説明

シーケンシャルフローステートマシーンを有する近接検出器

近接検出器は、磁界感知要素によって供給される磁界信号に関連する状態を識別するシーケンシャルフローステートマシーンを有する。近接検出器は、状態に応答して振動を識別する振動プロセッサを含むことができる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、近接検出器に関し、より具体的には、シーケンシャルフローステートマシーンを有する近接検出器に関する。
【背景技術】
【0002】
鉄物体または磁気を帯びた物体を検出する近接検出器(本明細書では回転検出器とも称する)が、既知である。そのようなデバイスの1つのアプリケーションが、鉄を含む歯車など、回転する鉄物体の各歯の接近および後退を検出することにある。鉄物体に関連する磁界は、しばしば、検出された磁界に比例する信号(すなわち磁界信号)を供給する、ホール素子または磁気抵抗デバイスなどの1つまたは複数の磁界−電圧変換器(本明細書では磁界感知要素とも称する)によって検出される。近接検出器は、磁界信号を処理して、磁界信号が閾値を横切るたびに状態を変更する出力信号を生成する。したがって、近接検出器が、回転する鉄を含む歯車の各歯の接近および後退を検出するのに使用される場合に、出力信号は、鉄を含む歯車の回転を表す方形波である。
【0003】
時々ピークツーピークパーセンテージ検出器とも称する(閾値検出器とも称する)近接検出器の1つのタイプでは、閾値信号は、ピークツーピーク磁界信号のあるパーセンテージと等しい。1つのそのようなピークツーピークパーセンテージ検出器が、本発明の譲受人に譲渡された米国特許第5917320号、名称「Detection of Passing Magnetic Articles while Periodically Adapting Detection Threshold(検出閾値を周期的に適用しながら磁気物品の通過を検出)」に記載されている。
【0004】
時々スロープアクティベーテッド検出器またはピークリファレンスド検出器とも称する(本明細書ではピーク検出器とも称する)もう1つのタイプの近接検出器が、本発明の譲受人に譲渡された米国特許第6091239号、名称「Detection of Passing Magnetic Articles with a Peak−Referenced Threshold Detector(ピークリファレンスド閾値検出器を備えた通過する磁気物品の検出)」に記載されている。もう1つのそのようなピークリファレンスド近接検出器が、本発明の譲受人に譲渡された米国特許第6693419号、名称「Proximity Detector(近接検出器)」に記載されている。ピークリファレンスド近接検出器では、閾値信号は、磁界信号の正ピークおよび負ピーク(すなわち、ピークおよび谷)とは所定の量だけ異なる。したがって、このタイプの近接検出器では、出力信号は、磁界信号がピークまた谷から所定の量だけ離れる時に状態を変更する。
【0005】
鉄物体の近接を正確に検出するために、近接検出器は、磁界信号を厳密に追跡できなければならない。通常、1つまたは複数のディジタル−アナログ変換器(DAC)が、DAC信号を生成するのに使用され、このDAC信号は、磁界信号を追跡する。たとえば、上で参照した米国特許第5917320号および米国特許第6091239号では、2つのDACが使用され、一方のDACは、磁界信号の正ピークを追跡し(PDAC)、他方のDACは、磁界信号の負ピークを追跡する(NDAC)。また、上で参照した米国特許第6693419号では、単一のDACが、磁界信号の正ピークと負ピークとの両方を追跡する。
【0006】
鉄物体に関連する磁界およびその結果の磁界信号は、鉄物体、たとえば回転する鉄を含む歯車と、近接検出器内で使用される磁界感知要素、たとえばホール素子との間の距離に比例する。この距離を、本明細書では「空隙」と称する。空隙が増加するにつれて、磁界感知要素は、回転する鉄を含む歯車からより小さい磁界を、したがって、回転する鉄を含む歯車の通過する歯によって生成される磁界のより小さい変化を経験する傾向がある。
【0007】
近接検出器は、鉄物体(たとえば、回転する鉄を含む歯車)が、回転するだけではなく、振動もするシステムで使用されてきた。正規動作で回転軸の回りで一方向に回転できる鉄を含む歯車について、振動は、少なくとも2つの振動成分を有することができる。第1の振動成分は、鉄を含む歯車がその回転軸の回りで前後に振動する「回転振動」に対応する。第2の振動成分は、上で述べた空隙範囲が振動する「並進振動」に対応する。回転振動および並進振動は、鉄を含む歯車が正規動作でそれ以外の形で回転してはいない時であっても発生し得る。別々であれ組み合わされた形であれ、第1の振動成分と第2の振動成分との両方が、鉄を含む歯車が正規動作で回転していない時であっても、鉄を含む歯車の回転を示す近接検出器からの出力信号を生成することができる。
【0008】
回転振動および並進振動を検出し、応答するように適合された近接検出器が、たとえば、それぞれが本発明の譲受人に譲渡され、それぞれが名称「Methods and Apparatus for Vibration Detection(振動検出のための方法および装置)」を有する、2004年4月8日出願の米国特許出願第10/820957号および2004年9月16日出願の米国特許出願第10/942577号に記載されている。
【0009】
近接検出器は、自動車の車輪の回転速度を決定するために、自動車のアンチロックブレーキシステム(ABS)に適用されてきた。近接検出器は、所定の変速ポイントで変速装置をシフトし、他の自動車システム機能を実行するために、変速装置歯車の回転速度を決定するために自動車変速装置に適用されてもきた。
【0010】
振動中に磁界感知要素によって生成される磁界信号は、振動の性質に依存する特性を有することができる。たとえば、自動車変速装置で使用される場合に、自動車エンジンの始動中に、近接検出器は、主に、回転振動を経験する傾向があり、この回転振動は、第1の波形を有する磁界信号を生成する傾向がある。対照的に、エンジンアイドリング中には、近接検出器は、主に、並進振動を経験する傾向があり、この並進振動は、第2の波形を有する磁界信号を生成する傾向がある。振動中に生成される磁界信号は、時々またはアプリケーションごとに、たとえば自動車モデルごとに変化する可能性もある。
【0011】
多数の機械的組立体が、寸法製造公差および位置製造公差を有することを理解されたい。たとえば、近接検出器が、組立体内で使用される場合に、空隙は、製造公差を有する可能性があり、この製造公差は、鉄物体が正規動作で回転している時に近接検出器内で使用される磁界感知要素によって感知される磁界の変動および磁界信号の対応する変動をもたらす。また、摩耗が機械的組立体において発生するので、空隙が、経時的に変化し得ることを理解されたい。
【0012】
一部の従来の近接検出器は、上で述べた製造公差変動の存在下で正しい動作を保証するために自動較正を実行する。較正は、AC振幅およびDCオフセット電圧を所望の範囲内に維持するために、磁界信号に対して実行することができる。
【0013】
振動に応答して生成される磁界信号の特性の多くは、鉄物体の正規動作での回転中に生成される磁界信号の特性と同一であるか、これに類似する可能性がある。たとえば、振動中に生成される磁界信号の周波数は、正規動作での回転中に生成される磁界信号の周波数と同一であるか、これに類似する可能性がある。もう1つの例として、振動に応答して生成される磁界信号の振幅は、正規動作での回転中に生成される磁界信号の振幅に類似する可能性がある。したがって、従来の近接検出器は、振動と正規動作の回転との両方に応答して出力信号を生成する。したがって、この近接検出器からの出力信号は、振動に応答して生成されたものであれ、正規動作の回転に応答して生成されたものであれ、同一に見える可能性がある。
【0014】
システムが、振動だけが存在する時に、近接検出器からの出力信号を正規動作の回転に関連すると解釈することは、システム、たとえば近接検出器が使用される自動車システムの動作にとって有害である場合がある。たとえば、車輪回転を検出するのに近接検出器を使用するアンチロックブレーキシステムが、出力信号が振動だけに起因する可能性がある時に、近接検出器からの出力信号を車輪の回転を示すものと解釈する場合がある。したがって、このアンチロックブレーキシステムは、意図された通りに動作しない可能性がある。
【発明の開示】
【発明が解決しようとする課題】
【0015】
