、患者内に外科的に埋め込まれるように設計されるシャント12と、外部読み取りユニット14とを含む。図1に示すように、患者16の説明図は、頭18、首20、および胴22を示す。
【0040】
患者の頭18には、患者の側脳室24が表わされている。本発明によれば、シャント12は、すべての過剰なCSFが側脳室24から患者の身体内に位置する迂回部位26に排出されるように、患者内に外科的に位置付けられる。一般的な迂回部位は、脳室腹腔シャントまたは腰椎腹腔シャントを経る腹部の腹腔、あるいは脳室心房シャントを経る心臓の心房を含む。シャント12を埋め込んで患者の側脳室と選択された迂回部位との間を流体連通させるための実際の外科的処置法は当業者によく知られており、この外科的処置法の詳細は本発明の範囲を超えるものである。
【0041】
本シャント12は、この目的のために使用される従来のシャントと大体同じサイズおよび形状であり、したがって、水頭症を治療するために従来のシャントを埋め込む処置と同じまたは類似のやり方で患者内に埋め込まれることもできる。本発明は、以下により詳細に説明するように、シャントそれ自体の改良に関し、また、シャント内に位置されるセンサーと通信するためのシステムにも関する。
【0042】
上述のように、シャント12内のCSFの圧力およびシャント12内のCSFの流量の両方を測定できる必要がある。これら2つのパラメータが分れば、脳コンプライアンスパラメータの計算が可能となる。図2および図3を参照すると、本発明によるシャント12の詳細が示されている。本発明によれば、シャント12は、脳室カテーテル30と、センサーポッド32と、調節弁34と、遠位カテーテル36とを含む。
【0043】
図1、図2および図3を参照すると、脳室カテーテル30は、患者の側脳室24内の所望の個所(または、別の所望の位置)に位置付けられる入口36と、センサーポッド32の入口40に接続される出口38とを含む。以下により詳細に説明するように、センサーポッド32は、弁34に接続される内腔42を含む。遠位カテーテル36は、弁34の出口44に接続されており、患者内の迂回部位26に位置される排出ポート46を含む。図2に示すように、センサーポッド32および弁34は、1つのパッケージ内に一体化して固定されて示され、また、脳室カテーテル30および遠位カテーテル36に固定されるように設計されるニップル流体接続部50を備えて示されている。これら2つのカテーテルは、シャントシステムの別々の構成部品として示されているが、脳室カテーテル30および遠位カテーテル36の両方、弁34、ならびにセンサーポッド32はすべて、患者内に埋め込まれる前に、超音波溶接等の任意の適切な方法を使用して、または適切な接着剤を使用して、互いに恒久的に固定されることもできることは理解されよう。
【0044】
シャント組立体がどのように構成されるかにかかわらず、センサーポッド32が調節弁34に近接して(すなわち、脳室カテーテル30と弁との間に)位置付けられ、内部に包含されたセンサーが脳室カテーテル30を通じて脳内の圧力を直接受けるようにすることが重要である。また、センサーポッド32および弁34は患者の頭蓋骨に当てられて頭皮の下に位置付けられると思われるので、これらの構成部品をできるだけ低背型となるようにパッケージするのが望ましい。図に示した多くの事柄は、本発明の動作および構造の説明を助けるためのものである。図示しかつ説明した構成部品が、当業者に理解されるさまざまな適切なパッケージのいずれかに嵌め込まれることもできることは理解されよう。
【0045】
患者内で動作すると、シャントシステムは、患者の側脳室24内に位置する過剰なCSFが脳室カテーテル30に入り、センサーポッド32の内腔42を通過し、弁34を通過し、かつ遠位カテーテル36を通り、最終的には迂回部位26に排出されるようにする。
【0046】
調節弁34の目的は、シャントを通過する流体の流れ、したがってICPを物理的に制御することである。通例、この弁は、一方向タイプであり、流体が側脳室24から迂回部位26にのみ進むのを可能にし、また、しばしば、流量を制御するために必要に応じて医師により患者の外側の遠隔位置から調整可能である。調節弁34の細部は本発明の範囲を超えるものであり、したがって、この調節弁の動作および構造は本明細書において詳細には述べない。
【0047】
図3を参照する。本発明によれば、センサーポッド32は2つのトランスデューサを含む。すなわち、圧力トランスデューサ52、および流量トランスデューサ54であり、両方とも保護ハウジング55内に位置される。以下により詳細に説明するように、これら2つのトランスデューサは、シャント組立体内を流れる流体の物理的パラメータを電気的パラメータに変換する。例えば、圧力トランスデューサ52は圧力値を容量値に変換し、流量トランスデューサ54は流量を抵抗値に変換する。送信電子機器は、外部読み取り装置により問い合わされたときに、患者の身体の外側の位置にセンサーデータを選択的に送信する。
【0048】
正確な読み取りを行うために、圧力トランスデューサ52は、好ましくは、センサーポッド32内に該トランスデューサのセンサー入力側が、隣接した内腔42内に位置するCSFと直接流体連通するように位置付けられる。圧力トランスデューサ52は、好ましくは、容量タイプの圧力トランスデューサである。それは、このタイプのトランスデューサは、非常に低いドリフト特性と共に高度の正確さで圧力を測定でき、また動作するのに非常に低い電力を必要とするからである。加えて、容量タイプ圧力トランスデューサは、気圧から独立して絶対圧力を測定できる。
【0049】
流量トランスデューサ54は、好ましくは、参照して本明細書に組み入れる米国特許第7,069,779号、第7,181,963号、および第7,036,369号に示されるもの等の熱流速計を使用するタイプのもの、または米国カルフォルニア州、Westlake Villageに米国における営業所があるスイスの会社、Sensirion, Inc.によって市販されている類似の熱流速計を使用するタイプのものである。これらの熱流速計は同じように動作するが、上述の米国特許第7,069,779号、第7,181,963号、および第7,036,369号に開示されている型を使用して、流体流れの方向に沿って位置される熱マイクロセンサー素子56の端間の温度勾配(通過する流体が局所領域を冷却または加熱するときの)を測定することにより、通過する流体の流量を相関させる。流体は、直接、またはハウジング55の壁等の薄い保護壁を通じて、センサー表面と接触する。センサーは加熱素子57を含み、該加熱素子は1つまたは複数のマイクロセンサー素子56の間に、または該素子に隣接して配置される。マイクロセンサー素子は感温性である。操作時、加熱素子57によって生成された熱は、感温性マイクロセンサー素子56のうち1つまたは複数に伝達され、各々のマイクロセンサー素子56によって受け取られた熱エネルギ量が測定され、それによって、基準安定システムを規定することができる(流体の流れの前に)。流体がセンサー構成部品に接して、または該構成部品の近くを流れるときに、通過する流体はローカルセンサーシステムから熱を奪い、それによってマイクロセンサー素子56によって受け取られる加熱素子57からの熱エネルギ量に影響を与える。伝達された熱量は、熱が部分的に流体に放散されるので、直接流量と相関される。
【0050】
圧力トランスデューサ52および流量トランスデューサ54は共に電子処理回路60に接続され、該処理回路は、圧力および流量測定中に供給される出力信号の信号調節を行う。電子処理回路60はまた、以下に説明するように、近傍の問い合わせアンテナ64(図1を参照)との間で同時に電力通信およびデータ通信を可能にするループアンテナ62に接続される。両トランスデューサ52、54、制御処理回路60、およびループアンテナ62はすべてハウジング55に包含される。穴65がハウジング55の壁に形成され、必要に応じてシャント内のCSF圧力が直接測定されるようにするため、CSFが圧力トランスデューサ52と接触できるようにする。CSFは、必要に応じて、穴65に入り、圧力トランスデューサ52と直接相互作用できるようにされるが、その他の点では、よく知られている適切な封止技術を使用して、ハウジング55内のその他の構成部品から封止される。
【0051】
圧力トランスデューサ52および流量トランスデューサ54は、ハウジング55内に位置する回路基板上に位置する別々の構成部品として説明され、かつ図示されているが、圧力トランスデューサ52および流量トランスデューサ54の両方を、テレメトリ回路、メモリー、およびマイクロプロセッサ回路等のこの発明の他のサブシステムを含めて単一の半導体基板上に設けることも全く実行可能であることは理解されるべきである。ループアンテナ62は、好ましくは、金属線、炭素繊維線、導電性インク、導電性エラストマ材料、または他の従来のインダクタ材料等の導電性材料のコイルから形成される。
【0052】
トランスポンダー
図4を参照すると、本発明による、処理回路60、接続されたトランスデューサ52、54、およびループアンテナ62の機能的動作および電気的相互作用を図示するブロック図が示されている。
【0053】
圧力トランスデューサ52の信号出力は、信号調節回路70に入力される。同様に、流量トランスデューサ54の信号出力は、信号調節回路72に入力される。信号調節回路70、72の目的は、圧力トランスデューサ52および流量トランスデューサ54の両方のアナログ信号をそれぞれのデジタル信号に変換することである。このタイプのアナログ/デジタル調節は当業者によく知られている。
【0054】
各々の信号調節回路70、72の今ではデジタルの出力は、コントローラ回路76に入力される。このコントローラ回路は基本的にマイクロプロセッサであるが、マイクロコントローラであっても、またはデジタル信号プロセッサであってもよい。コントローラ回路76にはまた、特定のシャント組立体で使用される特定のトランスデューサに特有の較正情報を記憶するメモリー78が接続されている。メモリー78からの較正情報は、各々のトランスデューサ52、54の出力データを調整し、補正するために、コントローラ回路76によって使用される。当該技術分野でよく知られているように、コントローラ回路76等のマイクロプロセッサが機能するために必要なクロック信号を供給するために、発振回路80がコントローラ回路76に接続されている。