正規動作での回転に応答するよりも、振動に応答して、上で述べた近接検出器較正を実行することも、望ましくない可能性がある。従来の近接検出器は、正規動作での回転に応答して生成された磁界信号を、振動に応答して生成された磁界信号から区別することができないので、この近接検出器は、振動を経験している望ましくない時に較正を実行し、したがって、不正確な較正をもたらす可能性がある。
【課題を解決するための手段】
【0016】
本発明によれば、近接検出器は、物体に関連する磁界を示す1つまたは複数の磁界信号を供給するように適合された1つまたは複数の磁界感知要素を含む。この近接検出器は、さらに、各1つまたは複数の状態信号を供給する1つまたは複数の状態プロセッサを含む。状態信号のそれぞれは、磁界信号の各磁界信号に関連する複数の状態を示す。いくつかの実施形態で、この近接検出器は、状態信号に応答して、物体および1つまたは複数の磁界感知要素のうちの少なくとも1つの振動を示す振動信号を生成するように適合された振動プロセッサをさらに含む。
【0017】
本発明のもう1つの態様によれば、物体を検出する方法は、物体に関連する磁界を示す1つまたは複数の磁界信号を生成するステップと、1つまたは複数の状態信号を生成するステップとを含む。各状態信号は、磁界信号の各磁界信号に関連する複数の状態を示す。いくつかの実施形態で、この方法は、状態信号に応答して、物体および1つまたは複数の磁界感知要素のうちの少なくとも1つの振動を示す振動信号を生成するステップをさらに含む。
【発明を実施するための最良の形態】
【0018】
本発明の前述の特徴ならびに本発明自体は、次の図面の詳細な説明からより十分に理解することができる。
【0019】
本発明を説明する前に、ある前置きの概念および用語法を説明する。本明細書で使用される用語「回転振動」は、回転軸の回りの物体の前後の回転を指し、この物体は、正規動作で回転軸の回りで単一方向の方法で回転するように適合される。本明細書で使用される用語「並進振動」は、物体および/または一般に回転軸に垂直な方向の物体によって生成される磁界を検出するのに使用される磁界センサの並進を指す。回転振動と並進振動との両方が、磁界センサによって生成される信号を引き起こし得ることを了解されたい。
【0020】
図1を参照すると、例示的な近接検出器システム100は、それぞれが回転する歯車102の通過する歯に応答して各磁界感知要素信号を生成するように適合された、3つの磁界感知要素104a〜104cを含む。システム100は、左チャネル増幅器126および右チャネル増幅器106をも含む。オフセットおよび利得調整回路108および128は、求められていないDCオフセットを除去し、増幅器106および126によって供給される信号をRDiff信号110およびLDiff信号130に変換するために等しい調整可能な利得を提供し、RDiff信号110およびLDiff信号130は、それぞれ、あるDC動作範囲およびAC動作範囲の中にある。RDiff信号110およびLDiff信号130を、本明細書では「磁界信号」と称する。
【0021】
第1の状態プロセッサ112は、RDiff信号110を受け取り、RDiff信号110に関連する複数の状態を示す第1の状態信号116を供給する。同様に、第2の状態プロセッサ132は、LDiff信号130を受け取り、LDiff信号130に関連する複数の状態を示す第2の状態信号136を供給する。これらの状態は、以下に図2、2A、および3と共によりより詳細に説明される。
【0022】
振動プロセッサ118は、状態信号116および136を受け取り、磁界感知要素104a〜104cおよび/または歯車102のうちの1つまた複数の振動を示す振動信号120を供給する。いくつかの実施形態で、振動プロセッサ118は、複数の振動サブプロセッサ(図示せず)を含むことができ、この振動サブプロセッサのそれぞれは、振動を検出することができ、振動信号120に寄与することができる。たとえば、各振動サブプロセッサが、それぞれが1つの振動を示す1つまたは複数の振動ビットに寄与することができる。振動プロセッサ118は、図6〜9と共により完全に説明される。
【0023】
出力プロトコルプロセッサ122は、状態信号116および136と振動信号120とを受け取り、歯車102の回転を示し、磁界感知要素104a〜104cおよび/または歯車102のうちの1つまたは複数の振動をも示す回転信号124を供給する。しかし、いくつかの他の実施形態では、振動プロセッサ118が省略され、出力プロトコルプロセッサ122が、歯車102の回転を示すが磁界感知要素104a〜104cまたは歯車102の振動を示さない回転信号124を供給する。
【0024】
いくつかの実施形態において、回転信号124は、歯車102の回転の速度に関係する周波数を有する単一ビットディジタル信号であり、回転信号124は、振動信号120が振動を示す時に、ブランクにされる(すなわち、遷移を止める)。しかし、他の実施形態では、回転信号124は、他の方法で歯車102の回転の諸態様を示すことができ、上で説明した振動は、他の形で表され得る。
【0025】
ここで図2を参照すると、状態プロセッサ200は、図1の状態プロセッサ112および132の各1つと同一またはこれに類似するものとすることができる。状態プロセッサ200は、DIFF信号202を受け取り、DIFF信号202は、図1のRDiff信号110またはLDiff信号130とすることができる。状態プロセッサ200は、第1カウンタ206を含み、第1のカウンタ206は、第1の論理回路204の制御の下で、保持し、カウントアップし、またはカウントダウンすることができる。第1の論理回路204は、POSCOMP信号および比較器208に応答する。第1のカウンタ208は、PDAC(p−チャネルディジタル−アナログ変換器)210にPDAC信号を生成させ、このPDAC信号は、DIFF信号202の正ピークを追跡する。
【0026】
同様に、状態プロセッサ200は、第2カウンタ212を含み、第2のカウンタ212は、第2の論理回路216の制御下で、保持し、カウントアップし、またはカウントダウンすることができる。第2の論理回路216は、POSCOMP信号および比較器218に応答する。第2のカウンタ212は、NDAC(n−チャネルディジタル−アナログ変換器)214にNDAC信号を生成させ、このNDAC信号は、DIFF信号202の負ピークを追跡する。
【0027】
PDAC信号およびNDAC信号の生成を、以下に図2Aと共にさらに説明する。しかし、ここでは、PDAC信号およびNDAC信号が、全体的に、DIFF信号のピークツーピーク振幅を追跡するDC信号であると述べるに留める。
【0028】
状態プロセッサ200は、抵抗器221がその1つの例にすぎない複数の抵抗器を有する、出力タップ223がその1つの例にすぎない複数の出力タップを有するラダー抵抗220をも含み、これらの出力タップは、伝達ゲート225がその1つの例にすぎない複数の伝達ゲートに結合される。ラダー抵抗の出力タップが、DIFF信号のピークツーピーク振幅に比例する複数の電圧を定義することを諒解されたい。一特定の実施形態では、出力タップは、DIFF信号のピークツーピーク振幅のパーセンテージ、たとえば、DIFF信号のピークツーピーク振幅の0%、10%、20%、30%、40%、60%、70%、80%、90%、および100%に対応する。
【0029】
伝達ゲート、たとえば伝達ゲート225は、各制御信号0/20、10/30、20/40、30/60、40/70、60/80、70/90、および80/100によって制御される。これらの制御信号識別は、DIFF信号のピークツーピーク振幅の2つのパーセンテージに対応する。たとえば、制御信号0/20は、DIFF信号のピークツーピーク振幅の0%および20%に対応する。したがって、この2つのパーセンテージ、この例では0および20は、DIFF信号のいわゆる「状態」に対応するものとすることができ、ここで、特定の時ポイントに、DIFF信号がDIFF信号のピークツーピーク振幅の0%と20%との間にある場合に、このDIFF信号は、状態0(本明細書では状態000とも称する)である。同様に、特定の時ポイントで、DIFF信号がDIFF信号のピークツーピーク振幅の10%と30%との間にある場合に、このDIFF信号は、状態1(本明細書では状態001とも称する)である。一特定の実施形態で、8つの制御信号0/20、10/30、20/40、30/60、40/70、60/80、70/90、および80/100に従って、DIFF信号の8つの状態がある。
【0030】
比較器222は、閾値信号THRESH_Bを受け取り、DIFF信号をも受け取る。比較器222は、2状態のCOMP_B信号を生成し、このCOMP_B信号は、DIFF信号がTHRESH_B信号を超える時にハイである。同様に、比較器224は、閾値信号THRESH_Aを受け取り、DIFF信号をも受け取る。比較器224は、2状態のCOMP_A信号を生成し、このCOMP_A信号は、DIFF信号がTHRESH_A信号未満である時にハイである。