【0055】
図4に示すように、コントローラブロック76は、吸収変調ブロック82に接続されている。今では較正調整され、デジタル化された両トランスデューサのデータを出力する前に、コントローラブロック76はまずデータを多重化する。コントローラブロック76は、さらに、吸収変調ブロック82を制御し、該吸収変調ブロックの機能は、多重化されたトランスデューサデータを搬送周波数信号上に暗号化することであり、該搬送周波数信号はその後でループアンテナ62に送られる。多重化、デジタル化、および高周波で送信される搬送信号上へのデータの暗号化はすべて当業者によく知られた技術であり、これらの作業を達成するために必要とされる回路の詳細は本明細書において詳細には説明しない。
【0056】
ループアンテナ62は、入力RF波をDC信号に変換するRF/DC変換器ブロック84に接続されている。このDC信号は電圧調節ブロック86に供給され、該電圧調整ブロックは、処理回路60を構成するすべての構成部品のために電力を調節し供給する(図4の破線は電圧供給線を表わす)。埋め込まれた装置に単一の組のコイル対からデータを送信し、かつ同時に誘導電力を送信するために、いくつかの知られた変調方式がある。これらの方式のうちには、負荷シフトキーイング、位相シフトキーイング、周波数シフトキーイング、および振幅シフトキーイングがある。これらの、および他の変調技術は、IEEE Transaction on Biomedical Engineering、第42巻、第5号、1995年5月、に公表された、Zhengnian Tang、Brian Smith、John H. Schild、およびP. Hunter Peckhamによる「Data Transmission from An Implantable Biotelemeter by Load-Shift Keying Using Circuit Configuration Modulator」と題された論文に記載されている。この論文は参照して本明細書に組み入れる。そのようなシフトキーイング変調は、同じ高周波(RF)誘導結合を通じて、埋め込まれたトランスポンダーの電力供給または通電と、該トランスポンダーからのデータ送信とを同時に行うことを可能にする。オンボード構成部品への電力供給のために誘導コイルを使用することにより、オンボードバッテリの必要性を無くし、それによって効果的に本装置の有効寿命を延長させ、またよりコンパクトな組立体を作り出すことができる。
【0057】
埋め込まれた構成部品は遠隔から印加されるRFエネルギによって(すなわち、受動的に)電力供給されるのが好ましいが、出願人はなお、オンボードバッテリ等の局所電源を設けることも考える。そのような場合、テレメトリシステムは、遠隔読み取り装置と通信するために、局所的に生成されたRF波を能動的に送信することもできるであろう。本発明から逸脱することなく、インプラントのデータを遠隔装置にリレーするために、他の方法を用いることもできるであろう。
【0058】
読み取り装置
図5を参照すると、本発明による、外部読み取りユニット14を構成する構成部品の機能的動作および電気的相互作用を図示するブロック図が示されている。
【0059】
外部読み取りユニット14は、デカップラブロック(decoupler block)104を通じて問い合わせアンテナ64に接続されるRFエミッタ100を含む。RFエミッタは、問い合わせアンテナ64を通じて送信されるRF搬送波を生成するために使用される。問い合わせアンテナ64がループアンテナ62の付近にあるときに、送信されたRF搬送波は有効強さがシャント12の処理回路60を活性化するのに十分となる。データが戻り搬送波によって問い合わせアンテナ64に戻り送信されるときに、デカップラブロック104は、搬送波から、暗号化されたデータ信号を分離または切り離すために使用される。
【0060】
デカップラブロック104は、分離された多重データ信号をデカップラブロック104から入力として受信するデマルチプレクサブロック106に接続される。デマルチプレクサブロック106は、受信した多重データ信号を当初のデジタルの、較正された圧力と流量のデータ信号に分離(または逆多重化)するために使用される。これらの分離された信号は次に、気圧計ブロック110からのデータと共に、データ処理ブロック108に入力される。気圧計ブロック110は、正確なICPおよびコンプライアンスの計算ができるように、現在の気圧を測定し、これをデータ処理ブロック108に送る。
【0061】
データ処理ブロック108は、気圧計ブロック110からの、およびデマルチプレクサブロック106からの入力情報を使用して、以下の計算を行う。
1)調整された頭蓋内圧力(ICP)値
調整されたICPは、埋め込まれた圧力トランスデューサ52により測定された絶対圧力から気圧計ブロック110により測定された気圧を減算した結果である。
2)CSFの流量(シャント内の)
これはかなり簡単明瞭な計算である。データ処理は単に、シャントから受信した浄化されたデータ信号を表示しなければならないだけだからである。表示されたCSFの値は、流量トランスデューサ54によるリアルタイム測定値である。しかしながら、この値は患者が動き、横になり、またはまっすぐに坐るにつれて相当に変動すると思われる。
3)頭蓋内冠のコンプライアンス
このパラメータは、上でも説明した次式に基づいて計算される。
【数4】

【0062】
患者が動いていないとき、かつ脳における血液体積が著しく変化していないとき(すなわち、動静脈流が安定していなければならない)に、シャントの平均流量(定常状態の)がまず測定されなければならない。この状態は、CSF産生量がCSF吸収量およびシャントシステム中のCSF流量によって相殺される平衡状態に対応する。脳の体積、動静脈系の体積、および脳室系の体積は平均において一定である。次に、平衡状態を変更するために、操作を行わなければならない。
【0063】
医師が弁のポンプ室を活性化するのを思い描くこともできよう。これにより、シャントシステムにおける流量が増加し、圧力が減少する。上述の式は、頭蓋脊髄冠のコンプライアンスの計算を可能にする。別の簡単な操作は、患者の姿勢を変える(例えば、仰向けから立ち位置に)ことである。これによっても、シャントにおける流量は増加し、頭蓋内圧力は減少する。
【0064】
データ処理ブロック108は、さらに、シャント内のCSFの流量(瞬間および平均の両方の)と、上記の公式を使用して、脳コンプライアンスと、を計算する。この情報は、次に、従来の表示ドライバ技術および表示技術を使用するディスプレイ112に通信される。表示されたICP、CSFの流量、および脳コンプライアンスの値は、リアルタイム値であり、シャント弁の調整または診断、および水頭症治療の評価を行う医師または臨床医にとって非常に貴重なものである。
【0065】
センサーは、読み取りユニットがセンサーに連結されている限り、連続的にデータを送信する。
【0066】
トランスポンダーの構成部品は別々の一体化された回路装置から形成されることもできるが、好ましくは、すべての構成部品の機能を非常にコンパクトなパッケージに一体化する単一の一体化回路チップ上に形成される。
【0067】
使用時、シャント12は水頭症を患う患者に埋め込まれる。患者の側脳室24の過剰な流体は、脳室カテーテル30を通過し、内腔42を通り、圧力トランスデューサ52および流量トランスデューサ56と相互作用し、弁34を通過し、そして最後に迂回カテーテル36を経由して迂回部位に到達することにより、迂回部位26に逃がされる。
【0068】
治療の過程において、患者に埋め込まれたシャント内のCSF流量およびICPを測定することが望ましい場合がある。これを行うためには、臨床医または医師は、読み取り装置14の問い合わせアンテナ64を、埋め込まれたセンサーポッド32の位置の近くに動かして、問い合わせアンテナ64によって送信されるRFエミッタ100からのRFエネルギがループアンテナ62によって受信されるようにする。受信されると、RF/DC変換器84および電圧調節ブロック86は、処理回路60のすべての電気構成部品およびトランスデューサ52、54に必要に応じて電力を供給する電源にRFエネルギを変換する。一たび電源が入れられると、処理回路60は直ちに圧力トランスデューサ52からの出力圧力値、および流量トランスデューサ54からの流量値を読み取る。これらの値は各々、基本的に信号をデジタル化する信号調節ブロック70、72によって調節され、その後でコントローラブロック(マイクロプロセッサ)76に送られる。コントローラブロック76は、メモリー78に記憶された較正情報を使用して、トランスデューサ出力52、54の値を調整し、かつさらにこれらの信号を多重化して送信できるようにする。コントローラ76および吸収変調ブロック82は、協働して多重化信号をRF搬送波上に暗号化し、該搬送波は次に、好ましくは隣接した問い合わせアンテナ64への、かつ該アンテナによって受信される単一のデータメッセージとして、送信される。この過程全体は、一秒間に多数回繰り返し生じ、従って、読み取り装置14にトランスデューサ52および54からのリアルタイムデータを供給することもできる。埋め込まれたセンサーからのデータを問い合わせアンテナ64に単一のデータメッセージで送信することが望ましいが、他の送信技術を用いて同じ結果を達成してもよい。例えば、各々のトランスデューサ52、54からのデータは、独立して処理され、それら自身のデータメッセージごとに別々に、同時にまたは順次、読取装置に送信されることもできる。読み取り装置は次に、各々のトランスデューサからデータ流が受信されたときにこれらのデータ流を収集することもでき、かつ、表示されるべき所望の流量、ICP、および脳コンプライアンスを計算するために、この情報を使用することもできるであろう。
【0069】