【0031】
比較器222および224が、組み合わされて、THRESH_A信号およびTHRESH_B信号によって定義されるウィンドウの外のDIFF信号がCOMP_A信号およびCOMP_B信号のうちの1つのハイ状態をもたらすウィンドウコンパレータを形成することを諒解されたい。さらに、THRESH_A信号およびTHRESH_B信号が、制御電圧0/20、10/30、20/40、30/60、40/70、60/80、70/90、および80/100に従って、PDAC信号とNDAC信号との間の範囲の0%および20%、10%および30%、20%および40%、30%および60%、40%および70%、60%および80%、70%および90%、ならびに80%および100%になるように選択された各電圧を有することを諒解されたい。したがって、どの瞬間にも、比較器222および224は、DIFF信号がこの8つの状態のうちのどれであるかを識別することができる。
【0032】
シーケンシャルフローステートマシーン226は、COMP_A信号およびCOMP_B信号を受け取る。シーケンシャルフローステートマシーン226は、下で図3と共により完全に説明される。しかし、シーケンシャルフローステートマシーン226は、上で説明したCOMP_A信号およびCOMP_B信号に関連する状態情報をデコードし、4ビット出力228を供給する。この4ビットは、状態を示す3ビットと、DIFF信号の傾きすなわち正または負を示す1ビットとを含む。
【0033】
3:8デコーダ232は、DIFF信号の状態を示す3ビットを受け取り、制御信号0/20、10/30、20/40、30/60、40/70、60/80、70/90、および80/100を供給し、これらの制御信号は、伝達ゲート、たとえば伝達ゲート225を制御する。
【0034】
デコーダ234は、DIFF信号の状態および傾きを示す4ビットを受け取り、POSCOMP信号を生成する。
【0035】
クロックジェネレータ回路230は、クロック信号CLKを供給して、シーケンシャルフローステートマシーンを刻時する。クロックジェネレータ回路230は、図4および5と共により詳細に説明される。
【0036】
ここで図2Aを参照すると、グラフ270および290のそれぞれは、ボルト単位の垂直スケールおよび時間単位の水平スケールを有する。DIFF信号272は、たとえば、図1のRDiff信号110または図1のLDiff信号130に対応するものとすることができる。POSCOMP信号292は、たとえば図2のPOSCOMP信号に対応するものとすることができる。
【0037】
DIFF信号272は、図をわかりやすくするために単純な正弦波の形状を有するものとして図示されている。しかし、DIFF信号272が、さまざまな形状を有することができることを諒解されたい。
【0038】
ポイント278aおよび278cは、DIFF信号272の負ピークに対応する。ポイント278bは、DIFF信号272の正ピークに対応する。電圧レベル(すなわち、閾値)280a〜280jは、それぞれ、DIFF信号272のピークツーピーク振幅のパーセンテージに対応する。たとえば、閾値280aは、0%に対応し、閾値280bは、10%に対応する。
【0039】
DIFF信号272の上で説明した状態を、閾値280a〜280jに関連付けることができる。たとえば、DIFF信号は、0%閾値280aと20%閾値280cとの間にある時に、状態0である。DIFF信号は、DIFF信号272が10%閾値280bと30%閾値280dとの間にある時に、状態1(または001)である。
【0040】
したがって、各状態が、閾値280a〜280jのうちの2つに対応することを諒解されたい。それぞれ10個の閾値(0%、10%、20%、30%、40%、60%、70%、80%、90%、および100%)と、8個の状態(0/20、10/30、20/40、30/60、40/70、60/80、70/90、および80/100)がある。上で説明した状態に割り当てられたパーセンテージは、特定のパーセンテージによって分離されるが、他のパーセンテージ分離を使用することもできる。10個の閾値が、上の8つの状態を定義するのに使用されるが、他の実施形態では、10個を超えるまたは10個未満の個数の閾値を使用して、8個を超えるまたは8個未満の個数の状態を定義することができる。
【0041】
PDAC信号274は、図2のPDAC信号に対応し、NDAC信号276は、図2のNDAC信号に対応する。図2からわかるように、PDAC信号およびNDAC信号は、ラダー抵抗220に印加され、ラダー抵抗220は、PDAC信号とNDAC信号との間の差のさまざまなパーセンテージで出力を供給することができる。
【0042】
定常状態条件を仮定すると、時刻taに、PDAC信号274は、DIFF信号272の正ピークに対応する定常状態の比較的高いレベルであり、POSCOMP信号292のエッジ292aに関連する時刻tcまでこのレベルのままになる。時刻tcに、PDAC信号274は、PDAC信号274がDIFF信号272と交差するまでカウントダウンし、交差したポイントで、PDAC信号274は、方向を反転し、DIFF信号272を、ポイント278bのこの信号の次の正ピークまで追跡するためにカウントアップする。ポイント278bに達した時に、PDAC信号274は、もう一度、DIFF信号272の正ピークでその値を保持する。
【0043】
時刻tbに、NDAC信号276は、DIFF信号272の負ピークに対応する定常状態の比較的低いレベルであり、POSCOMP信号292のエッジ292bに関連する時刻tdまでこのレベルのままになる。時刻tdに、NDAC信号276は、NDAC信号276がDIFF信号272と交差するまでカウントアップし、交差したポイントで、NDAC信号276は、方向を反転し、DIFF信号272を、ポイント278cの次の負ピークまで追跡するためにカウントダウンする。ポイント278cに達した時に、NDAC信号276は、もう一度、DIFF信号272の負ピークでその値を保持する。PDAC信号274およびNDAC信号276の上で説明した挙動は、DIFF信号272の各サイクルで繰り返される。
【0044】
もう一度図2を簡単に参照すると、POSCOMP信号は、シーケンシャルフローステートマシーン226によって供給される状態(および傾き)をデコードすることによって生成される。DIFF信号に対する位相の有限の組のうちの1つを有するようにPOSCOMP信号を生成できることは、明白である。図2Aをもう一度参照すると、DIFF信号272の位相からの位相オフセットを有するPOSCOMP信号292を生成し、したがって、PDAC信号274およびNDAC信号276が、まずある方向でステップし、次に反対の方向でステップすることを可能にすることが望ましい。この配置は、PDAC信号274およびNDAC信号276が、DIFF信号がピークツーピーク振幅において減少する時にDIFF信号272を追跡できることを可能にする。
【0045】
ここで図3を参照すると、シーケンシャルフローステートマシーン300は、図2のシーケンシャルフローステートマシーン226と同一であるか、これに類似する。シーケンシャルフローステートマシーン300の状態は、楕円によって表され、各楕円は、1つの状態に対応する。当業者は、シーケンシャルフローステートマシーン300をハードウェアで、たとえばフリップフロップを使用してどのように実施するかを理解するであろう。各楕円は、図2および2AのDIFF信号の上で説明した8つの状態の1つに対応する。各楕円内では、2進数が、対応する状態を表す。各楕円内では、スラッシュ記号によって区切られた2つの数が、示された状態を表す、図2のTHRESH_A信号およびTHRESH_B信号によるDIFF信号のピークツーピーク電圧のパーセンテージを示す。たとえば、10/30は、状態001に関連する、DIFF信号のピークツーピーク電圧の10%になるように設定されたTHRESH_A信号と、DIFF信号のピークツーピーク電圧の30%になるように設定されたTHRESH_B信号とを表す。したがって、特定の瞬間に状態001(本明細書では状態1とも称する)である時に、DIFF信号は、そのピークツーピーク電圧の10%と30%との間である。
【0046】