一たびデータが問い合わせアンテナ64によって受信されると、信号はデカップラブロック104およびデマルチプレクサブロック106によって切り離されおよび逆多重化され、データ処理ブロック108に送られる。上述のように、データ処理ブロックは、気圧計ブロック110からの気圧入力、およびいくらかの内部計算を使用して、リアルタイムのCSF流量、ICP、および脳コンプライアンスを計算する。これらのパラメータは次に適切な表示回路(図示せず)に送られ、そして最後に臨床医または医師が直ちに使用できるようにディスプレイ112に表示される。
【0070】
他の改変例および応用例は、添付の特許請求の範囲によって規定される本発明の本来の精神および範囲から逸脱することなく、当業者に想到されることもできる。
【0071】
〔実施の態様〕
(1) 患者内の第1の位置から第2の位置へ流体を移送し、かつ前記流体移送を遠隔位置から監視するためのシャント組立体、および読み取り装置組立体を含むシャントシステムにおいて、
前記シャント組立体であって、
流体が流れることができる内腔を有し、前記第1の位置と前記第2の位置との間で前記患者内に埋め込み可能な導管、
前記導管の上または内に位置付けられて、前記流体からの第1のパラメータを測定し、かつ前記測定に応答して第1の信号を生成する第1の電子トランスデューサ、
前記導管の上または内に位置付けられて、前記流体からの第2のパラメータを測定し、かつ前記測定に応答して第2の信号を生成する第2の電子トランスデューサ、ならびに、
前記第1および第2の信号を送信するためのテレメトリ回路、
を有する、シャント組立体と、
前記読み取り装置組立体であって、
送信された前記第1および第2の信号を受信するために前記患者の外側に配置された遠隔読み取り装置、ならびに、
前記第1および第2の信号に基づいて前記第1および第2のパラメータを視覚的に伝達するためのディスプレイ、
を有する、読み取り装置組立体と、
を備える、シャントシステム。
【0072】
(2) 実施態様1に記載のシャント組立体において、
前記第1のトランスデューサは、前記内腔内に位置される前記流体の圧力を測定するための圧力トランスデューサである、シャント組立体。
【0073】
(3) 実施態様2に記載のシャント組立体において、
前記第2のトランスデューサは、前記内腔内を流れる前記流体の流量を測定するための流量トランスデューサである、シャント組立体。
【0074】
(4) 実施態様1に記載のシャント組立体において、
前記第1のトランスデューサは、前記内腔内を流れる前記流体の流量を測定するための流量トランスデューサである、シャント組立体。
【0075】
(5) 実施態様1に記載のシャント組立体において、
前記内腔は、流体が1つの方向にのみ流れることができるように一方向弁をさらに備える、シャント組立体。
【0076】
(6) 実施態様1に記載のシャント組立体において、
前記第1および第2の電子トランスデューサは、前記内腔に隣接して前記導管に取り付けられるカプセル内に位置される、シャント組立体。
【0077】
(7) 実施態様1に記載のシャント組立体において、
前記遠隔読み取り装置は、局所的な気圧測定値を提供する気圧計をさらに備える、シャント組立体。
【0078】
(8) 実施態様7に記載のシャント組立体において、
前記遠隔読み取り装置は、前記第1および第2の信号、ならびに前記気圧測定値を使用して、ICP、CSF流量、および脳コンプライアンスのリアルタイム値を計算する、シャント組立体。
【0079】
(9) 実施態様1に記載のシャント組立体において、
前記第1および第2のトランスデューサは、互いに隣接して物理的に位置される、シャント組立体。
【0080】
(10) 実施態様1に記載のシャント組立体において、
前記第1および第2のトランスデューサは、共通の半導体基板に設けられる、シャント組立体。
【0081】
(11) 実施態様1に記載のシャント組立体において、
前記第1および第2のトランスデューサは、前記テレメトリ回路に電気的に接続される、シャント組立体。
【0082】
(12) 水頭症治療中に患者の脳室から迂回部位に流体を移送し、かつ前記流体移送を遠隔位置から監視するためのシャント組立体、および読み取り装置組立体を含むシャントシステムにおいて、
前記シャント組立体であって、
CSFが流れることができる内腔を有し、前記脳室と前記迂回部位との間で前記患者内に埋め込み可能な導管、
前記導管の上または内に位置付けられて、前記内腔内に位置される前記CSFの圧力を測定し、かつ前記圧力測定に応答して第1の信号を生成する電子圧力トランスデューサ、
前記導管の上または内に位置付けられて、前記内腔中を移動する前記CSFの流量を測定し、かつ前記流量測定に応答して第2の信号を生成する電子流量トランスデューサ、ならびに、
前記第1および第2の信号を送信するためのテレメトリ回路、
を有する、シャント組立体と、
前記読み取り装置組立体であって、
送信された前記第1および第2の信号を受信するために前記患者の外側に配置された遠隔読み取り装置、ならびに、
前記第1および第2の信号に基づいて前記第1および第2のパラメータを視覚的に伝達するためのディスプレイ、
を有する、読み取り装置組立体と、
を備える、シャントシステム。
【0083】
(13) 実施態様12に記載のシャント組立体において、
前記内腔は、流体が1つの方向にのみ流れることができるように一方向弁をさらに備える、シャント組立体。
【0084】
(14) 実施態様12に記載のシャント組立体において、
前記電子圧力トランスデューサおよび前記電子流量トランスデューサは、前記内腔に隣接して前記導管に取り付けられるカプセル内に位置される、シャント組立体。
【0085】
(15) 実施態様12に記載のシャント組立体において、
前記遠隔読み取り装置は、局所的な気圧測定値を提供する気圧計をさらに備える、シャント組立体。
【0086】
(16) 実施態様15に記載のシャント組立体において、
前記遠隔読み取り装置は、前記第1および第2の信号、ならびに前記気圧測定値を使用して、ICP、CSF流量、および脳コンプライアンスのリアルタイム値を計算する、シャント組立体。
【0087】
(17) 水頭症治療中に患者の脳室から迂回部位に流体を移送するためのシャントにおいて、
CSFが流れることができる内腔を有し、前記脳室と前記迂回部位との間で前記患者内に埋め込み可能な導管と、
前記導管の上または内に位置付けられて、前記内腔内に位置される前記CSFの圧力を測定し、かつ前記圧力測定に応答して第1の信号を生成する電子圧力トランスデューサと、
前記導管の上または内に位置付けられて、前記内腔中を移動する前記CSFの流量を測定し、かつ前記流量測定に応答して第2の信号を生成する電子流量トランスデューサと、
を備える、シャント。
【0088】
(18) 実施態様17に記載のシャントにおいて、
前記第1および第2の信号を送信するために前記導管の上または内に位置付けられたテレメトリ回路、
をさらに備える、シャント。
【0089】
(19) 実施態様17に記載のシャントにおいて、
前記内腔は、流体が1つの方向にのみ流れることができるように一方向弁をさらに備える、シャント。
【0090】
(20) 実施態様17に記載のシャントにおいて、
前記第1および第2の電子トランスデューサは、前記内腔に隣接して前記導管に取り付けられるカプセル内に位置される、シャント。
【0091】
(21) 水頭症治療中に患者の脳室から迂回部位に流体を移送し、かつ前記流体移送を遠隔位置から監視するためのシャントシステムにおいて、
CSFが流れることができる内腔を有し、前記脳室と前記迂回部位との間で前記患者内に埋め込み可能な導管と、
前記導管内に位置付けられて、前記内腔内に位置される前記CSFの圧力を測定し、かつ前記圧力測定に応答して第1の信号を生成する電子圧力トランスデューサと、
前記導管内に位置付けられて、前記内腔中を移動する前記CSFの流量を測定し、かつ前記流量測定に応答して第2の信号を生成する電子流量トランスデューサと、
問い合わせ信号の受信に応答して前記第1および第2の信号を送信するためのテレメトリ回路と、
を備える、シャントシステム。
【0092】
(22) 実施態様21に記載のシャント組立体において、
前記問い合わせ信号は、高周波信号であり、前記テレメトリ回路に誘導的に電力を供給するのに使用される、シャント組立体。
【0093】
(23) 実施態様21に記載のシャントにおいて、
前記内腔は、流体が1つの方向にのみ流れることができるように一方向弁をさらに備える、シャント。
【0094】
(24) 実施態様21に記載のシャントにおいて、
前記電子圧力トランスデューサおよび前記電子流量トランスデューサは、前記内腔に隣接して前記導管に取り付けられるカプセル内に位置される、シャント。
【0095】
(25) シャント内のCSF流量および頭蓋内圧力を監視する方法であって、前記シャントは、CSFが流れることができる内腔を有する導管、前記導管の上または内に位置付けられた電子圧力トランスデューサ、および前記導管の上または内に位置付けられた電子流量トランスデューサを有する、方法において、
患者の脳室の1つと迂回部位との間で前記患者内に前記シャントを埋め込むステップと、
前記内腔内に位置される前記CSFの圧力を、前記電子圧力トランスデューサで測定するステップと、
前記圧力測定に応答して第1の信号を生成するステップと、
前記内腔中を移動する前記CSFの流量を、前記電子流量トランスデューサで測定するステップと、
前記流量測定に応答して第2の信号を生成するステップと、
を備える、方法。
【0096】
(26) 実施態様25に記載の方法において、
問い合わせ信号を受信するステップと、
問い合わせ信号の受信に応答して前記第1および第2の信号をテレメトリによって送信するステップと、
をさらに備える、方法。
【0097】
(27) 実施態様25に記載の方法において、
前記第1および第2の信号は、同じデータメッセージで送信される、方法。
【0098】
(28) 実施態様25に記載の方法において、
前記第1および第2の信号は、前記第1および第2の信号自身のそれぞれのデータメッセージで順次送信される、方法。
【0099】
(29) 実施態様25に記載の方法において、