COMP_B信号(図2)が、ハイレベルに遷移し(すなわち、B→1)DIFF信号(図2)がウィンドウコンパレータ(図2の比較器222および224)によって設定されたウィンドウから上向きに移動したことを示す時に、状態遷移が、上向きに、たとえば状態001から状態010へと発生する。逆に、COMP_A信号(図2)が、ハイレベルに遷移し(すなわち、A→1)、DIFF信号(図2)がウィンドウコンパレータ(図2の比較器222および224)によって設定されたウィンドウから下向きに移動したことを示す時に、状態遷移が、下向きに、たとえば状態001から状態000へと発生する。状態遷移がいずれかの方向で発生する時に、図2の3:8デコーダによって、THRESH_A信号およびTHRESH_B信号(図2)に、伝達ゲート、たとえば伝達ゲート225によって新しい状態に関連する値がセットされ、ウィンドウコンパレータがもう一度DIFF信号を囲むようになり、したがって、COMP_B信号およびCOMP_A信号が、もう一度ロウになる(AおよびB→0)。上の配置を用いると、COMP_B信号およびCOMP_A信号は、DIFF信号の状態遷移が発生する時、およびそれが発生する方向を識別する。
【0047】
DIFF信号の8つの状態のそれぞれが、3ビットによって識別されることを理解されたい。第4のビットすなわち傾きビット(SB)は、単に、COMP_B信号がハイ状態に遷移する(B→1)時に必ずこのビットに1をセットし、COMP_A信号がハイ状態に遷移する(A→1)時に必ずこのビットに0をセットすることによって生成することができる。したがって、シーケンシャルフローステートマシーンは、4ビットを有する出力を供給し、このビットのうちの3つは、DIFF信号の状態を識別し、第4ビット(SB)は、DIFF信号が電圧において上向きまたは下向きのどちらにトラバースしつつあるかを識別する。本明細書で使用される用語状態信号は、4つすべてのビットまたは状態を示す3ビットだけを指す。
【0048】
上で説明したように、シーケンシャルフローステートマシーン300は、それぞれが各図1の状態プロセッサ112および132に関連する2つのシーケンシャルフローステートマシーンの1つとすることができる。したがって、一方はLDiff信号に関連し、もう一方はRDiff信号に関連する、2つの4ビット状態信号および2つの傾きビット(SBおよびSB)があり得る。
【0049】
シーケンシャルフローステートマシーンは、クロック信号(CLK)を受け取り、このCLK信号に、状態遷移が同期化される。いくつかの実施形態で、CLK信号は、自走式とし、近接検出器100(図1)の他の動作から非同期とすることができる。しかし、他の実施形態では、CLK信号は、COMP_B信号の遷移およびCOMP_A信号の遷移と同期式である。CLK信号の生成は、下で図4と共により完全に説明される。
【0050】
ここで図4を参照すると、クロックジェネレータ400は、図2のクロックジェネレータ230と同一またはこれに類似するものとすることができ、図2および3に示されたCLK信号を供給することができる。このクロックジェネレータは、COMP_B信号およびCOMP_A信号を受け取り、これらの信号は、図2および3に示されたものと同一である。500ns時間遅延モジュール402が、COMP_B信号を遅延させ、もう1つの500ns時間遅延モジュール406が、COMP_A信号を遅延させて、遅延された信号404および408を供給する。第1のNORゲート410が、第1のNORゲート出力信号412を生成する。第1のNORゲート出力信号412が、COMP_A信号またはCOMP_B信号のいずれかがハイになる時に遷移を経験することを諒解されたい。第2のNORゲート414は、第2のNORゲート出力信号416を生成する。もう1つの500ns時間遅延モジュール418が、第2のNORゲート出力信号412を遅延させて、もう1つの時間遅延された信号420を供給する。セットリセットフリップフロップ422が、セット入力(S)で時間遅延された信号420を受け取り、クロック信号CLK 428を供給する。もう1つの時間遅延モジュール430が、約1μsだけCLK信号428を遅延させて、もう1つの時間遅延された信号432を供給し、時間遅延された信号432は、単にバッファとして動作するORゲート424を介して、ORゲート出力信号426を供給する。ORゲート出力信号426は、フリップフロップ422のリセット入力(R)で受け取られる。
【0051】
動作中に、フリップフロップ422は、セット入力(S)で受け取られる立ち上がりエッジに応答して、CLK信号428の立ち上がりエッジを生成する。フリップフロップ422は、リセット入力(R)で受け取られる立ち上がりエッジに応答して、CLK信号428の立ち下がりエッジを生成する。CLK信号428が、COMP_A信号またはCOMP_B信号のいずれか1つがハイに遷移してから少し後にハイに遷移し、CLK信号が、それから約1μs後にロウに遷移することは明白であろう。クロックジェネレータ400の各種の信号の動作は、以下に図5と共により完全に説明される。
【0052】
ここで図5を参照すると、図4の類似する要素が類似する符号を有して示されているが、ダイヤグラム500は、ボルト単位の垂直軸および時間単位の水平軸を有する。信号401は、図4のCOMP_B信号401の遷移に対応するエッジ401aを有し、DIFF信号が図2の比較器222および224によって形成されるウィンドウコンパレータによって確立される電圧ウィンドウから出て上に遷移したことを示す。時間遅延された信号404は、約500nsだけエッジ401aから遅延されたエッジ404aを有する。第2NORゲート出力信号416は、本質的にエッジ404aと整列するエッジ416aを有する。時間遅延された信号420は、約500nsだけエッジ416aから遅延されたエッジ420aを有する。CLK信号428は、本質的にエッジ420aと整列するエッジ428aを有する。ORゲート出力信号426は、約1μsだけエッジ428aから遅延されたエッジ426aを有する。エッジ426aは、図4のフリップフロップ422をリセットし、CLK信号428のエッジ428bをもたらす。
【0053】
CLK信号428のエッジ428aが、ウィンドウコンパレータ(図2の比較器222および224)に関連するTHRESH_A信号およびTHRESH_B信号(図2)の変化を生成することを諒解されたい。したがって、エッジ428aは、一般に、COMP_B信号401のエッジ401bと整列する。
【0054】
上の配置を用いると、CLK信号428のエッジは、COMP_B信号401の遷移から遅延され、競合状態および可能なチャターの除去をもたらす。
【0055】
図6〜7Aおよび10が、ある技法を示す流れ図を示し、この技法が、振動プロセッサ118(図1)内で実施され、図11が、ある技法を示す流れ図を示し、この技法が、出力プロトコルプロセッサ122(図1)内で実施されることを諒解されたい。長方形の要素(図6の要素604によって典型的に表される)は、本明細書では「処理ブロック」と表されるが、コンピュータソフトウェア命令または命令のグループを表す。菱形の要素(図6の要素601によって典型的に表される)は、本明細書では「判断ブロック」と表されるが、処理ブロックによって表されるコンピュータソフトウェア命令の実行に影響するコンピュータソフトウェア命令または命令のグループを表す。
【0056】
代替案では、処理ブロックおよび判断ブロックは、ディジタル信号プロセッサ回路または特定用途向け集積回路(ASIC)などの機能的に同等の回路によって実行されるステップを表す。流れ図は、いかなる特定のプログラミング言語の構文も示さない。そうではなく、流れ図は、当業者が特定の装置に必要な処理を実行する回路を製造し、またはコンピュータソフトウェアを生成するのに必要とする機能情報を示す。ループおよび変数の初期化など、多数の決まりきったプログラム要素および一時変数の使用が、図示されていないことに留意されたい。当業者は、本明細書でそうでないと示されていない限り、説明されるブロックの特定のシーケンスが、例示的であるのみであり、本発明の趣旨から逸脱せずに変更できることを諒解するであろう。したがって、そうでないと述べられない限り、説明されるブロックは、順序がなく、これは、可能な時に、ステップを任意の便利なまたは望ましい順序で実行できることを意味する。
【0057】
下の図6、7、および7Aでは、状態表記が、上で使用した2進数000〜111ではなく10進数0〜7である。
【0058】
ここで図6を参照すると、プロセス600を使用して、正規動作で回転する物体、たとえば図1の歯車102の振動を検出することができる。プロセス600が、DIFF信号の1つの状態遷移だけに適用され、プロセス600を、図2〜5のCLK信号の各正エッジまたは各負エッジに実行できることを理解されたい。さらに、図1に示されているように、2つのDIFF信号、それぞれRDiff 110およびLDiff 130があり、プロセス600を、RDiff信号110とLDiff信号130との両方について実行することができる。したがって、プロセス600は、2つの振動ビット(VB1、VB1)すなわちチャネルごとに1つの振動ビット(VB1)を生成することができる。
【0059】
プロセス600は、上で説明した状態遷移の時に到達される、判断ブロック601で開始される。状態が状態1〜6である(すなわち、状態が0でも7でもない)場合に、このプロセスは、判断ブロック602に進む。判断ブロック602で、傾きビット(SB)(図3)が状態遷移中に変化した場合には、このプロセスは、ブロック604に継続し、ここで、振動ビット(VB1)をセットし、このVB1は、振動を示す。
【0060】
判断ブロック601で、現在の状態が、状態1〜6のどれでもない(すなわち、状態が0または7である)場合には、このプロセスは終了する。判断ブロック602で、傾きビットが、現在の状態に達するために変化したのではない場合には、このプロセスは終了する。
【0061】
図3の状態をポイント検することによって、傾きビット(SB)が、状態1〜6のいずれかに達するために変化したのであってはならないことは、明白である。セットされている振動ビットは、振動を示す。セットされている振動ビットは、いくつかのアプリケーションで、方向変化、すなわち、図1の歯車102の回転方向の変化を示すこともできる。
【0062】
後続処理(図11)は、プロセス600によって与えられた振動ビット(VB1)を利用して、振動または回転方向の変化が発生したか否かを決定することができる。後続処理(図11)は、たとえば、決定が、振動ではなく歯車102の回転方向の変化を示す場合に、振動ビット(VB1)をリセットすることもできる。
【0063】
プロセス600を、CLK信号(図2〜5)の各クロックサイクルに繰り返すことができることを理解されたい。しかし、代替配置では、プロセス600が、別のレートで、たとえばCLK信号の各第3サイクルに、またはCLK信号と非同期のレートで、繰り返される。
【0064】
ここで図7および7Aを参照すると、もう1つのプロセス700を、単独でまたは図6のプロセス600と組み合わせて使用して、振動を識別することができる。プロセス700は、判断ブロック702で開始され、ここで、LDiff信号(図1)に関連する傾きビット(SB)が1であり(すなわち、LDiff信号が立ち上がりつつあり)、左チャネル状態が1であり(すなわち、LDiff信号の状態が1であり)、右チャネル状態がA1またはA2のいずれかである(すなわち、RDiff信号の状態がA1またはA2である)場合に、このプロセスは、ブロック729に進む。
【0065】
ブロック729では、第2の振動ビットVB2が、セットされ、これは、歯車102および磁界センサ104a〜104c(図1)のうちの少なくとも1つの振動を示す。
【0066】
同様に、判断ブロック704〜714は、立ち上がるLDiff信号(傾きビット(SB)=1)についてLDiff信号の状態2〜7に関連するRDiff信号の状態をテストする。
【0067】
判断ブロック716〜728は、立ち下がるLDiff信号(傾きビット(SB)=0)についてLDiff信号の状態6〜0に関連するRDiff信号の状態をテストする。
【0068】
判断ブロック702〜728が、主信号であるLDiff信号を検討し、この主信号の状態が、関連するRDiff信号の状態と比較されることを諒解されたい。判断ブロック730〜756は、他方の手法をとり、主信号であるRDiff信号を検討し、この主信号の状態が、関連するLDiff信号の状態と比較される。
【0069】
判断ブロック730では、RDiff信号(図1)に関連する傾きビット(SB)が1であり(すなわち、RDiff信号が立ち上がりつつあり)、右チャネル状態が1であり(すなわち、RDiff信号の状態が1であり)、左チャネル状態がB1またはB2のいずれかである(すなわち、LDiff信号の状態がB1またはB2である)場合に、このプロセスは、ブロック758に進み、ここで、振動ビット(VB3)が、ブロック729と同様にセットされる。
【0070】
同様に、判断ブロック732〜742は、立ち上がるRDiff信号(傾きビット(SB)=1)についてRDiff信号の状態2〜7に関連するLDiff信号の状態をテストする。
【0071】
状態A1〜A28およびB1〜B28は、任意の組合せの、状態0から7までのいずれかとすることができる。また、状態A1〜A28およびB1〜B28のいくつかまたはすべてを、同一の状態とすることができる。本質的に、A1〜A28およびB1〜B28は、28個の状態値を有する状態の組またはベクトルの要素である。
【0072】
判断ブロック744〜756は、立ち下がるRDiff信号(傾きビット(SB)=0)についてRDiff信号の状態6〜0に関連するLDiff信号の状態をテストする。
【0073】
判断ブロック702〜756のいずれかの条件が満足される場合に、このプロセスは、ブロック729またはブロック758のいずれかで振動ビット(VB2)をセットする、すなわち、振動ビット(VB2)に1がセットされる。判断ブロック702〜756のいずれかの条件のどれもが満足されない場合には、このプロセスは終了する。
【0074】
いくつかの実施形態で、図7の振動ビット(VB2)は、図6と共に説明した1つまたは2つの振動ビット(VB1、VB1)と異なる振動ビットである。しかし、他の実施形態では、図6のプロセス600によって生成される振動ビットならびに図7および7Aのプロセス700によって生成される振動ビットが、組み合わされて、1つの振動ビット(VB)をもたらす。
【0075】
後続処理(図11)は、プロセス700によって与えられた振動ビット(VB2)を利用して、振動または回転方向の変化が発生したか否かを決定することができる。後続処理(図11)は、たとえば、決定が、振動ではなく歯車102の回転方向の変化を示す場合に、振動ビット(VB2)をリセットすることもできる。
【0076】
プロセス700を、CLK信号(図2〜5)の各クロックサイクルに繰り返すことができることを理解されたい。しかし、代替配置では、プロセス700が、別のレートで、たとえばCLK信号の各第3サイクルに、またはCLK信号と非同期のレートで、繰り返される。
【0077】
図1のRDiff信号110およびLDiff信号130が、歯車102が正規動作で回転している時に特定の位相関係(たとえば、90°)にあるものとすることができ、歯車102および/または磁界センサ104a〜104cが振動を経験している時に異なる位相関係(たとえば、0°または180°)にあるものとすることができることをも理解されたい。さらに、図7および7Aの左右のチャネルの間の状態比較が、RDiff信号110とLDiff信号130との間の相対位相を示すことを理解されたい。たとえば、状態A1〜A28およびB1〜B28は、振動を示すことができる、左右のチャネルの間の0°および180°の位相関係を示すことができる。
【0078】
状態A1〜A28およびB1〜B28のうちの2つは、各判断ブロック702〜756に関連するが、他の実施形態では、判断ブロック702〜756のうちの1つまたは複数に関連する3つ以上または2つ未満の状態があるものとすることができる。言い換えると、判断ブロック702を例にとりあげると、右チャネル状態がA1またはA2と等しいという条件ではなく、条件を、右チャネル状態がA1またはA2またはA3またはA4と等しいこととすることができる。
【0079】
いくつかの実施形態で、プロセス700に、より少数の判断ブロックが含まれる。たとえば、いくつかの実施形態で、判断ブロック730〜756が除去され、プロセス700は、主チャネルとして1つのチャネルだけを使用する。
【0080】
ここで図8を参照すると、グラフ800は、時間単位の水平スケールおよび電圧単位の垂直スケールを有する。曲線802は、LDiff信号、たとえば図1のLDiff信号に対応する。曲線804は、RDiff信号、たとえば図1のRDiff信号に対応する。
【0081】
LDiff信号802およびRDiff信号804は、ほぼ90°位相はずれであるものとして図示されているが、この位相差は、90°より大きいまたはこれより小さいものとすることができる。8つの状態は、破線806a〜806jに従って示されている。LDiff信号802を、RDiff信号804をも表すものとしてとりあげると、LDiff信号802の状態0は、LDiff信号802が破線806aと806cとの間にある時に達成される。状態1は、LDiff信号802が破線806bと806dとの間にある時に達成され、以下同様である。