前記第1および第2の信号は、前記第1および第2の信号自身のそれぞれのデータメッセージで独立して、けれども同時に送信される、方法。
【図面の簡単な説明】
【0100】
【図1】患者内に埋め込まれたシャントの説明図であり、本発明による、シャント内に位置されるセンサーに選択的に問い合わせるための読み取り装置およびディスプレイを示す。
【図2】本発明によるシャントの一部分の斜視図であり、弁部分、センサー部分、および流体内腔の詳細を示す。
【図3】図2のセンサー部分の部分拡大断面図であり、本発明による、圧力トランスデューサ、流量トランスデューサ、テレメトリコイル、および制御回路を含むセンサーポッドの内部詳細を示す。
【図4】本発明による、図3の制御回路、センサー、およびテレメトリコイルの動作および接続の略図である。
【図5】本発明による、図1の読み取り装置の動作およびシステム接続の略図である。

【特許請求の範囲】
【請求項1】
患者内の第1の位置から第2の位置へ流体を移送し、かつ前記流体移送を遠隔位置から監視するためのシャント組立体、および読み取り装置組立体を含むシャントシステムにおいて、
前記シャント組立体であって、
流体が流れることができる内腔を有し、前記第1の位置と前記第2の位置との間で前記患者内に埋め込み可能な導管、
前記導管の上または内に位置付けられて、前記流体からの第1のパラメータを測定し、かつ前記測定に応答して第1の信号を生成する第1の電子トランスデューサ、
前記導管の上または内に位置付けられて、前記流体からの第2のパラメータを測定し、かつ前記測定に応答して第2の信号を生成する第2の電子トランスデューサ、ならびに、
前記第1および第2の信号を送信するためのテレメトリ回路、
を有する、シャント組立体と、
前記読み取り装置組立体であって、
送信された前記第1および第2の信号を受信するために前記患者の外側に配置された遠隔読み取り装置、ならびに、
前記第1および第2の信号に基づいて前記第1および第2のパラメータを視覚的に伝達するためのディスプレイ、
を有する、読み取り装置組立体と、
を備える、シャントシステム。
【請求項2】
請求項1に記載のシャント組立体において、
前記第1のトランスデューサは、前記内腔内に位置される前記流体の圧力を測定するための圧力トランスデューサである、シャント組立体。
【請求項3】
請求項2に記載のシャント組立体において、
前記第2のトランスデューサは、前記内腔内を流れる前記流体の流量を測定するための流量トランスデューサである、シャント組立体。
【請求項4】
請求項1に記載のシャント組立体において、
前記第1のトランスデューサは、前記内腔内を流れる前記流体の流量を測定するための流量トランスデューサである、シャント組立体。
【請求項5】
請求項1に記載のシャント組立体において、
前記内腔は、流体が1つの方向にのみ流れることができるように一方向弁をさらに備える、シャント組立体。
【請求項6】
請求項1に記載のシャント組立体において、
前記第1および第2の電子トランスデューサは、前記内腔に隣接して前記導管に取り付けられるカプセル内に位置される、シャント組立体。
【請求項7】
請求項1に記載のシャント組立体において、
前記遠隔読み取り装置は、局所的な気圧測定値を提供する気圧計をさらに備える、シャント組立体。
【請求項8】
請求項7に記載のシャント組立体において、
前記遠隔読み取り装置は、前記第1および第2の信号、ならびに前記気圧測定値を使用して、ICP、CSF流量、および脳コンプライアンスのリアルタイム値を計算する、シャント組立体。
【請求項9】
請求項1に記載のシャント組立体において、
前記第1および第2のトランスデューサは、互いに隣接して物理的に位置される、シャント組立体。
【請求項10】
請求項1に記載のシャント組立体において、
前記第1および第2のトランスデューサは、共通の半導体基板に設けられる、シャント組立体。
【請求項11】
請求項1に記載のシャント組立体において、
前記第1および第2のトランスデューサは、前記テレメトリ回路に電気的に接続される、シャント組立体。
【請求項12】
水頭症治療中に患者の脳室から迂回部位に流体を移送し、かつ前記流体移送を遠隔位置から監視するためのシャント組立体、および読み取り装置組立体を含むシャントシステムにおいて、
前記シャント組立体であって、
CSFが流れることができる内腔を有し、前記脳室と前記迂回部位との間で前記患者内に埋め込み可能な導管、
前記導管の上または内に位置付けられて、前記内腔内に位置される前記CSFの圧力を測定し、かつ前記圧力測定に応答して第1の信号を生成する電子圧力トランスデューサ、
前記導管の上または内に位置付けられて、前記内腔中を移動する前記CSFの流量を測定し、かつ前記流量測定に応答して第2の信号を生成する電子流量トランスデューサ、ならびに、
前記第1および第2の信号を送信するためのテレメトリ回路、
を有する、シャント組立体と、
前記読み取り装置組立体であって、
送信された前記第1および第2の信号を受信するために前記患者の外側に配置された遠隔読み取り装置、ならびに、
前記第1および第2の信号に基づいて前記第1および第2のパラメータを視覚的に伝達するためのディスプレイ、