【0082】
正規動作で、方向変化または振動がない場合に、LDiff信号802が0状態であり、負の傾きを有する(破線806aと806bとの間すなわちポイント810aと810bとの間)時に、RDiff信号804が、異なる状態、たとえば第7の状態から第4の状態までのいずれかであることがわかる(図7の判断ブロック728を参照されたい)。図7〜7Aの判断ブロック702〜756のそれぞれに関連する他の例を、見つけることができる。
【0083】
上の例を使用し、図7をもう一度参照すると、判断ブロック728で、LDiff信号傾きビット(SB)が0であり(負の傾き)、LDiff信号802が0状態であり、RDiff信号804が第6の状態または第5の状態である時に、LDiff信号802およびRDiff信号804は、方向変化または振動を経験しておらず、振動ビット(VB2)は、プロセス700によってはセットされない。上で説明したように、図7および7Aの振動検出方法700は、CLK信号(図2〜5)の次のクロックサイクルを待って、もう一度図7の方法に入り、この時には、LDiff信号802およびRDiff信号804は、図7および7Aの判断ブロック702〜758の別の1つに対応する、異なる状態である。
【0084】
LDiff信号802およびRDiff信号804は、90°の関係を有する正弦波として図示されているが、LDiff信号802およびRDiff信号804が、異なる位相関係および異なる形状を有することができ、LDiff信号802およびRDiff信号804によって達成される、異なる相対状態がもたらされることを理解されたい。1つの異なる波形を、たとえば図9に示す。
【0085】
ここで図9を参照すると、グラフ900は、時間単位の水平スケールおよび電圧単位の垂直スケールを有する。曲線902は、正ピーク902aおよび負ピーク902bを有するが、LDiff信号、たとえば図1のLDiff信号に対応する。曲線904は、正ピーク904aおよび負ピーク904bを有するが、RDiff信号、たとえば図1のRDiff信号に対応する。LDiff信号902およびRDiff信号904を、幅広い間隔の歯車の歯を有する、歯車、たとえば図1の歯車102に関連付けることができることを理解されたい。
【0086】
LDiff信号902およびRDiff信号904は、ほぼ90°位相はずれであるものとして図示されているが、この位相差は、90°より大きいまたはこれより小さいものとすることができる。8つの状態は、破線906a〜906jに従って示されている。LDiff信号902を、RDiff信号904をも表すものとしてとりあげると、LDiff信号902の状態0は、LDiff信号902が破線906aと906cとの間にある時に達成される。状態1は、LDiff信号902が破線906bと906dとの間にある時に達成され、以下同様である。
【0087】
正規動作で、方向変化または振動がない場合に、LDiff信号902が0状態であり、負の傾きを有する(破線906aと906cとの間)時に、RDiff信号904が、異なる状態、たとえば第4の状態であることがわかる(図7の判断ブロック728を参照されたい)。図7〜7Aの判断ブロック702〜756のそれぞれに関連する他の例を、見つけることができる。
【0088】
上の例を使用し、図7をもう一度参照すると、判断ブロック728で、LDiff信号傾きビット(SB)が0であり(負の傾き)、LDiff信号902が0状態であり、RDiff信号804が第4の状態である時に、LDiff信号902およびRDiff信号904は、方向変化または振動を経験しておらず、振動ビット(VB2)は、プロセス700によってはセットされない。上で説明したように、図7および7Aの振動検出方法700は、CLK信号(図2〜5)の次のクロックサイクルを待って、もう一度図7の方法に入り、この時には、LDiff信号902およびRDiff信号904は、図7および7Aの判断ブロック702〜758の別の1つに対応する、異なる状態である。
【0089】
したがって、図7および7Aの値A1〜A28およびB1〜B28を、LDiff波形およびRDiff波形の形状に関係する状態値になるように事前に選択できることを諒解されたい。もう1つの実施形態では、システム100(図1)は、工場較正中にまたはシステム内較正中に、A1〜A28およびB1〜B28の値を学習することができる。この方法で、1つのシステム100(図1)を、各種波形に関連する各種のアプリケーションに適用することができる。上で説明したように、状態数は、A1〜A28およびB1〜B28に限定はされない。
【0090】
ここで図10を参照すると、プロセス1000を使用して、正規動作で一般に振動なしで回転する物体、たとえば図1の歯車102の振動を検出することができる。プロセス1000が、LDiff信号およびRDiff信号(図1、8、9)の複数の状態遷移に適用されることを理解されたい。
【0091】
もう一度図8を短く参照して、LDiff信号802およびRDiff信号804の状態が、次の「状態シーケンス」で遷移することを理解されたい。
【0092】
【表1】

上のシーケンスで矢印によって接続された、下線を付けられた状態は、「選択された状態」を示し、この選択された状態は、所定の「状態パターン」(5L→5R→3L→3R)で発生しなければならない。異なる状態パターンで発生する選択された状態が、振動を示す場合があることを理解されたい。
【0093】
状態パターン(5L→5R→3L→3R)では、矢印は、LDiff信号(L)およびRDiff信号(R)の状態のパターンを示す。しかし、選択された状態の間に介在する状態が存在することができ、この介在する状態は、状態パターンにおける矢印に関連する。たとえば、上の状態シーケンスでは、状態5Lと5Rとの間に他の状態が発生することがわかる。しかし、状態5Lは、この状態パターン(5L→5R→3L→3R)における関連する矢印によって示されるように、状態5Rの前に発生する。
【0094】
上述の状態パターンは、LDIFF信号とRDiff信号との両方の状態を含むが、他の実施形態では、LDiff信号またはRDiff信号の一方だけの選択された状態を有する状態パターンを使用することができる。
【0095】
図8のLDiff信号802およびRDiff信号804は、ほぼ90°位相はずれであるものとして図示されており、この位相は、特定の歯車102(図1)に関する磁界センサ104a〜104c(図1)の特定の設置(すなわち位置)および歯の特定の間隔を有する歯車102の特定の設置(すなわち位置)を表す。LDiff信号802およびRDiff信号804の相対位相(ここでは90°)が、近接検出器100(図1)の正しい設置を示すことができることを認められたい。磁界センサ104a〜104cのうちの1つまたは複数が、歯車102に関して斜めにされているか、他の形で位置ずれしている設置に関して、相対位相は、初期の位相から逸脱し得る。
【0096】
上述したものなどの状態パターンを使用して、振動だけではなく、近接検出器100の正しい設置対不正な設置または位置ずれしている設置をも識別することができる。たとえば、状態パターン(5L→2R)は、第2の状態が右チャネルで発生する前に第5の状態が左チャネルで発生することを示す。上の状態シーケンスを検査することによって、LDiff信号とRDiff信号との間の相対位相の比較的小さいシフトが、状態パターン(5L→2R)の違反を引き起こし得ることがわかる。したがって、いくつかの状態パターンを使用して、近接検出器100の不正な設置を識別することができる。
【0097】
もう一度図9を簡単に参照して、状態遷移に関連するクロック、たとえば図2のCLK信号が、状態遷移が発生する時に限って遷移することを想起し、LDiff信号902およびRDiff信号904の状態が、上で与えたものと同一の状態パターンを有する同一の状態シーケンスで遷移することを理解されたい。
【0098】
しかし、代わりに、図9の水平軸が、等しい時間単位に分割され、等しい時間単位内の状態が考慮される場合に、LDiff信号902およびRDiff信号904が、状態4に留まり、等しい時間単位内の状態シーケンスを、次のように表すことができることがわかる。
【0099】
【表2】

上記状態シーケンスで矢印によって接続された下線状態は、選択された状態を示し、この選択された状態は、所定の状態パターン(5L→5R→3L→3R)で発生しなければならず、この状態パターンは、図8の波形に関連する上で説明した状態パターンと同一である。やはり、異なる状態パターンで発生する選択された状態が、振動を示す場合があることを理解されたい。
【0100】