を有する、読み取り装置組立体と、
を備える、シャントシステム。
【請求項13】
請求項12に記載のシャント組立体において、
前記内腔は、流体が1つの方向にのみ流れることができるように一方向弁をさらに備える、シャント組立体。
【請求項14】
請求項12に記載のシャント組立体において、
前記電子圧力トランスデューサおよび前記電子流量トランスデューサは、前記内腔に隣接して前記導管に取り付けられるカプセル内に位置される、シャント組立体。
【請求項15】
請求項12に記載のシャント組立体において、
前記遠隔読み取り装置は、局所的な気圧測定値を提供する気圧計をさらに備える、シャント組立体。
【請求項16】
請求項15に記載のシャント組立体において、
前記遠隔読み取り装置は、前記第1および第2の信号、ならびに前記気圧測定値を使用して、ICP、CSF流量、および脳コンプライアンスのリアルタイム値を計算する、シャント組立体。
【請求項17】
水頭症治療中に患者の脳室から迂回部位に流体を移送するためのシャントにおいて、
CSFが流れることができる内腔を有し、前記脳室と前記迂回部位との間で前記患者内に埋め込み可能な導管と、
前記導管の上または内に位置付けられて、前記内腔内に位置される前記CSFの圧力を測定し、かつ前記圧力測定に応答して第1の信号を生成する電子圧力トランスデューサと、
前記導管の上または内に位置付けられて、前記内腔中を移動する前記CSFの流量を測定し、かつ前記流量測定に応答して第2の信号を生成する電子流量トランスデューサと、
を備える、シャント。
【請求項18】
請求項17に記載のシャントにおいて、
前記第1および第2の信号を送信するために前記導管の上または内に位置付けられたテレメトリ回路、
をさらに備える、シャント。
【請求項19】
請求項17に記載のシャントにおいて、
前記内腔は、流体が1つの方向にのみ流れることができるように一方向弁をさらに備える、シャント。
【請求項20】
請求項17に記載のシャントにおいて、
前記第1および第2の電子トランスデューサは、前記内腔に隣接して前記導管に取り付けられるカプセル内に位置される、シャント。
【請求項21】
水頭症治療中に患者の脳室から迂回部位に流体を移送し、かつ前記流体移送を遠隔位置から監視するためのシャントシステムにおいて、
CSFが流れることができる内腔を有し、前記脳室と前記迂回部位との間で前記患者内に埋め込み可能な導管と、
前記導管内に位置付けられて、前記内腔内に位置される前記CSFの圧力を測定し、かつ前記圧力測定に応答して第1の信号を生成する電子圧力トランスデューサと、
前記導管内に位置付けられて、前記内腔中を移動する前記CSFの流量を測定し、かつ前記流量測定に応答して第2の信号を生成する電子流量トランスデューサと、
問い合わせ信号の受信に応答して前記第1および第2の信号を送信するためのテレメトリ回路と、
を備える、シャントシステム。
【請求項22】
請求項21に記載のシャント組立体において、
前記問い合わせ信号は、高周波信号であり、前記テレメトリ回路に誘導的に電力を供給するのに使用される、シャント組立体。
【請求項23】
請求項21に記載のシャントにおいて、
前記内腔は、流体が1つの方向にのみ流れることができるように一方向弁をさらに備える、シャント。
【請求項24】
請求項21に記載のシャントにおいて、
前記電子圧力トランスデューサおよび前記電子流量トランスデューサは、前記内腔に隣接して前記導管に取り付けられるカプセル内に位置される、シャント。
【請求項25】
シャント内のCSF流量および頭蓋内圧力を監視する方法であって、前記シャントは、CSFが流れることができる内腔を有する導管、前記導管の上または内に位置付けられた電子圧力トランスデューサ、および前記導管の上または内に位置付けられた電子流量トランスデューサを有する、方法において、
患者の脳室の1つと迂回部位との間で前記患者内に前記シャントを埋め込むステップと、
前記内腔内に位置される前記CSFの圧力を、前記電子圧力トランスデューサで測定するステップと、
前記圧力測定に応答して第1の信号を生成するステップと、
前記内腔中を移動する前記CSFの流量を、前記電子流量トランスデューサで測定するステップと、
前記流量測定に応答して第2の信号を生成するステップと、
を備える、方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2009−189815(P2009−189815A)
【公開日】平成21年8月27日(2009.8.27)
【国際特許分類】
【外国語出願】
【出願番号】特願2009−29707(P2009−29707)
【出願日】平成21年2月12日(2009.2.12)
【出願人】(509041876)コドマン・ニューロサイエンシズ・エスエイアールエル (2)
【氏名又は名称原語表記】Codman Neurosiences Sarl
【住所又は居所原語表記】Rue Girardet 29,Case Postale,2400 Le Locle,Switzerland
【Fターム(参考)】