もう一度図10を参照すると、プロセス1000は、判断ブロック1002で始まり、ここで、左チャネル状態(LDiff)が、右チャネル状態(RDiff)が状態5になる前に状態5である場合には、このプロセスは、判断ブロック1004に進む。
【0101】
判断ブロック1004では、右チャネル状態(RDiff)が、左チャネル状態(LDiff)が状態3になる前に状態5である場合に、このプロセスは、判断ブロック1006に進む。
【0102】
判断ブロック1006では、左チャネル状態(LDiff)が、右チャネル状態(RDiff)が状態3になる前に状態3である場合に、このプロセスは、判断ブロック1008に進む。
【0103】
判断ブロック1008では、右チャネル状態(RDiff)が、左チャネル状態(LDiff)が状態5になる前に状態3である場合に、このプロセスは、判断ブロック1010に進み、ここで、第3の振動ビット(VB3)が0にクリアされ、これは、振動なしを示す。
【0104】
判断ブロック1002〜1008の条件のいずれかが満足されない場合には、このプロセスは、ブロック1012に進み、ここで、第3の振動ビット(VB3)に1がセットされ、これは、振動を示す。
【0105】
プロセス1000は、ブロック1010の後で終了するものとして図示されているが、他の実施形態では、このプロセスは、その代わりに判断ブロック1002に戻り、本質的に継続的にループするか、任意の所定の回数だけループする。
【0106】
判断ブロック1002〜1008は、上で説明した状態シーケンス内の選択された状態の所定の状態パターン(5L→5R→3L→3R)を表すと考えることができる。上で説明したように、介在する状態が、選択された状態の間で発生し得る。
【0107】
上で説明した状態パターンは、(5L→5R→3L→3R)であるが、他の実施形態では、他の選択された状態を有する、たとえば図8および9に示された、異なるLDiff信号波形およびRDiff信号波形について同一でない状態パターンを含む、別の状態パターンを使用することができる。他の実施形態では、状態パターンに、4つより多いまたはこれより少ない選択された状態を含めることができ、その状態パターンからの逸脱のすべてが、振動ビット(VB3)をセットする。いくつかの実施形態で、状態パターンは、LDiff信号およびRDiff信号の一方だけに関連する選択された状態を含む。
【0108】
いくつかの実施形態で、状態パターンおよびその中の選択された状態を、たとえばスタートアップ時に学習することができ、したがって、特定のLDiff波形およびRDiff波形に合わせて調整することができる。他の実施形態では、選択された状態を有する状態パターンが、たとえば近接検出器の設置の時に、特定のアプリケーションについてプログラムされる。
【0109】
状態パターン、たとえば状態パターン(5L→5R→3L→3R)が、歯車、たとえば図1の歯車102の方向変化の時に逆転し、(3R→3L→5R→5L)になることができることを理解されたい。代替配置では、方向変化の時に、プロセス1000に、逆転された状態パターンをも検出し、逆方向が検出される場合に振動ビット(VB3)をセットしない判断ブロックを含めることができる。この実施形態では、振動ビット(VB3)は、順方向および逆方向が検出されない場合に限ってセットされる。
【0110】
いくつかの実施形態で、図10の振動ビット(VB3)は、図6と共に説明した1つまたは2つの振動ビット(VB1、VB1)ならびに図7および7Aと共に説明した振動ビットVB2とは異なる振動ビットである。しかし、他の実施形態では、図6のプロセス600、図7および7Aのプロセス700、ならびに図10のプロセス1000によって生成される振動ビットが、組み合わされて1つの振動ビット(VB)をもたらす。
【0111】
後続処理(図11)は、プロセス1000によって与えられる振動ビット(VB3)を利用して、振動または回転方向の変化が発生したか否かを決定することができる。後続処理(図11)は、たとえば、決定が、振動ではなく歯車102の回転方向の変化を示す場合に、振動ビット(VB3)をリセットすることもできる。
【0112】
ここで図11を参照すると、プロセスは、判断ブロック1102で開始し、ここで、第3の振動ビット(VB3)がセットされている場合に、このプロセスは、ブロック1104に進み、ここで、出力信号124(図1)が停止される。代替実施形態では、出力信号124は、振動を示すようにエンコードされる。
【0113】
第3の振動ビット(VB3)が、「強い」振動ビットであり、出力信号124を停止できるか、あるいは他の形で振動を示すように出力信号124をエンコードすることができる、唯一の振動ビットであることを諒解されたい。
【0114】
判断ブロック1106では、第3の振動ビット(VB3)が、CLK信号(図2)の少なくともNクロックサイクルの間に0であった(アンセットされていた)場合に、このプロセスは、判断ブロック1108に進む。そうでない場合には、このプロセスは、判断ブロック1106でループし、その時間中には、出力信号124は、停止されたままであるか、振動を示すように他の形でエンコードされたままになる。一特定の実施形態では、Nの値は、約30であり、これは、LDiff信号およびRDiff信号(図1)の2つの完全なサイクルを示す。
【0115】
判断ブロック1108では、他の振動ビット(VB1、VB1、VB2)のいずれかに、振動を示す1がセットされている場合に、このプロセスは、判断ブロック1106に戻り、出力信号124は、停止されたままであるか、振動を示すように他の形でエンコードされたままになる。しかし、他の振動ビット(VB1、VB1、VB2)のすべてに1がセットされていない場合には、このプロセスは、ブロック1110に進み、ここで、他の振動ビット(VB1、VB1、VB2)が、0にリセットされる。
【0116】
ブロック1112で、出力信号124が、もう一度開始され、あるいは、もう1つの実施形態では、振動なしを示すようにエンコードされる。
【0117】
上の議論から、他の振動ビット(VB1、VB1、VB2)が、「弱い」振動ビットであり、出力信号124を停止する力を有しないが、出力信号124が第3振動ビット(VB3)によって停止されたならば、その出力信号124を停止されたままに保つ力を有することは明白である。他の実施形態では、振動ビット(VB1、VB1、VB2、VB3)を、強い振動ビット、弱い振動ビット、または任意の組合せとすることができることを諒解されたい。さらに別の実施形態では、振動ビット(VB1、VB1、VB2、VB3)のいずれか1つまたは複数および関連する方法600、700、1000それぞれが、省略される。
【0118】
図10と共に説明したように、1つまたは複数の状態パターンを使用して、近接検出器100(図1)の正しい設置を識別することもできる。この配置を用いると、出力信号124を、正しい(または不正な)設置を示すようにさらにエンコードすることができる。しかし、もう1つの実施形態では、正しい(または不正な)設置を示すもう1つの出力信号(図示せず)が設けられる。正しい設置の表示は、たとえば、近接検出器100の設置の時に、または任意の他の時に供給することができる。
【0119】
本明細書で引用されたすべての参考文献は、参照によってその全体が本明細書に組み込まれている。
【0120】
本発明の好ましい実施形態を説明したので、これらの概念を組み込んだ他の実施形態を使用できることが、当業者に明白になるであろう。したがって、これらの実施形態が、開示された実施形態に限定されてはならず、添付の特許請求の範囲の趣旨および範囲によってのみ限定されなければならないと思われる。
【図面の簡単な説明】
【0121】
【図1】2つの状態プロセッサ、振動プロセッサ、および出力プロトコルプロセッサを有する近接検出器を示すブロック図である。
【図2】シーケンシャルフローステートマシーンおよび関連するクロックジェネレータを含む図1の2つの状態プロセッサのうちの1つのさらなる詳細を示すブロック図である。
【図2A】図2のシーケンシャルフローステートマシーンの動作を説明するのに使用されるグラフを示す図である。
【図3】図2の状態プロセッサの動作を示す状態図である。
【図4】図2のクロックジェネレータのさらなる詳細を示すブロック図である。
【図5】図4のクロックジェネレータに関連する波形を示す一連のグラフを示す図である。
【図6】図1の振動プロセッサと共に使用することのできる振動検出プロセスを示す流れ図である。
【図7】図1の振動プロセッサと共に使用することのできるもう1つの振動検出プロセスを示す流れ図の前半である。
【図7A】図1の振動プロセッサと共に使用することのできるもう1つの振動検出プロセスを示す流れ図の後半である。
【図8】図7〜7Aの振動検出プロセスの動作を説明するのに使用される波形を示すグラフである。
【図9】図7〜7Aの振動検出プロセスの動作を説明するのに使用される他の波形を示すグラフである。
【図10】図1の振動プロセッサと共に使用することのできるもう1つの振動検出プロセスを示す流れ図である。
【図11】図1の出力プロトコルプロセッサに関連するプロセスを示す流れ図である。

【特許請求の範囲】
【請求項1】
物体に関連する磁界を示す各1つまたは複数の磁界信号を供給するように適合され、前記1つまたは複数の磁界信号の各磁界信号は、各アナログ信号値を有するアナログ信号である、1つまたは複数の磁界感知要素と、
各1つまたは複数の状態信号を供給する1つまたは複数の状態プロセッサとを備え、前記1つまたは複数の状態信号の各状態信号は、前記1つまたは複数の磁界信号の各磁界信号に関連する複数の状態を示し、前記複数の状態の各状態は、前記各アナログ信号値の各範囲を示す、
近接検出器。
【請求項2】
前記1つまたは複数の状態信号に応答して、前記物体および前記1つまたは複数の磁界感知要素のうちの少なくとも1つの振動を示す振動信号を生成するように適合された振動プロセッサをさらに含む、請求項1に記載の近接検出器。
【請求項3】
前記振動プロセッサは、前記1つまたは複数の磁界信号のうちの別の1つの前記複数の状態の中からの少なくとも1つの選択された状態と共に、前記1つまたは複数の磁界信号のうちの選択された磁界信号の傾きの変化に従って前記振動信号を生成するように適合される、請求項2に記載の近接検出器。
【請求項4】
前記1つまたは複数の磁界信号は、第1の磁界信号および第2の磁界信号を含み、前記振動プロセッサは、前記第1の磁界信号の状態と前記複数の状態の中からの前記第2の磁界信号の状態との比較に従って前記振動信号を生成するように適合される、請求項2に記載の近接検出器。
【請求項5】
前記1つまたは複数の磁界信号は、第1の磁界信号および第2の磁界信号を含み、前記振動プロセッサは、前記第1の磁界信号および前記第2の磁界信号のうちの少なくとも1つの状態パターンに従って前記振動信号を生成するように適合され、前記状態パターンは、前記複数の状態の中からの選択された状態を有する、請求項2に記載の近接検出器。
【請求項6】
前記1つまたは複数の磁界信号は、第1の磁界信号および第2の磁界信号を含み、前記振動プロセッサは、前記1つまたは複数の磁界信号のうちの別の磁界信号の前記複数の状態の中からの少なくとも1つの選択された状態と共に、前記1つまたは複数の磁界信号のうちの選択された磁界信号の傾きの変化による第1の振動信号と、前記複数の状態の中からの前記第1の磁界信号の状態の前記第2の磁界信号の状態との比較による第2の振動信号と、前記第1の磁界信号および前記第2の磁界信号のうちの少なくとも1つの状態パターンによる第3の振動信号とのうちの少なくとも1つを生成するように適合され、前記状態パターンは、前記複数の状態の中からの選択された状態を有する、請求項2に記載の近接検出器。
【請求項7】
前記1つまたは複数の状態信号に応答し、前記第1の振動信号、前記第2の振動信号、および前記第3の振動信号のうちの少なくとも1つに応答し、前記物体の回転を示し且つ前記振動を示す出力信号を生成するように適合された出力プロトコルプロセッサをさらに含む、請求項6に記載の近接検出器。
【請求項8】
前記出力信号は、当初は、前記第1の振動信号、前記第2の振動信号、および前記第3の振動信号のうちの選択された1つの信号に応答してのみ前記振動を示している、請求項7に記載の近接検出器。
【請求項9】
前記1つまたは複数の状態信号に応答し且つ前記振動信号に応答して、前記物体の回転を示し且つ前記振動を示す出力信号を生成するように適合された出力プロトコルプロセッサをさらに含む、請求項2に記載の近接検出器。
【請求項10】
前記1つまたは複数の状態信号に応答し、前記物体の回転を示す出力信号を生成するように適合された出力プロトコルプロセッサをさらに含む、請求項1に記載の近接検出器。
【請求項11】
前記1つまたは複数の状態信号に応答し、前記近接検出器の正しい設置を示す出力信号を生成するように適合された出力プロトコルプロセッサをさらに含む、請求項1に記載の近接検出器。
【請求項12】
物体に関連する磁界を示す1つまたは複数の磁界信号を生成するステップと、
1つまたは複数の状態信号を生成するステップとを含み、
前記1つまたは複数の磁界信号の各磁界信号は、各アナログ信号値を有するアナログ信号であり、
前記1つまたは複数の状態信号の各状態信号は、前記1つまたは複数の磁界信号の各磁界信号に関連する複数の状態を示し、前記複数の状態の各状態は、前記各アナログ信号値の各範囲を示す、
物体を検出する方法。
【請求項13】
前記1つまたは複数の状態信号に応答し、前記物体および前記1つまたは複数の磁界感知要素のうちの少なくとも1つの振動を示す振動信号を生成するステップをさらに含む、請求項12に記載の方法。
【請求項14】
前記1つまたは複数の磁界信号のうちの別の磁界信号の前記複数の状態の中からの少なくとも1つの選択された状態と共に、前記1つまたは複数の磁界信号のうちの選択された磁界信号の傾きの変化に従って前記振動信号を生成するステップをさらに含む、請求項13に記載の方法。
【請求項15】
前記1つまたは複数の磁界信号は、第1の磁界信号および第2の磁界信号を含み、前記方法は、
前記複数の状態の中からの前記第1の磁界信号の状態と前記第2磁界信号の状態との比較に従って前記振動信号を生成するステップをさらに含む、請求項13に記載の方法。
【請求項16】
前記1つまたは複数の磁界信号は、第1の磁界信号および第2の磁界信号を含み、前記方法は、
前記第1の磁界信号および前記第2の磁界信号のうちの少なくとも1つの状態パターンに従って前記振動信号を生成するステップをさらに含み、前記状態パターンは、前記複数の状態の中からの選択された状態を有する、請求項13に記載の方法。
【請求項17】
前記1つまたは複数の磁界信号は、第1の磁界信号および第2の磁界信号を含み、前記方法は、
前記1つまたは複数の磁界信号のうちの別の磁界信号の前記複数の状態の中からの少なくとも1つの選択された状態と共に、前記1つまたは複数の磁界信号のうちの選択された磁界信号の傾きの変化による第1の振動信号と、前記複数の状態の中からの前記第1の磁界信号の状態と前記第2の磁界信号の状態との比較による第2の振動信号と、前記第1の磁界信号および前記第2の磁界信号のうちの少なくとも1つの状態パターンによる第3の振動信号のうちの少なくとも1つを生成するステップをさらに含み、前記状態パターンは前記複数の状態の中からの選択された状態を有する、請求項13に記載の方法。
【請求項18】
前記1つまたは複数の状態信号に応答し、前記第1の振動信号、前記第2の振動信号、および前記第3の振動信号のうちの少なくとも1つに応答し、前記物体の回転を示し且つ前記振動を示す出力信号を生成するステップをさらに含む、請求項17に記載の方法。
【請求項19】
前記出力信号は、当初は、前記第1の振動信号、前記第2の振動信号、および前記第3の振動信号のうちの選択された1つに応答してのみ前記振動を示す、請求項18に記載の方法。
【請求項20】
前記1つまたは複数の状態信号に応答し且つ前記振動信号に応答して、前記物体の回転を示し且つ前記振動を示す出力信号を生成するステップをさらに含む、請求項13に記載の方法。
【請求項21】
前記1つまたは複数の状態信号に応答して、前記物体の回転を示す出力信号を生成するステップをさらに含む、請求項12に記載の方法。
【請求項22】
前記1つまたは複数の状態信号に応答して、前記近接検出器の正しい設置を示す出力信号を生成するステップをさらに含む、請求項12に記載の近接検出器。

【図1】
image rotate

【図2】
image rotate

【図2A】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図7A】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate


【公表番号】特表2008−533498(P2008−533498A)
【公表日】平成20年8月21日(2008.8.21)
【国際特許分類】
【出願番号】特願2008−503007(P2008−503007)
【出願日】平成18年3月6日(2006.3.6)
【国際出願番号】PCT/US2006/007824
【国際公開番号】WO2006/101702
【国際公開日】平成18年9月28日(2006.9.28)
【出願人】(501105602)アレグロ・マイクロシステムズ・インコーポレーテッド (55)
【Fターム(参考)】